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ABSTRACT

We present a numerical investigation of the contribution ofthe presupernova ejecta of Wolf-Rayet stars to
the environment surrounding gamma-ray bursts (GRBs), and describe how this external matter can affect the
observable afterglow characteristics. An implicit hydrodynamic calculation for massive stellar evolution is used
here to provide the inner boundary conditions for an explicit hydrodynamical code to model the circumstellar gas
dynamics. The resulting properties of the circumstellar medium are then used to calculate the deceleration of a
relativistic, gas-dynamic jet and the corresponding afterglow light curve produced as the shock wave propagates
through the shocked-wind medium. We find that variations in the stellar wind drive instabilities that may produce
radial filaments in the shocked-wind region. These comet-like tails of clumps could give rise to strong temporal
variations in the early afterglow lightcurve. Afterglows may be expected to differ widely among themselves,
depending on the angular anisotropy of the jet and the properties of the stellar progenitor; a wide diversity of
behaviors may be the rule, rather than the exception.

Subject headings: gamma-rays: bursts — ISM: jets and outflows — radiation mechanisms: non thermal —
polarization — relativity — shock waves

1. INTRODUCTION

Over the past six years evidence has mounted that long-duration (≥ 2 s) gamma-ray bursts (GRBs) signal the collapse of massive
stars in our Universe. This evidence was originally based onthe probable association of the unusual GRB 980425 with a type Ib/c
supernova (SN; Galama et al. 1998) but now includes the association of GRBs with regions of massive star formation in distant
galaxies (Paczýnski 1998; Wijers et al. 1998; Fruchter et al. 1999; Djorgovski et al. 2001; Trentham et al. 2002), the appearance
of supernova-likebumps in the optical afterglow light curves of several bursts (Bloom et al. 1999; Zeh, Klose & Hartmann 2004
and references therein), lines of freshly synthesized elements in the spectra of a few X-ray afterglows (Piro et al. 2000; Ballantyne
& Ramirez-Ruiz 2001; Reeves et al. 2002), and the first convincing spectroscopic evidence that a very energetic supernova (a
hypernova) was temporally and spatially coincident with a GRB (Hjorth et al. 2003; Stanek et al. 2003). These observations support
the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse(Woosley
1993, Zhang et al. 2003).

An implication of a massive star progenitor is that the circumburst environment is determined by the mass-loss wind fromthe
star. Much of our effort in this paper will therefore be dedicated to determining the state of the circumburst material invarious
types of progenitor scenarios, and describing how this external matter can affect GRB jets propagating through it. It should be noted
here that the afterglows sample a region∼ 1017 cm in size. Because massive stars are expected to have their close-in surroundings
modified by the progenitor winds, we consider both free windsand shocked winds as possible surrounding media for the afterglow
stage. Detailed hydrodynamic simulations of this interaction are presented in §4. Our computations allow us, for the first time, to
study the behaviour of circumstellar gas very close to the progenitor star. An understanding of the evolution of a gas-dynamic jet can
come only through a knowledge of the properties of the mediumwhich it propagates. Calculations of the evolution of a relativistic,
gas-dynamic jet and expected emission properties are discussed in §5. For completeness, the interactions with either afree wind or a
constant density medium, as well as the termination shock wave which marks the transition between these two media, are discussed
in §2 and §3. The role of binarity is briefly addressed in §4.1.We then in §6 discuss the possible variety of afterglow variability that
is expected from GRB jets expanding in a medium that may be inhomogeneous because of clumping in the Wolf-Rayet (WR) star
wind. Discussion and conclusions are presented in §7.

2. THE CIRCUMBURST MEDIUM

If the progenitors are massive stars then there is an analogyto the explosions of core collapse supernovae, for which there is
abundant evidence that they interact with the winds from theprogenitor stars. In most supernova cases, the radial rangethat is
observed is only out to a few pc, such that the mass loss characteristics have not changed significantly during the time that mass
is supplied to the wind (Chevalier & Li 2000). The density in the wind depends on the type of progenitor. Red supergiant stars,
which are thought to be the progenitors of Type II supernovae, have slow dense winds. Wolf-Rayet stars, which are believed to be
the progenitors of Type Ib/c supernovae and possibly of GRBs(e.g. MacFadyen & Woosley 1999), have faster, lower-density winds.
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The winds from typical red supergiants are slow-moving and dense, with velocitiesvw ≈ 10− 20 km s−1 and mass loss rates between
10−6 and 10−4 M⊙ yr−1 (e.g. Fransson et al. 1996). The winds from WRs, on the other hand, are characterized by mass-loss rates
Ṁ ≈ 10−5 − 10−4 M⊙ yr−1 and velocitiesvw ≈ 1000− 2500 kms−1 (e.g. Chiosi & Maeder 1986). In a steady, spherically symmetric
wind, the electron density is

nw(r) =
Ṁ

4πvwr2µemp
≈ 3×106cm−3r−2

15Ṁ−4v−1
w,3µ

−1
e , (1)

whereµe is the molecular weight per electron andµe ∼ 2 in a helium gas. Herevw = 103vw,3kms−1, r = 1015r15 cm, andṀ =
10−4M−4M⊙ yr−1.

For this discussion we shall assume the blast wave is adiabatic, i.e. its energy is constant with time, and effectively spherical. This
means theE here is the isotropic equivalent energy as, for example, derived from the gamma-ray output. Deceleration due to the
stellar wind starts in earnest when about half the initial energy is transferred to the shocked matter, i.e. when it has swept upγ−1

times its own rest mass. The typical mass where this happens is

Mdec=
E
γ2c2

≈ 5×10−6E53γ
−2
2 M⊙. (2)

The relativistic expansion is then gradually slowed down, and the blast wave evolves in a self-similar manner with a power-law
lightcurve. This phase ends when so much mass shares the energy that the Lorentz factor,γ, drops to 1. Obviously, this happens
when a massE/c2 has been swept up. This sets a non-relativistic mass scale

MNR =
E
c2

≈ 6×10−2E53M⊙. (3)

Beyond this point, the event slowly changes into a classicalSedov-Taylor supernova remnant evolution, leading to a steeper decline
in the lightcurve (Waxman et al. 1998).

