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ABSTRACT

We present a new map-making method for CMB measurements. The method is based
on the destriping technique, but it also utilizes information about the noise spectrum.
The low-frequency component of the instrument noise stream is modelled as a super-
position of a set of simple base functions, whose amplitudes are determined by means
of maximum-likelihood analysis, involving the covariance matrix of the amplitudes. We
present simulation results with 1/f noise and show a reduction in the residual noise
with respect to ordinary destriping. This study is related to Planck LFI activities.

Key words: methods: data analysis – cosmology: cosmic microwave background

1 INTRODUCTION

Construction of the CMB map from time-ordered data
(TOD) is an important part of the data analysis of CMB ex-
periments. Future space missions like Planck

1 present new
challenges for the data analysis. The amount of data Planck

produces is far larger than that of any earlier experiments.
The destriping technique (Burigana et al. 1997, De-

labrouille 1998, Maino et al. 1999, 2002, Keihänen et al.
2004) provides an efficient map-making method for large
data sets. The method is non-optimal in accuracy but fast
and stable. Other methods have been developed which aim
at finding the optimal minimum-variance map for Planck -
like data (e.g. Natoli et al. 2001, Doré et al. 2001, Borrill
1999).

In this paper we present a new map-making method for
CMB measurements, called MADAM (Map-making through
Destriping for Anisotropy Measurements). The method is
built on the destriping technique but unlike ordinary destrip-
ing, it also utilizes information about the noise spectrum.
The aim is to improve the accuracy of the output map as
compared to destriping, while still keeping, at least partly,
the speed and stability of the destriping method.

The basic idea of the method is the following. The low-
frequency component of the instrument noise in the TOD is
modelled as a superposition of simple base functions, whose
amplitudes are determined by means of maximum-likelihood
analysis, involving the covariance matrix of the amplitudes.
The covariance matrix is computed from the noise spectrum,
assumed to be known.

This paper is organized as follows. In Section 2 we go

⋆ E-mail: elina.keihanen@helsinki.fi
1 http://astro-estec.esa.nl/SA-general/Projects/Planck

through the maximum-likelihood analysis that forms the ba-
sis of our map-making method. We describe the map-making
algorithm in Section 3. In Section 4 we consider the covari-
ance matrix of component amplitudes. Some technical cal-
culations related to this section are presented in Appenxix
A. We give results from numerical simulations in Section 5
and present our conclusions in Section 6.

2 MAP-MAKING PROBLEM

2.1 Maximum-likelihood analysis of the destriping

problem

In the following we present a maximum-likelihood analysis
on which our map-making method is based. The analysis
is similar to that presented in Keihänen (2004), the main
difference being, that here we include the covariance of the
correlated noise component.

We write the time-ordered data (TOD) stream as

y = Pm+ n
′. (1)

Here the first term presents the CMB signal and the second
term presents noise. Vector m presents the pixelized CMB
map and pointing matrix P spreads it into TOD.

We divide the noise contribution into a correlated noise
component and white noise, and model the correlated part
as a linear combination of some orthogonal base functions,

n
′ = Fa+ n. (2)

Vector a contains the unknown amplitudes of the base func-
tions and matrix F spreads them into TOD. Each column of
matrix F contains the values of the corresponding base func-
tion along the TOD. Assuming that the white noise compo-
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nent and the correlated noise component are independent,
the total noise covariance is given by

Ct = 〈n′(n′)T 〉 = FCaF
T +Cn (3)

where Cn = 〈nnT 〉 is the white noise covariance, Ca =
〈aaT 〉 is the covariance matrix for the component amplitudes
a, and 〈x〉 denotes the expectation value of quantity x.

Our aim is to find the maximum-likelihood estimate of
m and a simultaneously, for given data y. We consider the
likelihood of the data, which by the chain rule of probability
theory can be written as

P (y) = P (y|m,a)P (a|m)P (m). (4)

Here P (a|b) denotes the conditional probability of a under
condition b. Now P (m) is constant, since we are treating
the underlying CMB sky as deterministic (we associate no
probability distribution to it). The probability distribution
of a is independent of the map so that P (a|m) = P (a). We
assume gaussianity and write

P (a) = (2π detCa)
−1/2 exp(−1

2
a
T
C

−1
a a). (5)

With m and a fixed, the likelihood of the data is given by
the white noise distribution

P (y|m,a) = (2π detCn)
−1/2 exp(−1

2
n
T
C

−1
n n) (6)

where now n = y − Fa − Pm. The white noise covariance
Cn is assumed to be diagonal, but not necessarily uniform.

Maximizing the likelihood (4) is equivalent to mimimiz-
ing the inverse of its logarithm. We obtain the chi-square
minimization function

χ2 = −2 lnP (y) = −2 ln(P (y|m,a)P (a))

= (y − Fa−Pm)TC−1
n (y −Fa−Pm)

+a
T
C

−1
a a+ constant (7)

We want to minimize (7) with respect to both a and m.
Minimization with respect to m gives

m = (PT
C

−1
n P)−1

P
T
C

−1
n (y− Fa) . (8)

Substituting Eq. (8) back into Eq. (7) we get the chi-square
into the form

χ2 = (y −Fa)TZT
C

−1
n Z(y − Fa) + a

T
C

−1
a a, (9)

where

Z = I−P(PT
C

−1
n P)−1

P
T
C

−1
n . (10)

Here I denotes the unit matrix.
We minimize χ2 with respect to a, to obtain an estimate

for the amplitude vector a. The solution is given by

(FT
C

−1
n ZF+C

−1
a )a = F

T
C

−1
n Zy. (11)

Here we have used the property ZTC−1
n Z = C−1

n Z.
The MADAM algorithm uses the conjugate gradient

technique to solve vector a from (11). Note that the ma-
trix on the left-hand side is symmetric. An estimate for the
CMB map can then be computed using Eq. (8).

2.2 Comparison to the minimum-variance solution

If the underlying CMB map is treated as deterministic, noise
is Gaussian, and its statistical properties are known, the
optimal minimum-variance map is given by

m = (PT
C

−1
t P)−1

P
T
C

−1
t y (12)

where Ct is the covariance of the noise TOD.
In the following we show that if the total noise covari-

ance is of the form (3), the map estimate given by Eqs. (8)
and (11) equals the minimum-variance map (12).

