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Radiative transfer problem in dusty galaxies:

ray-tracing approach
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Institute of Physics, Savanoriu̧ 231, LT-03154 Vilnius, Lithuania dima@itpa.lt

Summary. A new code for evaluation of light absorption and scattering by in-
terstellar dust grains is presented. The radiative transfer problem is solved using
ray-tracing algorithm in a self-consistent and highly efficient way. The code demon-
strates performance and accuracy similar or better than that of previously published
results, achieved using Monte-Carlo methods, with accuracy better than ∼ 3% for
most cases. The intended application of the code is spectrophotometric modelling
of disk galaxies, however, it can be easily adapted to other cases that require a
detailed spatial evaluation of scattering, such as circumstellar disks and shells con-
taining both point and distributed light sources.

1 Problem statement

The purpose for the developing radiative transfer problem solving code, de-
scribed in this article, was to model spatial and spectral energy distribution
(SED) observed in external galaxies. The nature of this problem requires ‘self-
consistency’ of a solution – the resulting SED of a model must depend only
on the SED of stellar sources and assumed properties of dust without any
preconditioning on light and attenuation distribution within galaxy [TVA03].

While galaxies in general are complex objects with three-dimensional (3D)
distribution of radiation and mater, in most cases they are dominated by ax-
ial symmetry (2D), allowing significant simplification of the model geometry.
However, the model should account for presence of macroscopic structure
within galaxies, possibly including elements having other symmetry, such as
bars and spiral arms (2D+).

Most present day astrophysical radiative transfer codes employ either a
Monte-Carlo (MC, eg. [CF01]) or a ray-tracing (RTR, eg. [RS99], [RM02])
methods. Some of implementations of these methods were compared by [BD01]
for 1D and by [DT02] for 2D cases. The RTR approach allows the optimiza-
tion of solution for a given system geometry, which was the main reason to
use it as a basis for the Galactic Fog Engine (hereafter ‘GFE’), a program for
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self-consistent solution of radiative transfer problem in dusty media with pri-
marily axisymmetric geometry. This paper concentrates on radiative transfer
in ultraviolet-to-optical wavelength range assuming exclusively coherent scat-
tering, therefore in most equations the wavelength dependence will be omitted.

2 Algorithm

2.1 Model description

The GFE iteratively solves a discrete bidirectional radiative transfer problem,
producing intensity maps of the model under arbitrary inclination at a given
wavelength set. The foundation of the iterative evaluation of radiation transfer
equation was laid out by Henyey [Hen37]. By solving a set of one-dimensional
radiative transfer equations

dI

ds
= −κI + j + κ

ω

4π

∫

IΦdΩ, (1)

where Φ and ω denote the scattering phase function and albedo and κ and
j are absorption and emissivity coefficients of the medium, the initial system
SED is separated into: escaped energy, that reaches an external observer;
energy, absorbed by grains, that is eventually emitted as thermal radiation;
and scattered energy distribution. The solution is then repeated, substituting
scattered energy as initial distribution for the next iteration, accumulating
resulting escaped and absorbed energy, until certain convergence criteria are
met, either a fixed number of iterations, or remaining scattered energy being
below specified threshold. After convergence is reached the dust temperature
is calculated from absorbed energy distribution. If it is necessary to account
for self-scattering of thermal radiation by dust grains, the resulting emission
SED can be input into scattering evaluation loop and the process repeated
until the final radiative energy distribution is obtained, and then used to
produce SED as seen by an external observer.

Calculations are performed within a cylinder with a radius rm and height
above midplane zm, which is subdivided into a set of layers of concentric,
internally homogeneous rings (‘bins’) of arbitrary radial and vertical thick-
ness. Since the linear extent of each individual light source (star) is negligible
compared to the size of system, it is possible to solve the radiative transfer
problem considering every volume element of the model having both attenu-
ating (light scattering and absorption by interstellar dust) and emitting (light
emission by the stars and thermal radiation of the dust particles) properties
per unit volume, defining for each ring denoted by indexes r and z its total
absorption k′ = κ(r, z), and emissivity j′ = j(r, z, α, δ), combined from inter-
nal light sources and energy scattered within its volume, with angles α and δ
defining the direction of radiation propagation.
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Fig. 1. The model geometry. Panel a) shows the diametral, panel b) - central
plane cross-section of the model. The distribution and density of ray-tracing paths
(shown as arrows) are computed to produce even and sufficient sampling of the model
volume. Panel c) illustrates the discrete radiative transfer in cross-section parallel
to the model Z axis. Limits of plane-parallel layers for one-directional treatment
are shown as dotted lines while boundaries of the individual rings are outlined with
solid lines.