In the unshocked wind, the mass within radiusr is Ṁr/vw, which combined with equation (2) gives the blast wave deceleration
radius in a stellar wind:

rw
d =

Evw

Ṁc2γ2
≈ 2×1016E53vw,3Ṁ−1

−6γ
−2
2 cm, (4)

whereE53 = (E/1053) ergs. By contrast, the well-known expression for the uniform-medium deceleration radius is

rd ≈ 1018(E53/nism,0)1/3γ
−8/3
2 cm, (5)

and so a blast wave in a wind decelerates at a much smaller radius. The deceleration time is given bytd = rd/(2γ2c) in both cases,
and thus is correspondingly smaller for the wind case. However, because the Lorentz factor decreases asM−1/2 (with M being the
swept-up mass) beyond this point, the mass-starved wind blast wave decelerates much more slowly, and therefore begins to catch up.
There is therefore not much difference in size between wind and uniform CM blast waves in the most commonly observed interval
from 0.3 to 10 days after the burst (Fig. 1). Usually in the study of afterglows, one considers either the uniform ambient medium
case or the 1/r2 wind case on its own6. However, since the wind of a star meets the interstellar medium (ISM) at some point, the
density structure is more complex, and it is to this problem that we now turn our attention.

3. WIND-ISM INTERACTION

During the evolution of a wind-driven circumstellar shell the system has a four-zone structure (analogous to that of a supernova
shell; Woltjer 1972). From the inside to the outside these zones are: (a) a supersonic stellar wind with densityρ(r) = Ṁ/4πr2vw; (b) a
hot, almost isobaric region consisting of shocked stellar wind mixed with a small fraction of the swept-up interstellargas; (c) a thin,
dense, cold shell containing most of the swept-up interstellar gas; (d) ambient interstellar gas of number densitynism (Fig. 2).

The wind initially expands unopposed into the ISM with a velocity of aboutvw ∼ v∞, the escape velocity at the sonic point. The
free expansion phase is considered to be terminated at a timetw,d, when the swept-up mass of the interstellar medium is comparable
to the mass in the wind. The mass lost by the star isṀtw,d and the swept-up mass is4π

3 (vw tw,d)3nismmpµe. These two masses are equal
whentw,d = [3Ṁ/(4πv3

wnismmpµe)]1/2, which is about 100 years for a typical WR wind expanding intoan homogeneous ISM. The
free-expansion phase takes place at the early stages of the evolution of the hot star and occupies a minimal fraction of its lifetime.
During this time bothṀ andvw are approximately constant, and the wind bubble has reacheda radius of∼ 9×1017Ṁ−5n1/2

ism,1v−1/2
w,3 cm,

whereṀ is the mass loss rate in units of solar masses per year, andnism is the density of the surrounding medium in units of cm−3.
When the free-expansion phase (a) has ended, the wind encounters an inward facing shock. Kinetic energy is deposited in the

shocked wind region in the form of heat,

Tshock=
3
16

mpµe

k
(∆vw)2 = 1.4×105(

∆vw

100 km s−1 )2 K, (6)
6 Although the interstellar and wind models are the two main types of environments considered for afterglows, there is a different scenario involving a massive star in
which the supernova explosion occurs before the GRB (Vietri& Stella 1998). The supernova would expand into the progenitor wind, creating a complex circumburst
region in the inner part of the wind. Konigl & Granot (2002) have recently shown, for the case of a pulsar-wind bubble, thatthe shocked wind has a roughly uniform
density, similar to that found in the normal interstellar medium.
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where∆vw is the relative speed of the material approaching the shock.Thus, a jump in velocity by 800 km s−1, which is still well
below typical terminal wind speeds, produces a 107 K gas in the shocked wind region. During phase (b), the material is so hot that
it causes the contact surface to expand outward more slowly than it would in a freely expanding wind. The ISM that enters the
outward facing shock is heated to a temperature below 106K, emission of line radiation becomes the dominant cooling process and
the swept-up gas cools quickly to temperatures of about 104K that can be maintained by the radiation field of the star. Theduration
of the adiabatic expansion phase can thus be estimated by finding the time it takes the expanding gas to cool fromTshock≈ 107K to
106K. Using equation (6), we find that a change in temperature from 107K to 106K corresponds to a change in jump velocity by a
factor of

√
10. This change in jump velocity corresponds to a phase (b):(a) age ratio of about 6 (Castor et al. 1975). Thus, the age of

the adiabatic phase is less than about 1000 years.
The mass of the swept-up material is much larger than that in the hot wind and, because it is cool, it lies in a compressed region.

Phase (c) persists for as long as the star is able to sustain a powerful wind. The dominant energy loss of region (b) is work against
the compressed region (c). The compressed region (c) expands because its gas pressure is higher than that of the surrounding ISM.
Therefore, the expansion is described by the momentum equation,

d
dt

[MS(t)v(t)] = 4πr2(t)Pi, (7)

wherePi is the internal pressure of the compressed region, assumingthat most of the swept-up interstellar mass remains in the thin
shell.MS(t) is the mass of the shell of swept-up material, given byMS(t) = (4/3)πr3(t)ρi. Pi is determined by the gas pressure of the
high temperature gas in region (b). The wind material that enters the backward-facing shock is hot, but the material thatenters the
forward-facing shock is cool. The cooled swept-up materialis driven outward by the high gas pressure of the hot bubble. The stellar
wind adds energy to region (b) at a rate

L(t) =
1
2

Ṁ(t)v2
w(t). (8)

The internal energy in the bubble is given by the product of the energy per unit mass of the material, (3/2)nkT/ρi = (3/2)Pi/ρi , and
the total mass of the bubble, (4/3)πr3ρi . Since the total internal energy of the bubble comes from theenergy of the wind, we find
Ṗi = L(t)/[2πr3(t)].

The expansion of the bubble during the adiabatic phase can befound numerically by using this expression in the momentum
equation. If the wind powerL is roughly constant for a period of time,t, one can writePi = L t/(2πr3). The resulting solution of
equation (7) givesr(t) ∝ t3/5. This shows that the shell expands more slowly than would a freely expanding wind. Since the gas
in the cavity moves subsonically its pressure keeps it approximately at uniform density. The bubble could continue to expand until
stalled by the pressure of the ISM (García-Segura & Franco 1996).