We develop the solution (11) into Taylor series as

a = (Ca −CaF
T
C

−1
n ZFCa + . . .)FT

C
−1
n Zy. (13)

We write y−Fa out and recollapse the resulting expansion,
to get

y −Fa = (I+ FCaF
T
C

−1
n Z)−1

y. (14)

We now use Eq. (3) and write FCaF
TC−1

n = CtC
−1
n − I.

Using this and writing Z out we arrive at

P
T
C

−1
n (y − Fa) (15)

= P
T [Ct − (CtC

−1
n − I)P(PT

C
−1
n P)−1

P
T ]−1

y

= [I−P
T (C−1

n −C
−1
t )P(PT

C
−1
n P)−1]−1

P
T
C

−1
t y.

In the last equality we have taken Ct out from the left and
used the identity A(I + BA)−1 = (I + AB)−1A, which is
easily verified by expanding both sides as Taylor series. The
MADAM solution for the map (Eq. (8)) then becomes

m = [PT
C

−1
n P−P

T (C−1
n −C

−1
t )P]−1

P
T
C

−1
t y (16)

which readily simplifies into (12).
If the chosen base function set accurately models the

correlated noise component, the CMB map estimate given
by MADAM equals the minimum-variance solution. This is
necessarily true at the limit where the number of base func-
tions L per ring approaches the number of samples n, since
the base functions then form a complete orthogonal basis.
In practice, however, it is not possible to use that many
base functions, since both the required memory and CPU
time increase with increasing L so that the method finally
becomes unfeasible.

3 IMPLEMENTATION

3.1 Map-making algorithm

Equations (8) and (11) form the basis of the MADAM map-
making method. In this Section we consider the implemen-
tation of the method.

Our starting point is a Planck -like scanning strategy,
where the detector scans the CMB sky in circles which fall on
top of each other on consecutive rotations of the instrument.
In order to reduce the amount of data, the data from con-
secutive scan circles is averaged, a process called ’coadding’.
We call one coadded circle a ’ring’. In the nominal Planck
scanning strategy, the same circle is scanned 60 times be-
fore repointing. We denote by M the number of coadded
circles. On each ring, we model the correlated noise com-
ponent as a linear combination of some simple orthogonal
arithmetic functions, such as sine and cosine functions or
Legendre polynomials. In the simplest case we fit only uni-
form baselines.

The MADAM algorithm can easily be generalized to a
scanning strategy with no coadding, by setting the coadding
factor M equal to one. We consider both types of scanning
strategy in the simulation section. If no coadding is done,
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Table 1. Main parameters and symbols used in this paper and
values used in simulation.

symbol parameter value

n number of samples/ring 4608
N number of rings 8640
M coadding factor 60
L number of base functions 1-65
fs sampling frequency 76.8 Hz
fsp spin frequency of the spacecraft 1/60 Hz
σ white noise std 2700 µK
fmin minimum freq. (noise spectrum) 10−5 Hz
fkn knee frequency (noise spectrum) 0.1 Hz
γ slope of the noise spectrum -1.0
m pixelized CMB map
P pointing matrix
Cn white noise covariance
F base function matrix
a base function amplitudes
ã reference values for a

Ca covariance of amplitudes a

Ck kth component covariance
bk ... and its coefficient
gk kth characteristic frequency

one can choose any length of data to represent a ring. The
concept of ring then loses its connection to the spin period
and its length becomes a freely chosen parameter.

The most frequently used parameters and symbols of
this paper have been collected in Table 1.

The MADAM map-making algorithm consists of the fol-
lowing steps.

(i) Choose a set of base functions to model the correlated
noise component and compute the covariance matrix Ca of
their amplitudes. The computation of the covariance matrix
is discussed in Section 4.

(ii) Using the conjugate gradient technique, solve a from
Eq. (11). The tricky part here is the evaluation of the term
C−1

a a, since matrix Ca is very large. For Planck -like data
its dimension typically varies from thousands to hundreds of
thousands. Fortunately, the matrix has symmetries, which
allow us to evaluate C−1

a a in a quite efficient manner, as we
show in Section 3.2.

(iii) Solve the CMB map according to Eq. (8). This means
simple binning of the destriped TOD into pixels, weighting
by the white noise covariance. Here we have used HEALPix
2 (Górski et al. 1999, 2004) pixelization.

3.2 Evaluation of C−1
a a

Conjugate gradient solution of Eq. (11) requires that we
evaluate

x = C
−1
a a (17)

several times for different a. Here a and x are vectors of
(NL) elements, where N is the number of rings and L is the
number of base functions per ring. Matrix Ca has dimension
(NL,NL) and is thus expensive to invert. However, Ca has

2 http://www.eso.org/science/healpix

symmetries which allow us to perform the inversion quite
efficiently.

We use index notation in the following. Evaluation Eq.
(17) is equivalent to solving xil from

ail =
∑

i′l′

Ca,ii′ll′xi′l′ . (18)

Here i, i′ label rings and l, l′ label base functions. The matrix
has the symmetry property Ca,ii′ll′ = Ca,i′il′l.

We assume that the properties of the correlated noise
component do not change with time. Matrix Ca then de-
pends on indices i, i′ only through their difference, being
thus approximately circulant in indices i, i′. The matrix can
be stored as a table of L2N elements.

A general symmetric matrix equation of moderate size
can be solved by Cholesky decomposition. Crout’s algorithm
to find the decomposition is given e.g. in Press et al. (1992).
On the other hand, circulant matrix equations can be solved
by the Fourier technique.

We solve equation (18) using a combined technique,
where we apply Cholesky decomposition to the indices l, l′,
and Fourier technique to indices i, i′.

We drop indices i, i′ for a while and introduce the fol-
lowing notation. We denote by Ĉll′ an (N,N) submatrix of
Ca. Now Ĉ can be understood as an (L, L) matrix whose el-
ements are themselves (N,N) matrices. Similarly, we denote
by âl an N-element subvector of a.