2.2 Radiative transfer equation

GFE uses static ray-casting geometry, determining the set of rays that ensures
a required degree of sampling of the model volume (fig. 1a and 1b). If the
viewing solid angle, containing each direction, can be held small, the radiative
transfer along these rays can be solved as in plane-parallel homogeneous layer
case for a series of intervals traversing rings until crossing the outer boundary
of the model (fig. 1c). In a form suitable for computer implementation an
incident intensity on a given point for a light path separated into n intervals
of length li, numbered outwards from that point, is written as

Iinc =

n
∑

i=1





i−1
∏

j=1

e−k′

j lj





j′i
k′i

(

1− e−k′

ili
)

. (2)

Similarly, the intensity of radiation scattered with albedo ω from a given
direction (α : δ) into all other directions within a certain interval denoted by
index “1” is
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I1,α,δ = ωj′1l1 − ω
(

1− e−k′

1
l1
)





j′1
k′1

−

n
∑

i=2





i−1
∏

j=2

e−k′

jlj





j′i
k′i

(

1− e−k′

ili
)



 .

(3)
When considering azimuthally inhomogeneous model configuration (3D

case), each ring is subdivided into required number of azimuthal segments.
The number and directions of rays cast through the system have to be modified
accordingly to include new sets of rays in azimuthal direction, however, the
ray-tracing part of the algorithm is unchanged. The computational time scales

as N
3/2
bin × logNbin for 2D and N

4/3
bin × logNbin for 3D cases.

2.3 Scattering phase function

Since angular distribution of radiation at each point in the model is non-
isotropic, it must be described using a numerical phase function (matrix),
providing the radiation intensity towards a set of predefined reference di-
rections (‘RDs’) described by angular coordinates (α0 : δ0). There exists a
number of ways to distribute RDs on a sphere, however, those methods that
produce a set of RDs arranged in iso-latitude rows are the most efficient in
this particular model geometry, allowing both efficient storage and retrieval of
scattered intensity and fast rotation of the phase matrix around model Z-axis.
The memory requirements and the overall algorithm’s performance have also
to be taken into consideration.

In this work the following methods of RD distribution were compared:
HEALPix1 [GHW99], HTM2 [KST01], a trivial iso-latitude triangulation
(hereafter ‘TT’), fig. 2a) and a square matrix with elements (‘texels’) cor-
responding to evenly spaced (α0 : δ0) coordinates (hereafter ‘Texel’). For
triangulation schemes and HEALPix the radiation intensity towards a given
point was interpolated between 3 nearest RDs using either ‘flat’ (fig. 2b) or
‘spherical’ (fig. 2c) weights.

3 Computational precision

3.1 Scattering phase function interpolation

To compare used sphere subdivision and interpolation algorithms a following
test model (hereafter a ‘standard model’) was employed: a cylinder with height
to radius ratio zm/rm = 0.2, divided into Nbin = 441 (21× 21) equally spaced
rings, filled with radiating and absorbing particles whose density follows a
double exponential law

1http://www.eso.org/science/healpix/
2http://www.sdss.jhu.edu/htm/
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Fig. 2. The reference point structure used for interpolation of the scattering phase
function. Panel a) shows the trivial iso-latitude triangulation for one hemisphere
with reference directions arranged symmetrically against diametral and horizontal
planes. Panels b) and c) represent two implemented interpolation schemes, ‘flat’
and ‘spherical’. In case of spherical interpolation, input from each triangle vertex is
weighted by the area defined by shortest distances from the given direction to the
vertices (S1 for 1-st vertex and so on).

ρ(r, z) = ρ0e
−r/r0e−z/z0 (4)

with r0 = 0.2rm and z0 = 0.2zm and the model central optical depth per-
pendicularly to the central plane τct = 25. The Henyey & Greenstein [HG41]
scattering phase function

Φ(θ) =
1− g2

(1 + g2 − 2g cos θ)3/2
(5)

was used with asymmetry parameter g = 0.75.
The primary quality criteria of a given algorithm is its ability to represent

the angular intensity distribution of anisotropic scattering. If the phase func-
tion representation is exact, the distribution of values (Φ′(θ) − Φ(θ))/Φ(θ)
(where Φ′(θ) is a resulting numerical phase matrix) would be a δ-function.
However, since employed methods introduce different types of numerical er-
rors, the actual distribution form depends strongly on the phase function
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sampling and the interpolation algorithm. An examples of resulting error dis-
tributions (as relative numerical phase matrix deviation from its analytical
form) for the algorithms tested are shown on fig. 3.