The radius of the wind termination shock at the inner edge of the wind bubble can be found by balancing the wind ram pressure
with the post-shock cavity pressure. For a star that loses mass at a rate 10−6Ṁ−6M⊙yr−1 with a wind velocity 103vw,3 km s−1 in
interstellar gas with density 103nism,3cm−3, we have a inner termination shock radius

rt(t) = 0.4Ṁ3/10
−6 v1/10

w,3 n−3/10
ism,3 t2/5

6 pc, (9)

where 106t6 is the lifetime of the star in Myr. The density in the uniform shocked wind region,nsw, at late times is given by

nsw ∼
3Ṁ

4πr2
t vwmp

= 0.06Ṁ2/5
−6 n3/5

ism,3v−6/5
w,3 t−4/5

6 cm−3, (10)

which shows that even if the progenitor star is embedded in a dense molecular cloud the observed blast wave can propagate in a
low-density, uniform medium (Wijers 2001). The mass withinthe 1/r2 wind, Mt , is

Mt =
Ṁrt

vw
= 3×10−4Ṁ13/10

6 v−9/10
w,3 n−3/10

ism,3 t2/5
6 M⊙. (11)

Comparison with estimates given in Soderberg & Ramirez-Ruiz (2002) show that if the wind is particularly weak (i.e.̇M ≤
10−6M⊙yr−1) or the surrounding density is high (nism ≥ 103 cm−3), rt falls within the range of the relativistic expansion. Models
and observations of Galactic Wolf-Rayet stars, however, show that the swept-up shell of a red supergiant material at theouter radius
is at a distance≥ 3 pc from the star (García-Segura et al. 1996a). This radius is sufficiently large that the interaction with the free
1/r2 wind is expected over the typical period of observation of afterglows.

Among the afterglows that can be interpreted as interactionwith a undisturbed stellar wind, the highest density objects are com-
patible with expectations for the wind from a typical Wolf-Rayet star (Panaitescu & Kumar 2002), but the lower densitiesimply a
wind densities that are lower by a factor of 10− 102. As proposed by Wijers (2001), the low-density requirementmay be alleviated
by appealing to a shocked wind, but the observable afterglowtransitions due to the blast wave traversing the wind termination shock
wave (Fig. 2) have not been seen in any afterglow.

Depending upon the wind history of a massive star during its last few centuries, however, the density structure in this inner region
(i.e. relevant to the afterglow phase) could be quite complicated as the star enters advanced burning stages unlike those in any Wolf-
Rayet star observed so far. The non-steady nature of the winds in massive stars therefore leaves open the possibility of interaction
with denser material at early times (Chevalier et al. 2004).This encourages us to present a detailed account of the largeand small
scale features that may be present in the circumstellar gas distribution. These features, as we argue, can result naturally when one
takes into account the complete mass-loss history of a massive star.
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4. WIND-WIND INTERACTION

The detailed dynamical evolution of the circumstellar material (CSM) around massive stars is complex. Some stages of itdo not
involve major hydrodynamical instabilities and can thus bestudied analytically by means of self-similar solutions (Weaver et al.
1977; Ostriker & McKee 1988; Chevalier & Liang 1989 ; García-Segura & Mac Low 1995a). However, the frequent occurrence
of instabilities requires two – or three – dimensional hydrodynamic calculations in order to follow the non-linear evolution of the
resulting structures (Franco et al. 1991; Blondin & Lundquist 1993; García-Segura & Mac Low 1995b).

In an effort to achieve full consistency between stellar andcircumstellar evolution, we have performed several computations where
the time-dependent input for the calculation of the circumstellar gas dynamics is derived from the output of a stellar evolution code
developed at the University of Göttingen (Langer et al. 1988, Langer 1991). Here we carry out computational simulationswith the
hydrocode ZEUS-3D (version 3.4) developed by M. L. Norman and the Laboratory for Computational Astrophysics. ZEUS-3D is
a finite-difference, fully explicit, Eulerian code (Clarke1996) descended from the code described by Stone & Norman (1992). We
used spherical coordinates for our simulations, with a symmetry axis at the pole, and reflecting boundary conditions at the equator
and the polar axis. The reader is referred to García-Segura et al. (1996a,b) for a review of the applied computational methods and
techniques.

The preburst stellar wind depends on the evolutionary stages prior to (and during) the Wolf-Rayet stage. For Galactic stars, a
standard evolutionary track is to start as an O star, evolve through a red supergiant (RSG) phase or luminous blue variable (LBV)
phase with considerable mass loss, and ending as a Wolf-Rayet star (García-Segura et al. 1996a,b). At low metallicity, the RSG
phase may be absent; this may also be the case for some binary stars. As a first example, we follow the dynamics of the circumstellar
medium around a 29M⊙ star at the ZAMS, which evolves (at solar metallicity) through a long-lived RSG stage with prominent
consequences for the evolution of the circumstellar matter. The 29M⊙ stellar model has steady winds during the main-sequence
(MS) and RSG stages. For that reason, the CSM evolution during these stages is computed in one dimension for a homogeneous
ISM. For the calculation of the post-RSG evolution the variables such as the temperatures and density are extrapolated onto a two
dimensional grid. Note, however, that the calculations start before the RSG phase has ended in order to be sure that the RSG shell is
dynamically stable. The total amount of mass lost by the RSG in the wind isMrsg= 10M⊙, with a mass loss ratėMrsg= 6×10−5M⊙yr−1

and wind velocityvrsg∼ 15 km s−1.
When the fast WR windvw ∼ 3500 km s−1 starts blowing, it sweeps up the RSG wind material into a shell, which we will refer to

as theWR shell. The properties of this shell turn out to be very sensitive tothe characteristics of the RSG wind. Since the density
of the RSG wind depends on its velocity asρ(r) = Ṁrsg/(4πr2vrsg), a low RSG wind velocity implies a much higher density. The
expansion of the WR shell is faster for lower RSG wind densities and also for higher wind velocities. The termination shock of the
WR wind is located at a much smaller radius than that of the hotMS bubble described in the previous section, so we simply assume
free outflow as the outer boundary condition in order to calculate its dynamical behaviour (García-Segura et al. 1996a).

During the early stages, the swept-up WR shell is dense enough to be fully radiative. This ceases to be true, however, after the
shell has extended to a radius of more than 0.1 pc, since its density decreases so much that its evolution becomes almost adiabatic.
Correspondingly, the shell is initially thin and thereforesubject to Vishniac instabilities (Vishniac 1983); but theincrease of shell
thickness soon suppresses the growth of the instability. This instability operates in dense winds where the cooling is effective enough
to produce radiative terminal shocks. The RSG wind shell is accelerated by the (less dense) shocked WR wind and is therefore also
subject to Rayleigh-Taylor (RT) and Vishniac instabilities. In this case we have a radiatively-cooled, thin, accelerated shell and the
two instabilities must be coupled. The resulting structureafter 8,000 yr of evolution since the onset of the WR phase is summarized
in Fig. 3.