We now have

âl =
∑

l′

Ĉll′ x̂l′ (19)

where it must be understood that each term Ĉll′ x̂l′ involves
a matrix multiplication of order N . Matrix Ĉ has the sym-
metry property Ĉll′ = (Ĉl′l)

T . Especially, the diagonal ele-
ments Ĉll are symmetric.

We apply Crout’s algorithm to Eq. (19). We follow the
procedure presented in Press et al. (1992), keeping in mind
that instead of scalar elements we are now operating with
matrices.

We want to decompose Ĉ into

Ĉlk =
∑

j

L̂ljL̂
T
kj (20)

where L̂lj = 0 for j > l. Here L̂ is a lower triangular matrix,
whose elements are again (N,N) matrices. Note that the
transpose sign refers to the element L̂kj , not L̂ itself.

We write

Ĉlk = L̂lkL̂
T
kk +

∑

j<k

L̂ljL̂
T
kj (l > k) (21)

Ĉll = L̂llL̂
T
ll +

∑

j<l

L̂ljL̂
T
lj . (22)

From this we can solve the elements of L̂,

L̂lk = [L̂−1
kk (Ĉ

T
lk −

∑

j<k

L̂kjL̂
T
lj)]

T (l > k) (23)

L̂ll = [Ĉll −
∑

j<l

L̂ljL̂
T
lj ]

1/2. (24)

For each l, we first use Eq. (23) to solve L̂lk for k = 1 . . . l−1
and then Eq. (24) to solve L̂ll. Once L̂ is known, elements

c© 0000 RAS, MNRAS 000, 000–000
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x̂k can be solved by backsubstitution as

ẑk = L̂−1
kk (âk −

∑

j<k

L̂kj ẑj) k = 1 . . . L (25)

x̂k = L̂−1
kk (ẑk −

∑

j>k

L̂T
jkx̂j) k = L . . . 1. (26)

The procedure presented above contains operations be-
tween (N,N) matrices and vectors of length N . These
(N,N) matrices are nearly circulant, except for the corners,
where they do not ’wrap around’ like circulant matrices do.
However, the deviation is small, and we may treat the ma-
trices as circulant.

Circulant matrix operations are most conveniently car-
ried out in Fourier space. We pad each vector with zeros up
to the next power of two, and use the Fast Fourier Transform
(FFT) technique to perform the Fourier transforms.

To each elementary operation involving a circulant ma-
trix corresponds an operation in Fourier space. The corre-
sponding Fourier operations are the following.

(i) Matrix multiplication – element by element multipli-
cation of Fourier transforms

(ii) Matrix transpose – complex conjugate of the Fourier
transform

(iii) Square root of a matrix – Square root of the Fourier
transform.

(iv) Matrix inversion – inverse of the Fourier transform.

The procedure on determining x = C−1
a a can be sum-

marized as follows. First perform Fourier transform to the
circulant ring index i − i′ of Ca. Then carry out Cholesky
decomposition in index l as described above, and store the
resulting L̂ matrix.

For each vector a, carry out a Fourier transform along
the ring index i, perform backsubstitution as given by (25)-
(26), and do an inverse Fourier transform to obtain x.

The total operation count of the above procedure is
proportional to L3N lnN , as contrasted to L3N3 of normal
matrix inversion. Furthermore, the decomposition can be
done ’in place’ in the space of L2N elements, instead of
L2N2.

3.3 Covariance of the output map

The covariance of the output map of MADAM is given by

Cm = [PT (Cn + FCaF
T )−1

P]−1, (27)

assuming that the noise is well modelled by the noise model
(2). The inverse of (27) can be put into the form

C
−1
m = (28)

P
T
C

−1
n P−P

T
C

−1
n F(C−1

a + F
T
C

−1
n F)−1

F
T
C

−1
n P.

We presented in Section 3.2 a procedure for evaluating
C−1

a a for arbitrary a. By running this procedure L times
one can compute the inverse of matrix Ca. Matrix C−1

a +
FTC−1

n F can then again be decomposed and stored using
the same procedure. When this is done, one can then easily
compute any element of C−1

m using formula (28).

4 COVARIANCE OF THE COMPONENT

AMPLITUDES

4.1 General

In this section we consider the computation of the covariance
matrix Ca.

First we define reference values for the amplitude vector
a. Suppose the actual coadded noise TOD, denoted by u, is
known. We consider here the correlated noise component
only. We fit the noise model Fa to the noise stream. A least-
squares fit gives

ã = (FT
F)−1

F
T
u. (29)

Eq. (29) gives the reference values or best estimates for the
amplitude vector. We compute the covariance matrix as

Ca = 〈ããT 〉. (30)

Let now yp be the original, uncoadded noise stream. We
assume that the noise is stationary and its auto-correlation
cp−p′ = 〈ypyp′〉 is known.

The coadded noise stream is

uij =
1

M

M−1
∑

m=0

y[iMn+mn+j]. (31)

Here n is the number of samples per ring and M is the
number of coadded circles (M = 60 for the nominal Planck
scanning strategy). Index i = 0 · · ·N − 1 labels rings, j =
0 · · ·n − 1 labels samples on a ring, and m = 0 · · ·M − 1
labels circles coadded into a ring.

Let Flj be the values of the base functions l = 1 · · ·L
on a ring. We assume orthogonality and write

F̄lj =
(

∑

j′

F 2
lj′

)−1
Flj . (32)

The reference values for component amplitudes are, accord-
ing to (29), given by

ãil =

n−1
∑

j=0

F̄ljuij =

n−1
∑

j=0

F̄lj
1

M

M−1
∑

m=0

y[iMn+mn+j]. (33)

For uniform baselines, for instance, the reference value is
simply the average of the noise over the ring.

Next we calculate the theoretical covariance of the ref-
erence values (33). The elements of the covariance matrix
are given by

Ca,ii′ll′ = 〈ãilãi′l′〉 (34)

=

n−1
∑

j,j′=0

F̄ljF̄l′j′
1

M2

M−1
∑

m,m′=0

〈y[inM+mn+j]y[i′nM+m′n+j′]〉

=

n−1
∑

j,j′=0

F̄ljF̄l′j′
1

M2

M−1
∑

m,m′=0

c[(i−i′)nM+(m−m′)n+j−j′].