It is also possible for a fast WR wind to collide with early ejecta before it is decelerated by the RSG shell (or a LBV shell depending
on the evolutionary pathway of the massive progenitor). To illustrate this, we study the last (unsteady) WR stage of a 60M⊙ star.
Mass loss lowers the stellar mass from 60M⊙ all the way down to∼ 4M⊙ at the time of the final supernova (or GRB). The total mass
loss includes∼ 32M⊙ lost in the MS and pre-LBV stages,∼ 8 M⊙ lost in the LBV stage, and∼ 16M⊙ in the WR stage. The MS
and LBV-WR stages have been modeled in a self-consistent fashion by García-Segura et al. (1996b). These stages have important
implications for the circumstellar gas atr ≫ 0.4 pc. Here, we study the interaction between the fast-movingWR wind (vwr ∼ 4000
km s−1) just before the final supernova and the early, slower moving(vwr ∼ 1500 km s−1), ejecta7.

The resultant shell will be pushed outward by the central star wind and retarded by the early ejected wind, quickly reaching a
constant velocity, but increasing in mass. The resulting expansion law for the shell follows from the momentum balance between
the two components. The analytical theory of Kwok et al. (1978) can give some insight into the problem. IfMi j is the mass of the
resulting shell when it is at a radial distanceri j(t), then

Mi j(t) =
∫ ri j(t)

r j+v jt

Ṁ j

v j
dr +

∫ ri+vit

ri j(t)

Ṁi

vi
dr, (12)

wherev j < vi. If vi j(t) is the velocity of the shell, then, assuming a completely inelastic collision, the equation of motion may be
written

Mi j(t)
d vi j

dt
=

Ṁi

vi
[vi − vi j]

2 −
Ṁ j

v j
[v j − vi j]

2. (13)

Numerical integration of equation (13), with a substitution for Mi j(t) from equation (12) gives the resulting expansion law for the
shell. The thickness of the shell∆ri j may be found by requiring its internal pressure to balance the pressure from the wind.
7 The reader is refer to Fig. 2 of García-Segura et al. (1996b) for the stellar mass-loss rates and wind velocities as a function of time for the 60M⊙ model.



5

Such large expansion velocities∆vw produce high temperatures (see equation 6) in the post-shock region behind the outer shock
of the merged shell. This high post-shock temperature and the low density (i.e. lowṀwr and highvwr) of the WR wind result in an
almost adiabatic, hot, low-density WR shell.

Figure 4 shows the morphology of the smooth WR ring under the assumption that the central star experiences non-sphericalmass
loss close to critical rotation: in other words, a scenario in which a slower and denser wind is confined to the equatorial plane.
To compute the latitudinal dependence of the wind properties of a star close to critical rotation ideally requires multi-dimensional
models of the star and its outflowing atmosphere, which are not available. Langer (1998), however, argued that the stellar flux and
the radius might still vary only weakly from pole to the equator in very luminous stars. We therefore applied equations similar to
those found by Bjorkman & Cassinelli (1993) for winds of rotating stars in the limit of large distance from the star:

v∞(θ) = ζvesc(1−Ω sinθ)ϕ , (14)
where we set the parameters defined in Bjorkman & Cassinelli (1993) to ζ = 1 ,ϕ = 0.35, Ω = vrot/vcrit, and vcrit = vesc/

√
2 =

[GM∗(1− κ)R∗]1/2, with M∗ andR∗ being mass and radius of the star, andκ standing for the ratioL/LEdd of stellar to Edding-
ton luminosity (Langer et al. 1998). Under the above conditions, the wind expands more quickly and easily into the lower density
wind at the poles, while stellar rotation concentrates it toward the equatorial plane, producing a double-lobed structure. In section §5
we aim to examine the interaction of the relativistic blast wave with these morerealistic density wind profiles.

4.1. The Role of Binarity

One of the most important questions relating to WR stars is whether they are all members of binary systems or rather do some
truly single objects exist. Possibly a large fraction of stars are members of binary or multiple systems but most are sufficiently far
from their companions that their evolution proceeds essentially as if they were single stars. However there is an important minority
of stars which are close enough that their evolution is dramatically changed by the presence of a companion. It is extremely unlikely
that the progenitors of GRBs are just very massive, single WRstars. Special circumstances are almost certainly needed.The most
promising of these is rotation: a rapidly rotating core is the essential ingredient in the "collapsar" model for GRBs (Woosley 1993;
MacFadyen & Woosley 1999). Massive stars are generally rapid rotators on the main sequence. However, there are many well-
established mechanisms by which they can lose their angularmomentum during their evolution. Thus, it is not at all clearwhether
the cores of massive single stars will ever be rotating rapidly at the time of explosion (e.g. Heger et al. 2005). The simplest way to
generate the required angular momentum is for the core to reside in a tight binary and be in corotation with the binary. Izzard et al.
(2004), using detailed binary population calculations, concluded that there are enough binaries where tidal locking could account for
the observed GRB rates. Most companions, being low-mass MS stars, have small mass-loss rates and are thus unlikely to enhance
significantly the density around the GRB progenitor. The density structure seen around WR 147 (Contreras & Rodriguez 1999) could
be a hint of what exists in some GRB progenitors. Overall, we do not expect binarity to significant alter the circumstellargas density
profiles along the rotation axis of the collapsing stellar core. There is, however, a small, interesting subclass of binaries in which the
companion star may be massive (see e.g. Izzard et al. 2004). In this case, the WR star mass loss may also be influenced by the winds
of the close binary companion. Detailed computations are needed to show the magnitude of the effect.

The requirement that the total core angular momentum exceedthe maximum angular momentum of a Kerr black hole places inter-
esting limits on the binary period (Izzard et al. 2004; Podsiadlowski et al. 2004). We make the reasonable assumption that the binary
is circular, and model the core as ann = 3 polytrope. then the binary period must be smaller thanPorb∼ 4(Mcore/2M⊙)−1(Rcore/1010 cm)2

h. This orbit could be tight enough that the core may in fact have been stripped of its helium in a common envelope to form a CO
core. Alternatively, it may sometimes happen that the core of a very massive star retains the required angular momentum as its outer
hydrogen layers are blown off in a stellar wind. Indeed, Brown & Bethe (1994) have noted that the cores of stars more massive than
∼ 20M⊙ will undergo a delayed collapse to form a black hole if the nuclear equation of state is soft. Prompt formation of a black hole
introduces a mechanism for failure of a core collapse supernova, if success of the shock depends on delayed neutrino heating. The
corresponding rate of Kerr hole formation depends, of course, on the physics of angular momentum transport inside the progenitor
star. The required spin could also be generated when the coremergers with a binary companion during common envelope phase. So
perhaps one important distinction between a GRB and an ordinary supernovae is whether a black hole or a neutron star is formed in
the aftermath. However, not all black hole formation eventscan lead to a GRB: if the minimum mass of a single star that leads to the
formation of a black hole is as low as 25M⊙, this would overproduce GRB by a large factor (see Izzard et al. 2004).