The sum over m,m′ can be combined into one sum over
m′′ = m−m′,

Ca,ii′ll′ = (35)

n−1
∑

j,j′=0

F̄lj F̄l′j′

M
∑

m′′=−M

M − |m′′|
M2

c[(i−i′)nM+m′′n+j−j′].

c© 0000 RAS, MNRAS 000, 000–000
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This is a general formula for the elements of the covariance
matrix Ca.

4.2 Exponential expansion of the auto-correlation

function

Covariance (35) is rather heavy to evaluate computationally,
since it contains a three-dimensional sum. However, if the
auto-correlation function can be expanded in exponential
functions, the covariance can be computed in a very efficient
way. This holds, e.g., for 1/f and 1/f2 noise.

Suppose the auto-correlation function can be expanded
as

c(t) =
∑

k

bkck(t) (36)

where

ck(t) = exp(−gk|t|) (37)

where gk is a selected set of characteristic frequencies and
and bk are coefficients to be determined.

We denote by Ck the covariance matrix that corre-
sponds to an exponential auto-correlation function of the
form (37). Once the component covariances Ck and coeffi-
cients bk have been determined, the total covariance Ca can
be computed as

Ca =
∑

k

bkC
k. (38)

The component covariances Ck can be computed in a very
efficient way making use of the basic properties of the expo-
nent function.

Expanding the auto-correlation as (36) is equivalent to
expanding the power spectrum as

P (f) =
∑

k

bk
2gk

g2k + (2πf)2
. (39)

The expansion does not exist for arbitrary noise spectra.
In Appendix A we calculate the expansion explicitly for a
power-law spectrum of the form

P (f) =

(

fkn
f

)γ
σ2

fs
(f > fmin). (40)

for −2 6 γ < 0. Here fkn is the knee frequency, at which
the spectral power equals the white noise power σ2/fs, σ is
the white noise std, and fs is the sampling frequency.

For 1/f noise (γ = −1) the expansion is particularly
simple. If the characteristic frequencies gk are chosen uni-
formly in logarithmic scale, the correct spectrum is obtained
with

bk = 2σ2 fkn
fs

∆, (41)

where ∆ is the logarithmic interval in gk.
The 1/f spectrum, as given by the expansion (39) with

coefficients (41), is shown in Fig. 1. The 1/f form holds
inside the frequency range fmin < f < fmax spanned by the
characteristic frequencies gk. Below fmin the spectrum levels
out, as can be seen from the figure.

Another simple example is the 1/f2 spectrum (γ = −2).
In that case the desired spectrum is given by one single g
component with coefficient

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

K
2 s

Hz

Figure 1. 1/f noise power spectrum, as given by expansion (39)
and Eq. (41). The solid line shows the pure 1/f noise spectrum.

The dashed line shows the white noise level (Pwn = σ2/fs). The
dash-dotted line shows the total noise spectrum, including both
components. The parameters were σ = 2700 µK, fs = 76.8 Hz,
fkn = 0.1 Hz, ∆ = 1, fmin = 10−5 Hz, fmax = 10 Hz.

b =
2π2f2

kn

g

σ2

fs
(42)

and g = 2πfmin.

4.3 Component covariance matrices

In this section we give explicit formulae for the elements
of the component covariance matrix Ck that corresponds
to the auto-correlation function (37). Derivation is given in
Appendix A. Here we just quote the results.

We use again the index notation, where indices i, i′ re-
fer to rings and l, l′ to base functions. The elements of the
component covariance matrix are given by

Ck
ii′ll′ = GkS

+
klS

−
kl′ exp

(

− gk
fsp

(i− i′ − 1)M
)

(i > i′) (43)

Ck
ii′ll′ = GkS

−
klS

+
kl′ exp

(

− gk
fsp

(i′ − i− 1)M
)

(i < i′) (44)

Ck
ii′ll′ =

1

M

n−1
∑

j=0

(

F̄lj F̄l′j + F̄ljAl′j + F̄l′jAlj

)

(45)

+G0
k(S

+
klS

−
kl′ + S−

klS
+
kl′). (i = i′)

Here fsp = fs/n, where n is the number of samples on a
ring, represents the spin frequency of the instrument. If no
coadding is applied, n can be chosen freely, and fsp does not
need to have any connection to the scanning pattern of the
instrument. In that case fsp represents simply the inverse of
the chosen baseline length.

Factors S+ and S− are defined as

S+
kl =

n−1
∑

j=0

F̄lj exp(−
gk
fs

j) (46)

S−
kl =

n−1
∑

j=0

F̄lj exp(−
gk
fs

(n− j)). (47)
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Figure 2. Covariance between uniform baselines, as a function
of the distance between rings. The solid line shows the theoretical
curve, computed using Eqs. (43)-(45). Diamonds present the val-
ues determined from simulated noise. The noise parameters were
σ = 2700 µK, fs = 76.8 Hz, fkn = 0.1 Hz, ∆ = 1, fmin = 10−5

Hz, fmax = 10 Hz.

Coadding brings in the factors

Gk =
1

M2

[1− exp(− gk
fsp

M)]2

[1− exp(− gk
fsp

)]2
(48)

and

G0
k =

1

M

1

1− exp(− gk
fsp

)

[

1− 1

M

1− exp(− gk
fsp

M)

1− exp(− gk
fsp

)

]

(49)

If no coadding is done (M = 1), we haveGk = 1 and G0
k = 0.

Factor Alj is defined by

Alj =

j−1
∑

j′=0

F̄lj′ exp(−
gk
fs

(j − j′)) (50)

and can be computed rapidly using the recurrence relation

Alj = (Al,j−1 + F̄l,j−1) exp(−
gk
fs

), (51)

with the starting value Al0 = 0.
Formulae (43)-(45) are very fast to evaluate numeri-

cally, as compared to the general formula (35).
Figure 2 presents the theoretical covariance, computed

using expansion (38), between uniform baselines for 1/f
noise with fkn = 0.1 Hz. Other parameters used were
fs = 76.8 Hz, fsp = 1/60 Hz, n = 4608 and M = 60.
We show in the same figure the covariance as determined
from simulated 1/f noise. We generated 10 realizations of
noise TOD of one year length, and computed their auto-
correlation using the Fourier technique. The agreement is
very good.

As another example we show in Table 2 the first ele-
ments of the covariance matrix for Fourier components. In-
dex l = 1 refers to the uniform baseline and indices l = 2
and l = 3 (l = 4 and l = 5) to the sine and cosine of the
first (second) Fourier mode, respectively. We have normal-
ized all components to

∑

j
F 2
lj = n. Elements of matrix F are

Table 2. The first elements of the covariance matrix Ca (in
(µK)2). The noise parameters were the same as in Fig. 2. We used
Fourier components as base functions, normalized as

∑

j
F 2
lj

= n.

We show elements l, l′ = 1 . . . 5 and i − i′ = 0 . . . 3. Index value
l = 1 refers to the uniform baseline and values l = 2 and l = 3
(l = 4 and l = 5) to the sine and cosine of the first (second)
Fourier mode, respectively. The noise parameters were the same
as in Fig. 2.

l i-i’ l′ = 1 l′ = 2 l′ = 3 l′ = 4 l′ = 5

1 0 56049 0 -2.41 0 -0.668
1 31324 -89.6 1.10 -44.9 0.307
2 18707 -28.9 0.0531 -14.5 0.0133
3 12928 -16.3 0.0210 -8.17 5.25e-3

2 0 0 161 0 1.64 0
1 89.6 -1.42 0.209 -0.745 0.0696
2 28.9 -0.0751 2.35e-4 -0.0376 5.88e-5
3 16.3 -0.0297 5.90e-5 -0.0148 1.48e-5

3 0 -2.41 0 158 0 -0.123
1 1.10 -0.209 0.133 -0.139 0.0617
2 0.0531 -2.35e-4 1.14e-6 -1.18e-4 2.85e-7
3 0.0210 -5.90e-5 1.73e-7 -2.95e-5 4.32e-8

4 0 0 1.64 0 79.9 0
1 44.9 -0.745 0.139 -0.401 0.0524
2 14.5 -0.0376 1.18e-4 -0.0188 2.94e-5
3 8.17 -0.0148 2.95e-5 -7.42e-3 7.38e-6

5 0 -0.668 0 -0.123 0 79.0
1 0.307 -0.0696 0.0617 -0.0524 0.0334
2 0.0133 -5.88e-5 2.85e-7 -2.94e-5 7.13e-8
3 5.25e-3 -1.48e-5 4.32e-8 -7.38e-6 1.08e-8

thus F1j = 1, F2j =
√
2 sin(2πj/n), F3j =

√
2 cos(2πj/n),

F4j =
√
2 sin(4πj/n), F5j =

√
2 cos(4πj/n), and F̄ is given

by F̄lj = Flj/n. We see that the dominant elements are those
corresponding to uniform baselines.

5 SIMULATION RESULTS

5.1 Data sets

We have produced two sets of simulated TOD. We refer to
them as ’coadded’ and ’uncoadded’ data sets.

The coadded data set mimicks the one year TOD from
one Planck LFI 70 GHz detector. The scanning pattern was
the following. The spin axis remained in the equatorial plane
and was turned 2.4 arcmin every hour, so that after 8640
hours the spin axis had turned 360 degrees. The detector
turned around the spin axis with an opening angle of 85
deg and spin frequency fsp = 1/60 Hz. The sampling fre-
quency was fs = 76.8 Hz. We coadded data of 60 consecu-
tive spin circles to form a ring. Our total data set consisted
of 8640 rings, with 4608 samples in each. The sky coverage
was 0.9964.

The uncoadded data set was generated with a quite sim-
ilar scanning pattern. The main difference was that instead
of moving in steps, the spin axis turned continuously at the
rate of 360 degrees in 8640 min. The sampling and spin fre-
quencies as well as the opening angle were the same as in
the first data set. Because the spin axis moved continuously,
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consecutive circles did not fall on top of each other, and no
coadding was done. The total length of the TOD was the
same as in the coadded data set, i.e. 8640×4608 samples.
The amount of data was equivalent to 6 days of one detec-
tor Planck data, spread over the whole sky. This scanning
pattern was rather artificial, but our purpose was only to
demonstrate the use of MADAM in the case of uncoadded
data. Full-scale simulations with realistic uncoadded one-
year Planck data are beyond the scope of this paper.

The underlying CMB map was created by the Synfast
code of the HEALPix package (Górski et al. 1999, 2004),
starting from the CMB anisotropy angular power spectrum
computed with the CMBFAST3 code (Zeljak & Zaldarriaga
1996) using the cosmological parameters Ωtot = 1.00, ΩΛ =
0.7, Ωbh

2 = 0.02, h = 0.7, n = 1.00, and τ = 0.0. We created
the input map with HEALPix resolution Nside = 2048 and
with a symmetric Gaussian beam with full width at half
maximum (FWHM) of 14 arcmin. We then formed the signal
TOD by picking temperatures from this map. Our output
maps have resolution parameter Nside=512, corresponding
to an angular resolution of 7 arcmin.

We used the Stochastic Differential Equation (SDE)
technique to create the instrument noise stream, which we
added to the signal TOD. We generated noise with power
spectrum

P (f) =

(

1 +
fkn
f

)

σ2

fs
, (f > fmin) (52)

with parameters σ = 2700 µK, knee frequency fkn = 0.1 Hz,
and fmin = 10−5 Hz. The white noise level 2700 µK (CMB
temperature scale) corresponds to the estimated white noise
level of one 70 GHz LFI detector. We used the same noise
spectrum for both data sets.

We run our code on one processor of an IBM eServer
Cluster 1600 supercomputer.

5.2 Results for coadded data

We show our results for the coadded data set in Tables 3-5.
As a figure of merit we have used the rms of the residual
noise map. The residual noise map was computed by sub-
tracting from the output map a reference map. The reference
map was created by coadding the pure signal TOD into a
map. We then subtracted the monopole from the residual
map and computed its rms value.

The results for different numbers of base functions are
given in Table 3. The given rms values are averages over
10 noise realizations. We tried two sets of base functions:
Fourier components and Legendre polynomials. Because a
Fourier fit always includes an uniform baseline plus an equal
number of sine and cosine functions, the total number L of
base functions is always an odd number. The rms values
continue improving when we increase the number of base
functions. Fourier components give lower rms values than
Legendre polynomials for the same number of components.
In the rest of the simulations in this section we fitted only
Fourier components.