5. THE AFTERGLOW APPEARANCE

The interaction of a relativistic blast wave with the surrounding medium is described by the adiabatic Blandford & McKee(1976;
hereafter BM) self-similar solution. The scaling laws thatare appropriate for the burst interaction with a medium withparticle
densityn ∝ r−s have been described by Mészáros et al. (1998), Chevalier & Li2000, Panaitescu & Kumar (2000), Wang et al.
(2000), Ramirez-Ruiz et al. (2001), Dai & Lu (2002), and Dai &Wu (2003).

For an adiabatic ultra-relativistic blast wave, the (isotropic equivalent) total energy is

E =
8πAΓ2r3−sc2

17− 4s
, (15)

whereΓ is the bulk Lorentz factor of the shock front andr is the observed radius near the line of sight (BM). We assume the burst
to be collimated with an initial half-angleθ larger than 20◦, and that lateral expansion is negligible during the relativistic phase. A
distant observer receives a photon emitted along the line ofsight towards the fireball center at a time (Chevalier & Li 2000)

t =
r

4(4− s)Γ2c
, (16)
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and so

r =

[

(4− s)(17− 4s)Et
2πAc

]
1

(4−s)

. (17)

Before the collision with the high-density shell, the shockfront is expected to propagate through ann(r) = Ar−2 wind, where

A = 3×1035Ṁwr,−5v−1
wr,3 cm−1 (18)

for a spherically symmetric wind ejected at a constant speed. The relativistic expansion is gradually slowed down untilthe shock
front encounters the wind density discontinuity at a radiusrsh. A transition in the afterglow is then observed

tsh≈ E−1
52r2

sh,17A35 days (19)

after the burst. This of course only true forrsh< rNR (see equation 3). This encounter produces two new shock waves: a forward
shock that moves into the wind thin shell discontinuity and areverse shock that propagates into the relativistic ejecta. In the section
that follows we examine the state of these shocks under various assumptions regarding the density discontinuity.

5.1. Shock Conditions

Consider a relativistic shell with a Lorentz factorη moving into the cold circumburst medium (CM). The interaction is described
by two shocks: a forward shock propagating into the CM and a reverse shock propagating into the ejecta. There are four regions
separated by the two shocks: the CM (1), the shocked CM (2), the shocked ejecta (3) and the unshocked ejecta (4). The CM is atrest
relative to the observer (Fig. 5). Velocitiesβi, and their corresponding Lorentz factorsγi, distances and time are measured relative to
this frame. Thermodynamic quantitiesni, pi andei (particle number density, pressure, and internal energy density) are measured in
the fluids’ rest frames. The ISM and the unshocked shell are cold and, therefore,e1 = e2 = 0. The shocked material is extremely hot
and, therefore,p2 = e2/3 andp3 = e3/3 (Sari & Piran 1995).

Forη ≡ γ4 ≫ 1 the equations governing the shocks are (BM)
e2

n2mpc2
= γ2 − 1 ≈ γ2;

n2

n1
= 4γ2 + 3 ≈ 4γ2 (20)

e3

n3mpc2
= γ3 − 1;

n3

n4
= 4γ3 + 3. (21)

The approximations in equation (20) use only the fact thatγ4 ≫ 1 and thereforeγ2 ≫ 1. No assumption is made aboutγ3, the Lorentz
factor of the motion of the shocked material in region (3) relative to the unshocked shell in region (4).

Equality of pressures and velocities along the contact discontinuity yields

e2 = e3; γ3 ≈
1
2

(

γ4

γ2
+
γ2

γ4

)

. (22)

The solution forγ2 depends only on two parameters,η andψ ≡ n4/n1. The energy, pressure, and density also depend linearly on a
third parameter, the external densityn1 (Sari & Piran 1995).

There are two simple limits of equations (20)-(22) in which the reverse shock is either Newtonian or ultra relativistic (the forward
shock is always ultra relativistic ifη≫ 1 andψ > η−2). If η2 ≫ ψ, the reverse shock is ultra relativistic (γ3 ≫ 1):

γ3 =
√
η

√
2ψ1/4

; γ2 = γ3 =
√
ηψ1/4

√
2

. (23)

In this case almost all of the initial kinetic energy is converted by the shocks into internal energy (η≫ γ3). The process therefore is
over after a single passage of the reverse shock through the ejecta (Sari & Piran 1995).

If ψ≫ η2 the reverse shock is Newtonian (γ3 − 1≪ 1) and

γ3 − 1 ≅
4η2ψ−1

7
≡ 2ǫ ≪ 1; γ2 = γ3 = η(1−

√
ǫ). (24)

The reverse shock converts only a fractionγ/
√
ψ≪ 1 of the kinetic energy into internal energy. It is too weak toslow down the ejecta

effectively, and most of the initial energy is still kineticenergy when this shock reaches the inner edge of the ejecta. At this stage a
rarefraction wave begins to propagate toward the contact discontinuity. This wave propagates at the speed of sound

√

4p3/(3n3mp)
and it reaches the contact discontinuity attr = (3

√
7/4)∆η

√
ψ/c, which is of the same order of magnitude as the shock crossing

time. Here∆ is the width (in the observer’s frame) of the relativistic shell. The rarefraction wave is then reflected from the contact
discontinuity and a second, weaker, shock wave forms. A quasi-steady state slowing down solution forms after a few crossing like
this (Sari & Piran 1995). Using momentum conservation, the total slowing down time can be estimated by∼ γ∆n4mpc/p2. During
this time the forward shock collects a fractionγ−1 of the shell’s rest mass. In contrary to the relativistic case, there are two relevant
timescales now: the rarefraction or shock crossing time andthe total slowing down timescale.