We show also the number of iterations and total CPU
time taken by one run in the case of Fourier components.

3 http://www.cmbfast.org

Table 3. Average rms of the residual noise map for different
numbers of base functions, for coadded data. We fit Fourier com-
ponents and Legendre polynomials. The averages are taken over
10 noise realizations. We show also the number of iteration steps
and CPU time in the Fourier case.

Legendre Fourier

L rms/µK rms/µK iter CPU/s

1 110.634 110.634 16 59
2 110.560
3 110.525 110.485 20 65
4 110.481
5 110.451 110.422 28 106
7 110.413 110.386 28 123
9 110.387 110.363 32 164

11 110.368 110.347 32 191
15 110.344 110.326 36 267
25 110.312 110.301 40 530
35 110.298 110.290 44 758
45 110.290 110.283 52 1154
65 110.277 56 1959

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
110.25

110.3

110.35

110.4

110.45

110.5

110.55

110.6

1/L

st
d 

(K
)

L=3

L=5

L=15

L=25

L=65

Figure 3. Rms of the residual noise map plotted against the
inverse of the number of base functions, for Legendre polynomials
(+) and Fourier components (*). The numerical values are given
in Table 3. The std seems to converge towards value 110.26 µK
at the limit L → n.

Since the CPU time naturally depends on the computer used
and may vary from run to run, the values quoted should not
be taken too seriously. They merely give an idea how the run
time increases with increasing number of base functions.

In Fig. 3 we have plotted the rms values against the in-
verse of the number of base functions. At the limit 1/L → 0
the rms values seem to be approaching the value 110.26 µK.
We expect that to be the std of the minimum-variance map
(Section 2.2). The expected contribution from white noise to
the residual map rms is 108.95 µK. This value was computed
from the white noise sigma and the known distribution of
measurements in the sky.

We have compared results of fitting uniform baselines
using MADAM and ordinary destriping technique. We got
the destriping results by running MADAM with C−1

a = 0.
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Table 4. Effect of misestimating the noise spectrum. We show the
average residual map std (in µK) for different numbers of Fourier
components and for different assumed knee frequencies fkn (upper
panel), spectral slopes γ (middle), and minimum frequencies fmin

(lower panel). The other two noise parameters were kept at their
correct values (fkn = 0.1 Hz, γ = −1.0, and fmin = 10−5 Hz).
The lowest rms value on each row is denoted by an asterisk. The
correct parameter value is shown in boldface.

fkn
L 0.03 Hz 0.05 Hz 0.1 Hz 0.2 Hz

1 110.634* 110.634* 110.634* 110.634*
3 110.492 110.484* 110.485 110.492
5 110.436 110.420* 110.422 110.441
7 110.409 110.387 110.386* 110.411
9 110.392 110.366 110.363* 110.393

11 110.382 110.353 110.347* 110.380
15 110.369 110.335 110.326* 110.363
25 110.355 110.319 110.301* 110.344

γ
L -0.6 -0.8 -1.0 -1.2

1 110.640 110.635 110.634* 110.634
3 110.490 110.483* 110.485 110.488
5 110.428 110.419* 110.422 110.428
7 110.394 110.384* 110.386 110.393
9 110.373 110.361* 110.363 110.369

11 110.359 110.346* 110.347 110.352
15 110.340 110.326* 110.326* 110.330
25 110.321 110.303 110.301* 110.304
35 110.314 110.293 110.290* 110.292

fmin

L 10−6 Hz 10−5 Hz 10−4 Hz 10−3 Hz

1 110.634* 110.634* 110.635 110.655
3 110.485* 110.485* 110.485 110.510
5 110.422* 110.422* 110.422 110.463
7 110.386* 110.386* 110.386 110.433
9 110.363* 110.363* 110.363 110.415

11 110.347* 110.347* 110.347 110.402
15 110.326* 110.326* 110.326 110.386
25 110.301* 110.301* 110.302 110.367

At this limit the method reduces to pure destriping. The
destriping result was 110.63444 µK (110.63443 µK with
MADAM). This indicates that when fitting uniform baselines
only, the covariance plays very little role, but the baselines
can be determined from the data alone with good accuracy.

Keihänen et al. (2004) showed that fitting Fourier com-
ponents beyond the uniform baseline with the ordinary de-
striping technique, without using the covariance matrix, did
not improve the results. In this work we have found a clear
improvement. This indicates, that information about the
noise spectrum is important when fitting base functions
other than the uniform baseline.

We have also studied the effect of misestimating the
noise spectrum. We varied in turn each of the three noise
parameters (knee frequency, spectral slope, and minimum
frequency) while keeping the other two at their correct val-
ues (fkn = 0.1 Hz, γ = −1.0, fmin = 10−5 Hz). We then
recomputed the covariance matrix Ca with the new param-
eter values and rerun the map estimation. We fitted Fourier
components only. The results are shown in Table 4.

Table 5. Pixelization noise. Rms of the residual map for noise-
free TOD. The error is due to finite pixelization of the sky.

L rms/µK

1 0.138
3 0.207
5 0.233
7 0.257
9 0.274

11 0.289
15 0.319
25 0.359
35 0.380
45 0.393

It is perhaps surprising that for small L underestimat-
ing the knee frequency or assuming a less deep slope seems
to improve the results. This can be understood as follows.
When L is small, the noise is not perfectly modelled by the
base functions. There is an error involved, related to the
higher Fourier components that have not been included in
the analysis. This error affects the estimation of the lower
components, leading to a too high variation in their ampli-
tudes. The error in the covariance matrix, caused by mises-
timation of the noise spectrum, partly compensates for this
error. We notice that the best results are obtained with a
spectrum (less deep a slope or lower knee frequency) which
leads to a smaller covariance for the low-frequency Fourier
components. Smaller covariance tends to restrict the varia-
tion of the amplitudes, thus decreasing their error also. With
larger L the phenomenon disappears, and the lowest rms is
obtained with the correct noise spectrum, as expected.