In any realistic situation the CM is probably inhomogeneous, as in the stellar models described in the previous section.Consider
a density jump by a factorα over a distanceλ. The forward shock propagates into the CM with a densityn1 as before, and when
it reaches the position where the CM density isαn1 a new shock wave is reflected. This shock is reflected again offthe shell. As
discussed above, the reflections time is abouttα ∼ λ/(4cα1/2), and after these reflections, the Lorentz factor and hydrodynamical
properties of the system are as if the CM were homogeneous with a densityαn1. If the reverse shock converts only a small fraction
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of the kinetic energy into thermal energy, then the forward shock expands almost at the velocity of the previous blast wave. In the
relativistic case, however, considerable deceleration may occur beforetα unlesst∆ ∼ η

√
ψ∆/c & tα.

The peak of synchrotron emission occurs at frequencyνm ≈ qeγ
2
e B/(mec) and the frequency integrated emissivity is given by

ǫ ≈ σT cneγ
2
e B2/8π; whereqe, me, andγe are electron charge, mass, and thermal Lorentz factor, respectively,B2/8π = εBneγeme is

the magnetic field in the fluid rest frame (assumed to be amplified up to a fractionεB by the processes in the shocked region and
not determined directly by the field in the WR star),ne is the electron number density, andσT is the Thomson cross-section. The
emission at low frequencies (ν ≪ νm) scales asν1/3 and at high frequencies (ν ≫ νm) it scales asν−(p−1)/2, wherep ≈ 2.5 is the
power-law index for the energy distribution of electrons. The ratio of the peak synchrotron frequencies, before and after the forward
shock has traversed a density jump of a factorα over a distanceλ, is

νm,α

νm
=

(

e2,α

e2

)5/2[ n2

n2,α

]2

≈ α−1/4. (25)

Therefore, we expect this emission to be a significant contribution to the long-wavelength flux8. The ratio of the observed flux after
the forward shock has transversed through the density discontinuity, and the flux in the absence of the collision at a frequency much
greater than the peak of the emission is given by

f2,α
f2

= γ
′

α

(

e2,α

e2

)1/2(
νm,α

νm

)

p−1
2

≈ α− 1
8 (p−1) (26)

whereγ
′

α
= γ2,α/γ2 is a factor by which the Lorentz factor of the outer shell decreases as a result of the collision. The dependence

of the observed flux onγ
′

α
can be more rapid than the linear function considered above,depending on the temporal profile of the

deceleration of the ejecta (see e.g. §5.2). The decrease in the observed emission from the forward shock due to the density jump at
a frequency much greater than the peak of the emission is therefore given byα− 1

8 (p−1) ≈ α− 3
16 , neglecting the enhanced energy losses

from the shocks that may arise during the collision. This is clearly not the case at frequencies either belowνm or for which there is
significant emission from the reverse shock (typically a factor of η lower in frequency). At these frequencies, the observed fluxis
expected to increase.

5.2. Afterglow Lightcurves

We now generalize the above results to a spatially varying external density. The afterglow modeling used here is similarto that
described in Salmonson (2003). The jet deceleration is calculated from the mass and energy conservation equations. Thelateral
spreading of the jet is neglected. The calculation of radiative losses includes synchrotron emission, and the synchrotron spectrum
is taken to be a piecewise power law with the usual self-absorption, cooling, and injection break frequencies, calculated from the
cooled electron distribution and magnetic field. The observed flux is obtained by integrating the jet emission over the equal arrival
time surface.

Strong temporal variations compared to the canonical power-law decay can be produced by changes in the circumburst density
or by energy variations (e.g. Meszaros et al. 1998). For example, as shown in Ramirez-Ruiz, Merloni & Rees (2001), a shock
wave that has been slowed by the surrounding medium could be caught up by subsequent shocks, increasing the shock wave energy.
Alternatively, the shock wave’s energy may have varied as the result of encountering an external medium of variable density. While
here we concentrate on the case where the dominant variations are in density, the two alternatives can be distinguished by exploiting
the fact that the flux atν >νc is insensitive to variations in the ambient density, whereas below the cooling frequencyFν(ν <νc)∝ n1/2

(Nakar et al. 2003; Heyl & Perna 2003). As the blast wave expands into the ambient matter, its kinetic energy is used to shock and
heat the matter. Deceleration due to this starts in earnest when about half the initial energy is transferred to the shocked matter. The
characteristic massMdec where this takes place is given by equation (2). This phase ends when so much mass shares the energy that
the Lorentz factor drops to 1. This occurs at a mass scaleMNR (see equation 3).

In the case depicted in Fig. 3, for example, the stellar wind is not dense enough to slow down the ejecta to non-relativistic speeds
before reachingrsh, so that we expect part of the blast wave evolution as we see itto take place outside the 1/r2 density distribution.
In a rarefied wind such as that illustrated in Fig. 4, the shockfront will expand within the stellar wind until it reaches the density
discontinuity at about 0.2 pc without significant deceleration. Over the typical time of observation of a GRB afterglow,the impact
of the relativistic ejecta with the density enhancement will produce a clear feature in the observed emission. Fig. 6 andits caption
summarize the predicted R-band afterglow lightcurve from hours until about a few years after the burst. One can see sharpbreak
in the flux decay curve that coincides with a precipitous dropin Lorentz factor when the afterglow shock meets the shell. In this
model, the isotropic energy of the ejecta is 5×1053 erg. The characteristic synchrotron frequency is lower than that in the absence
of the collision. This effect is responsible for the decrease in flux (at a fixed frequency) seen at about∼ 10 days. Further observable
transitions are produced as the blast-wave plows deeper into the shocked-wind discontinuity. Jet effects are expectedto become
important at a time

t j ≈ 5(θ j/0.08)4(E/1053erg)(A/1035cm−1)−1days, (27)

just before the impact takes place. This makes the jet-breaktime not easily identifiable.
The evolution of the apparent source size is shown in Fig. 7. The afterglow image is limited to a circle on the sky, whose size

grows ast (5−s)/2(4−s) (Granot & Loeb 2001). The assumption of a spherical flow may also serve as an adequate description of a jetted
8 The above estimate assumes that the reverse shock is initially relativistic, which is likely to be the case when the density contrast of the density discontinuity is high
(Dai & Lu 2002).
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flow, at sufficiently early times before the jet break time,t j, when the Lorentz factor of the flow drops below the inverse ofthe jet
opening angle (Rhoads 1997). In the case of a jet, the image att & t j is expected to be different than in the spherical case (Oren,
Nakar & Piran 2004; Granot, Ramirez-Ruiz & Loeb 2004) and will no longer be circular for observers who are situated away from
the jet axis (Fig. 7). The image size depends decisively on the density profile of the ambient medium into which the GRB fireball
propagates. The effects of the density discontinuity on thesize of the afterglow image can be seen by comparing the solidand dashed
curves in Fig. 7. This is not altogether surprising: the ejected material is decelerated by the external medium at a smaller radius than
it would be in the absence of the density discontinuity. The calculations above demonstrate how the measurable properties of such
afterglows depend on the nature of the progenitor star and the medium around it.