Table 5 shows results from a run with noise-free data.
The TOD contained only the contribution from the CMB
signal, but no instrument noise. The error that still remains
in the map is due to ’pixelization noise’ (Doré et al. 2001)
caused by the finite size of sky pixels. The pixelization error
increases with increasing number of base functions, but is
very small compared with the error due to instrument noise.

5.3 Results for uncoadded data

If no coadding is applied, the length n of a ring is not de-
termined by the scanning pattern of the instrument, but is
a free parameter to be chosen at will. We then have two pa-
rameters to select: the number L of base functions and their
length n.

To keep things simple, we tried two schemes. First we
kept the baseline length fixed at one minute and varied the
number of Fourier components that we fitted. Secondly, we
fitted uniform baselines only (L = 1) but varied their length.

Results from the first case are shown in Table 6. The
baseline length was fixed at n = 4608 samples (one minute).
We show again the average rms of the residual noise map,
averaged over 10 realizations of noise. The white noise level
is higher than in the coadded case by a factor of

√
60. The

expected white noise contribution to the map rms is 844.0
µK.

Table 7 shows results of fitting uniform baselines of dif-
ferent lengths. The first column gives the length n of the
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Table 6. Average residual noise rms for different numbers of
Fourier components, for the uncoadded data set. The ring length
was n = 4608. Also shown are the number of iteration steps and
the CPU time for one run.

L rms/µK iter CPU/s

1 857.131 28 68
3 855.782 36 102
5 855.294 48 161
7 838.373 52 205
9 854.842 56 280

11 854.718 60 336
15 854.555 64 436
25 854.357 76 847

Table 7. Results of fitting uniform baselines of different lengths
to uncoadded data. The first three columns give the baseline
length as the number of samples and in seconds, respectively,
and the number of baselines per one minute of TOD. The next
columns give the average residual noise rms, number of iteration
steps and total CPU time taken by one run.

n t/s N/min rms/µK iter CPU/s

4608 60.0 1 857.131 28 68
2304 30.0 2 856.220 32 80
1152 15.0 4 855.837 36 96
576 7.5 8 855.202 48 123
288 3.75 16 854.769 64 150
144 1.88 32 854.463 84 215
72 0.94 64 854.271 116 331
36 0.47 128 854.169 160 672
18 0.23 256 854.116 224 1284
9 0.12 512 854.092 320 2889

baseline, as the number of samples. The second column gives
the baseline length in seconds. The third column shows the
number of baselines per minute (4608/n). The shortest base-
line we tried consisted of only 9 samples.

The third column of Table 7 and the first column of
Table 6 are comparable, since they give the total number of
unknows per one minute of TOD. We see that for a given
number of unknowns, fitting Fourier components works bet-
ter than fitting uniform baselines. However, when we com-
pare CPU times, we see that fitting uniform baselines is
more effective.

As in the case of coadded data, we compared results
of fitting uniform baselines using MADAM and ordinary de-
striping technique. The results are shown in Table 8. With

Table 8. Comparison between MADAM and destriping.

MADAM destriping
n t/s N/min rms/µK rms/µK

4608 60.0 1 857.131 857.135
2304 30.0 2 856.220 856.239
1152 15.0 4 855.837 856.779
576 7.5 8 855.202 861.118
288 3.75 16 854.769 875.798

one minute baselines the difference between the methods is
small, but increases with decreasing n, in favour of MADAM.
The rms value obtained with destriping reaches a minimum
around 0.5 min baseline length, while with MADAM the val-
ues continue improving. With small values of n MADAM is
clearly superior to basic destriping.

6 CONCLUSIONS

We have presented a new map-making method for CMB
experiments called MADAM. The method is based on the
well known destriping technique, but unlike basic destriping,
it also uses information on the known statistical properties
of the instrument noise in the form of the covariance matrix
of the base function amplitudes. We have shown that with
this extra information the CMB map can be estimated with
better accuracy than with pure destriping.

We have tested the method with simulated coadded
Planck -like data. As a figure of merit we have used the
rms of the residual noise map. Our simulations show that
fitting more base functions clearly improves the accuracy of
the output map, with the cost of increasing requirements for
CPU time and memory.

We have shown theoretically that the map esti-
mate given by MADAM approaches the optimal minimum-
variance map when the number of fitted base functions in-
creases. In practice it is not possible to reach the exact
minimum-variance map using MADAM, due to CPU time
and memory limitations. Still, MADAM provides a fast and
efficient map-making method. By varying the number of
base functions the user may flexibly move from a very fast
but less accurate map-making (small L) to a more accurate
but more time-consuming map-making (large L), depending
on what is desired.

We also demonstrated the use of MADAM for uncoad-
ded data. Although the data set used was quite artificial,
in the sense that it does not mimick data from any existing
CMB experiment, the method was shown to work well for
uncoadded data also.

The current implementation of the method is a serial
one. With a parallelized version we expect to be able to
process data sets equivalent to full-year uncoadded Planck

data.
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cial support. We thank CSC (Finland) for computational
resources. We acknowledge the use of the HEALPix package
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APPENDIX A: COVARIANCE MATRIX FOR A

POWER-LAW POWER SPECTRUM

We discussed the computation of the covariance matrix Ca

in Section 4. In this appendix we present some technical
calculations which were omitted there.

A1 Exponential expansion for a power-law

spectrum

Assume that the auto-correlation function of the noise can
be expanded as

c(t) =
∑

k

bk exp(−gk|t|) (A1)

where and gk is a selected set of characteristic frequencies.
We now derive the coefficients bk in the case of a power-law
power spectrum of the form

P (f) ∝ fγ (A2)

for −2 6 γ < 0.
The power spectrum P (f) and the auto-correlation

function c(t) of stationary noise are related by the cosine
transform

P (f) =

∫ ∞

−∞

c(t) cos(2πft)dt. (A3)

The auto-correlation function exp(−g|t|) corresponds to the
power spectrum

P (f, g) =
2g

g2 + (2πf)2
. (A4)

The total power spectrum corresponding to the auto-
correlation (A1) is given by

P (f) =
∑

k

bkP (f, gk) =
∑

k

2bkgk
g2k + (2πf)2

. (A5)

We pick the frequencies gk uniformly in logarithmic
scale inside some range [fmin, fmax] and use the ansatz

bk = Agγ+1
k ∆ (A6)

where ∆ = ln(gk+1/gk) is the logarithmic step in g and A
is a constant to be determined. The total power spectrum
becomes

P (f) = A
∑

k

2gγ+2
k

g2k + (2πf)2
∆. (A7)

We transform the sum into an integral

P (f) = A

∫ fmax

fmin

2gγ+2

g2 + (2πf)2
dg

g
(A8)

≈ A

∫ ∞

0

2gγ+1

g2 + (2πf)2
dg (fmin ≪ f ≪ fmax).