6. CLUMP FORMATION AND AFTERGLOW VARIABILITY

The smoothness or clumpiness of the swept-up shell may be responsible for small-scale variability observed in many gamma-ray
burst afterglows. As illustrated in Fig. 4, the required degree of clumping in the Wolf-Rayet star wind itself does not seem plausible.
On the other hand, as shown in Fig. 3, there is the possibilityof clump development from the swept up RSG wind. As stated
above, the shocked RSG wind is accelerated by the (less dense) shocked WR wind and is therefore subject to RT instabilities. The
shell is initially thin and is therefore also subject to Vishniac instabilities. The two instabilities must then be coupled. The coupling
mechanism appears to be a displacement of gas towards the interior of the bubble at the contact surface by the RT instability, which
induces the formation of a valley in the outer shock, drivingwhat is fundamentally a Vishniac instability. García-Segura et al.
(1996b) found that clump formation is not efficient for the case of pure RT instabilities in thick shells and concluded that a necessary
condition for clump formation to occur is that a shell be thinenough to allow Vishniac-like instabilities to drive transverse motions
to form the clumps. Many RT fingers will then warp and break, forming knots.

Once formed, the knots tend to dissipate. Several process tend to destroy the inhomogeneities embedded in a wind-blown bubble,
namely thermal evaporation (Cowie & McKee 1977), ablation (Hartquist et al. 1986) and photo-evaporation (McKee 1986).If not
inhibited by the presence of a magnetic field, heat conduction may deplete the clumps. The thermal evaporation time is

tev ∝
ncTsw∆r

nsw
, (28)

whereTsw is the temperature of the hot shocked WR wind,∆r andnc are, respectively, the radii and densities of the clumps, and
nsw is the shocked wind density. Fornc ≥ 10nsw, Tsw ∼ 4× 107 K and∆r ≤ 0.01 pc one hastev ≤ 104 yr, so that, if conduction
is unimpeded, the lifetime of the clumps may be shorter than the nebula lifetime. Erosion via ablation is far less effective, and the
clumps survive if, as expected (see e.g. Hartquist et al. 1986), heat conduction is inefficient. The ablation time for a knot is

tab∝
nc∆r

nswvrsg
. (29)

We estimatetab≥ 102tev. The characteristic photo evaporation time of a clump at a distancer from a star emittingS ionizing photons
per second is

tpe(r) ∝ nc
∆r3/2

S1/2
r. (30)

For the clump parameters considered above andS = 1049 s−1 one hastpe ∼ 104 rpc yr. Small neutral condensations are thus likely to
be photo-evaporated while larger ones survive.

The jet will then encounter clumps – if they are not efficiently destroyed – with large variations in density. Presumably the clump
is symmetric such that

∆r‖ = ∆r⊥ = ∆rclump. (31)

Whether or not the ambient object collapses onto the shell isa key distinction that must be made in order to understand howthe
clump determines the time structure. We assume here the caseof a "collapsible" object (such as a wind clump). The contribution to
the peak duration from the time the jet takes to move through the clump∆rclump/(2γ2c), is negligible compared with the time the
shell takes to engage the perpendicular size of the object. This engagement time is caused by the curvature of the jet. Thecurvature
of the expanding jet prevents it from engaging the cloud instantaneously. Rather, the portion of the jet atθ ∼ γ−1 requires a time
r(1−cosθ)/v longer to reach the cloud. At an angleθ from the line of sight, the time to engage the object isθ∆rclump/2c. At a typical
angle ofθ ∼ γ−1,

∆t =
2∆rclump

cγ
. (32)

The alternative is that the ambient source does not collapse, but produces photons on a scale of∆rclump (unlikely). The timescale
in this case is determined from the light travel time across the overlap of the shell thickness and the ambient source thickness. If
the clumps where distributed as a power-law of clump sizes, one might expect a power law distribution of observable peak widths.
The cumulative effect of many small-scale density perturbations will tend to average out during the expansion history of the jet,
and, therefore, the resultant afterglow profile should be relatively smooth. An upper limit on∆rclump is set by observed afterglow
variability timescales (i.e.∆tobs), where

c∆tobs<∆rclump<
c∆tobsγ

2
. (33)

Short time scale of afterglow oscillations provide interesting upper limits of∆rclump≤ 10(γ/10) AU on the size of the clumps around
GRB 011211 (Jakobsson et al. 2004) and GRB 030329 (Lipkin et al. 2004). These limits are lower than the fluctuation amplitudes
seen on similar scales in the local interstellar medium (Wang & Loeb 1999), though they may reflect the length scale of comet-like
clumps produced in ring nebulae surrounding massive stars.
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7. DISCUSSION

It is evident from the above discussion that the environmentof a massive star at the time of its death is a very rich one. Even in the
simplest case of a wind whose properties do not vary over the life of the star, complex behaviour with multiple possible transitions
in the observable part of the afterglow lifetime may be seen.The eventual resulting afterglow lightcurve depends fairly strongly on
the properties of the system, especially the mass-loss rateof the star and the ambient density. This has a good and a bad side. On
the negative side, it implies that one can not be too specific about the times at which we expect to see transitions in the observed
emission. On the positive side, if and when we do see these transitions, they can be fairly constraining on the propertiesof the stellar
progenitor.

Considering the radial range relevant to GRBs, the absence of the expected 1/r2 density structure in many bursts is not surprising.
On the other hand, the reason for low densities remains unclear. A wind termination shock may resolve this matter although very
special conditions are necessary to bring this about. Because the density in a shocked wind is higher than that in a free wind at the
same radial distance, the low-density requirement is not alleviated by appealing to a shocked WR wind. A low stellar masswind loss,
a faster wind velocity or a low metallicity may help, although it is not clear whether realistic assumptions can provide the required
low densities (Wijers 2001; Chevalier et al. 2004). The following point should be emphasized here. The fireball model used to infer
the circumburst density is highly simplified. For example, the wind density is assumed to follow a pure 1/r2 law and to be free of
inhomogeneities, the expanding jet surface is assumed uniform with no internal (density, velocity) gradients and the fraction of the
explosion energy in the post shock magnetic field is assumed to be constant (Panaitescu & Kumar 2002). We do not know whether
a description of the afterglow data is possible with a wide variety of underlying assumptions and whether that would substantially
change the parameters inferred. Still, the low densities inferred by afterglow observations are thus problematic for the collapsar
model.

The task of finding useful progenitor diagnostics is simplified if the pre-burst evolution leads to a significantly enhanced gas
density in the immediate neighborhood of the burst. The detection of spectral signatures associated with the GRB environment
would provide important clues about the triggering mechanism and the progenitor. A special case is that of GRB 021004, where
lines of highly ionized species, blueshifted relative to the host galaxy, have been attributed to a Wolf-Rayet stellar wind (Mirabal et al.
2003; Schaefer et al. 2003). Stars interact with the surrounding interstellar medium, both through their ionizing radiation and through
mass, momentum and energy transfer in their winds. Mass lossleads to recycling of matter into the interstellar medium, often with
chemical enrichment. Mass loss is a significant effect in theevolution of massive stars; in particular, for stars that enter WR stages
(e.g. Ramirez-Ruiz et al. 2001). WR stars follow all or part of the sequence WNL, WNE, WC and WO, which corresponds to a
progression in the exposure of nuclear products (CNO equilibrium with H present, CNO equilibrium without H, early visibility of
the products of the 3α reaction and then a growing (C+O)/He ratio respectively). Mass loss drastically influences stellar yields. At
low Z there is a high production ofα-nuclei, while at higherZ most of the He and C produced is ejected in stellar winds and escapes
further nuclear processing.This characteristic offers a direct observational test of which stars are likely to produce a GRB.

Finally, The total energy observed inγ-rays from GRBs whose redshift has been determined is diverse (e.g. Soderberg et al. 2004).
One appealing aspect of a massive star progenitor is that thegreat variety of stellar parameters can probably explain this diversity.
Given the need for a large helium core mass in progenitors, the burst formation may be favored not only by rapid rotation but also
by low metallicity. Larger mass helium cores might have moreenergetic jets, but it is unclear whether they can be expected to be
accelerated to large Lorentz factors (MacFadyen, Woosley &Heger 2001; Ramirez-Ruiz, Celotti & Rees 2002). Many massive stars
may produce supernovae by forming neutron stars in spherically symmetric explosions, but some may fail neutrino energydeposition,
forming a black hole in the center of the star and possibly a GRB. One expects various outcomes ranging from GRBs with large
energies and durations, to asymmetric, energetic supernovae with weak GRBs (Totani 2003; Granot & Ramirez-Ruiz 2004).The
medium surrounding a GRB would provide a natural test to distinguish between different stellar explosions.
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the anonymous referee for helpful comments. This work is supported by NASA through a Chandra Postdoctoral Fellowship award
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FIG. 1.— Constraints on the swept-up massM as a function of radius. The blue line is the swept-up wind mass assumingṀ = 10−6M⊙yr−1 andvw ∼ 103km s−1.
The red line, on the other hand, assumes a uniform medium with1 cm−3.
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FIG. 2.— The formation of shocks by a stellar driven wind interacting with the surrounding interstellar medium. The interaction leads to a driven wave composed
of shock compressed wind, a contact surface, and the swept-up ISM. Fast stellar wind matter (zone [a]) enters the shock where it is compressed by a factor of
∼ 4, and heated; the accumulated shock wind material is in zone(b). The entire region between the two shocks is nearly isobaric, so if material cools, it becomes
compressed and resides in the contact surface, which forms aboundary between the shocked wind and the shocked, swept-upISM (zone [c]). The undisturbed ISM
is in zone (d).
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FIG. 3.— The state of the circumstellar medium around a 29M⊙ massive star after 8,000 yr of evolution since the onset of the WR phase. The grid has 800× 180
zones, with a radial extent of 0.5pc and an angular extent of 22.5◦. The inner-most radial zone lies at 0.0125 pc.Left panel: Logarithm of the circumstellar density
in units of g cm−3. Right Panel: Density and cumulative mass as a function of radius along the polar axis.
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FIG. 4.— The state of the nearby circumstellar medium around a 60M⊙ rotating massive star. During the last stages within its WR lifetime, the wind velocity
increases. The fast wind collides with early ejecta before reaching the LBV shell. The reader is refer to Fig. 2 of García-Segura et al. (1996b) for the stellar
mass-loss rates and wind velocities as a function of time. The grid has 800× 180 zones, with a radial extent of 0.5pc and an angular extentof 90◦. The inner-most
radial zone lies at 0.0125 pc.Left panel: Logarithm of the circumstellar density in units of g cm−3. Right Panel: Density and cumulative mass as a function of radius
along the polar axis.
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FIG. 5.— Diagram illustrating a relativistic shock system. Basic system consisting of a shocked fluid encountering matter at rest. Quantities for the system are the
unshocked ejecta, the reverse and forward shocks, and the external matter at rest. The dashed line schematically shows the properties of the relativistic ejecta in the
absence of an external medium.
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FIG. 6.— The effect of the impact of a relativistic jet with the wind density discontinuity on the R-band afterglow. The shockfront expands within thes = 2
stellar wind until it reaches the high-density shell at a distancersh ≈ 0.2 pc (see Fig. 3). The shock transit of the massive shell causes a rapid decline in Lorentz
factor and a corresponding decline in flux (at a fixed frequency). The remaining evolution of the shock is non-relativistic. At the time of the collision the relativistic
shell Lorentz factor isγ ∼ 4 for E = 5×1053 ergs. In this simulation the jet opening angle isθ j = 5◦ and it is viewed atθobs = 3◦ from the jet axis. The afterglow
emission is calculated in the adiabatic regime. The collision model takes into account the fireball geometrical curvature when calculating the photon arrival time and
relativistic boosting.
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FIG. 7.— Evolution of the afterglow source size as a function of time for a sharp-edged, homogeneous jet seen atθobs = 0.6θ j = 3◦. This one dimensional,
hydrodynamic model takes on the density profile of the stellar wind in the polar direction. The jet deceleration is calculated from the mass and energy conservation
equations. The lateral spreading of the jet is neglected. The effect of the impact of a relativistic jet with the wind density discontinuity (Fig. 3) can be seen by
comparing the solid and dashed curves. For simplicity, the density profile seen in Fig. 3 has been extrapolated to large radii. Substantial deviations in the density
profile are, however, expected to occur with the inclusion ofthe wind termination shock region (see e.g. Fig. 2 in García-Segura et al. 1996a). The inset panel shows
the afterglow source diameter. The x- and y-axes are shown intheir true scale and measured in light-days.