The integral converges for −2 < γ < 0,

P (f) = A
π(2πf)γ

sin[(γ + 2)π/2]
∝ fγ . (A9)

We choose

A =
σ2

fs

1

π
(2πfkn)

−γ sin[(γ + 2)π/2] (A10)

to obtain the desired power spectrum

P (f) =
σ2

fs
(
f

fkn
)γ (fmin ≪ f ≪ fmax). (A11)

Here σ is the white noise std, fs is the sampling frequency,
and fkn is the knee frequency, at which the power of the
power-law noise component equals the white noise power
σ2/fs. The maximum fmax should well exceed the knee fre-
quency.

The coefficients bk are given by

bk =
σ2

fs

1

π
(2πfkn)

−γ sin[(γ + 2)π/2]gγ+1
k ∆ (A12)

for −2 < γ < 0. Especially, for 1/f noise (γ = −1) we have
the simple formula

bk = 2σ2 fkn
fs

∆. (A13)

The case γ = −2 requires a separate treatment. We see
directly from Eq. (A4), that the desired spectrum is given
by one single g component with coefficient

b =
2π2f2

kn

g

σ2

fs
. (A14)

The spectrum then has the form

P (f) =
f2
kn

f2
min + f2

σ2

fs
(A15)

where fmin = g/(2π). The spectrum behaves as ∝ f−2 at
f ≫ fmin and levels out below fmin.
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A2 Component covariance matrices

Once the expansion (A1) has been found, the covariance
matrix can be computed as

Ca =
∑

k

bkC
k. (A16)

In the following we calculate the component covariance ma-
trices Ck.

In Section 4 we derived the general formula

Cii′ll′ = (A17)

n−1
∑

j,j′=0

F̄ljF̄l′j′
1

M2

M−1
∑

m,m′=0

c[(i−i′)nM+(m−m′)n+j−j′].

Assume then that the auto-correlation function is of the
exponential form

〈ypyp′〉 = ck,p−p′ = exp(−gk|t|) = exp
(

− gk
fs

|p− p′|
)

(A18)

where fs is the sampling frequency and indices p, p′ label
samples along the TOD. We substitute this into Eq. (A17).
The covariance becomes

Ck
ii′ll′ =

n−1
∑

jj′=0

F̄lj F̄l′j′
1

M2

M−1
∑

m,m′=0

(A19)

× exp
(

− gk
fs

|(i− i′)nM + (m−m′)n+ j − j′|
)

.

We treat cases |i− i′| > 0 and i = i′ separately.

(i) |i−i′| > 0. If i−i′ > 0 the quantity inside the brackets
is positive, and we can split the four-dimensional sum into
a product of four sums as

Ck
ii′ll′ = exp

(

− gk
fs

(i− i′ − 1)nM
)

× 1

M2

M−1
∑

m=0

e
−

gk
fs

mn

M−1
∑

m=0

e
−

gk
fs

(M−1−m)n

×
n−1
∑

j=0

F̄lje
−

gk
fs

j

n−1
∑

j′=0

F̄l′j′e
−

gk
fs

(n−j′). (A20)

We have arranged the terms in such a way that the argument
of an exponent function is always negative. This is helpful
in numerical evaluation. The sum over m,m′ can be carried
out analytically, yielding

Gk =
1

M2

M−1
∑

m=0

e−
gk
fs

mn

M−1
∑

m=0

e−
gk
fs

(M−1−m)n

=
1

M2

(1− e
−

gk
fsp

M
)2

(1− e
−

gk
fsp )2

(A21)

where fsp = fs/n.
The elements for which i − i′ < 0 are obtained from the

symmetry relation,Ck
ii′ll′ = Ck

i′il′l.
(ii) The case i = i′ is more complicated, since the quantity

inside the brackets in Eq. (A19) takes both positive and
negative values. We split the sum into three terms (m = m′,
m > m′, and m < m′) and the m = m′ term further into

three terms (j = j′, j > j′, and j < j′),

Ck
iill′ =

n−1
∑

jj′=0

F̄lj F̄l′j′
1

M2

M−1
∑

m,m′=0

e−
gk
fs

|(m−m′)n+j−j′ |

=
1

M2

M−1
∑

m=0

∑

m′<m

e−
gk
fs

(m−m′−1)n

×
n−1
∑

j=0

F̄lje
−

gk
fs

j

n−1
∑

j′=0

F̄l′j′e
−

gk
fs

(n−j′)

+
1

M2

M−1
∑

m′=0

∑

m<m′

e
−

gk
fs

(m′−m−1)n

×
n−1
∑

j=0

F̄lje
−

gk
fs

(n−j)

n−1
∑

j′=0

F̄l′j′e
−

gk
fs

j

+
1

M

n−1
∑

j=0

F̄lj F̄l′j +
1

M

n−1
∑

j=0

F̄lj

∑

j′<j

F̄l′j′e
−

gk
fs

(j−j′)

+
1

M

n−1
∑

j′=0

F̄l′j′

∑

j<j′

F̄lje
−

gk
fs

(j′−j)
. (A22)

The sum over m,m′ can again be calculated analytically,

G0
k =

1

M2

M−1
∑

m=0

∑

m′<m

exp(− gk
fsp

(m−m′ − 1)) (A23)

=
1

M

1

1− exp(− gk
fsp

)

[

1− 1

M

1− exp(− gk
fsp

M)

1− exp(− gk
fsp

)

]

.

Formula (A22) may seem complicated, but is easy and fast
to evaluate numerically.

Equations (A20) and (A22), when written in compact
form, give the formulae (43)-(45) in Section 4.
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