As can be seen, methods providing uniform sphere coverage produce more
preferable error distributions. With the increasing number of RDs the repre-
sentation of the scattering phase function improves, reducing maximal possi-
ble deviation from the true value, particularly for TT (fig. 3a) and HEALPix
(fig. 3c) methods, with TT algorithm showing slightly better error distri-
bution form. ‘Spherical’ interpolation scheme (fig. 3, right column in panels
a – c) produces more symmetrical error distributions, while ‘flat’ interpola-
tion (left column) in some cases introduces additional numerical errors. When
compared with other methods, attempt to reproduce scattering phase function
using simple matrix with no interpolation between its elements (Texel scheme,
fig. 3d) produces results of average quality, its error distribution quickly reach-
ing a ‘saturated’ form with increasing number of RDs. The described error
distribution is somewhat dependent on the orientation of the scattering phase
function relative to the set of RDs, this dependence being minimal for the
methods with identical size of interpolation elements (HEALPix). All meth-
ods that use interpolation display similar performance for a given number of
RDs (table 1).

Table 1. The normalized computing time for models using different sphere subdi-
vision and scattering phase function interpolation algorithms.

Interpolation HEALPix HTM TT Texel
method

‘flat’ 2.5 2.8 2.5 1.0
‘spherical’ 8 10 8 –

3.2 Volume sampling and subdivision

The problem encountered applying numerical methods is error accumulation.
In case of iterative ray-tracing it arises from sampling and interpolation er-
rors. The source of sampling errors is incomplete/inadequate spatial sampling
of the system while interpolation errors are related to the scattering phase
function approximation, described in the previous section. Both error types
independently affect every ray traced through the system, thus the accumu-
lated error increases with the increasing number of bins and rays. This makes
oversampling undesirable not only due to increasing computational time, but
also for a reason of minimizing numerical errors.

As a measure of method’s quality a defect in energy balance Eerr as a
percentage of total energy radiated within system Etot
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Fig. 3. The distribution of relative numerical phase matrix deviation from its an-
alytical form for different sphere subdivision algorithms. Panels a) – d) correspond
to TT, HTM, HEALPix and Texel methods. For the first three methods the results
obtained using both ‘flat’ (left panels) and ‘spherical’ (right panels) weighted inter-
polation are presented. Thin line shows the results obtained for approximately 3100,
thick line – for approximately 12000 reference directions.
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Eerr =
Etot − Eabs − Esca − Eesc

Etot

(6)

is used. Here Eesc, Eabs and Esca are the parts of a total radiated energy that
escaped the system, was absorbed and remained to be scattered within the
system, respectively.

To determine the sampling and gridding influence on the model precision
the following two tests were performed. Firstly, the radiation field in the stan-
dard model using TT algorithm with scattering phase function represented
by a set of 182 RDs was computed with different number of rays Nray, cast
through each ring. The results, presented on fig. 4a, show a significant error
accumulation effect. Then, keeping a number of rays per ring constant the
number of rings Nbin in model was changed (fig. 4b). As can be seen, improv-
ing the sampling of a model decreases the approximation errors to a certain
minimum, limited by internal errors of a chosen scattering phase function in-
terpolation method. This geometric configuration can be considered optimal,
since with further increase in a number of bins and rays the quality of the
solution begins to deteriorate due to error accumulation.
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Fig. 4. The influence of subdivision and sampling of the model on the energy
balance. Panel a) displays the energy defect for a given number of rays cast per
model bin; panel b) shows the same quantity for a models consisting of different
number of bins.

3.3 Dust optical properties

Other important aspect of a numerical radiative transfer solution is its sen-
sitivity to variations in scattering parameters: albedo ω and asymmetry pa-
rameter g. Model precision and stability for different ω and g values place
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a constraint on the wavelength range where a given method can be applied.
The influence of scattering parameters on energy defect was analyzed using
the standard model with Nbin = 441 and τct = 10.
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Fig. 5. The dependence of the energy losses within model on the grain scattering
parameters: scattering phase function asymmetry g (panel a), with albedo assumed
to be ω = 0.5 for all g values), and albedo ω for g = 0.6 (panel b).

The dependence of overall model precision on scattering asymmetry pa-
rameter g is shown on fig. 5a. The total energy defect after 9 iterations show
some variation with the increasing g up to the limit imposed by the angular
scattering phase function gridding (182 RDs) used in the calculations, after
which the energy losses in the scattering phase matrix render results invalid.

The effects of the grain albedo on the model accuracy and stability were
investigated using similar method. All computations were performed for 7
iterations assuming g = 0.6. The results are shown in fig. 5b. Within the
range of ω values, applicable to astrophysical dust grains, those errors stay in
acceptable limits, and do not influence the stability of the solution.

4 Summary

The code described in this paper has undergone an extensive testing and shows
the flexibility and performance satisfying the requirements for the models of
the global radiation transfer in dusty galaxies [SV02]. It has been success-
fully applied to model both integral and position dependent SEDs of several
galaxies, some of the first results presented in [SSV03].

The main limiting factor affecting the applicability of the described code
is the scattering asymmetry parameter gλ. In order to correctly treat the
scattering with gλ approaching 1, the number of required reference directions
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rises sharply, affecting both the performance and the precision of the method.
For a disk galaxy model such as one decribed in this paper a satisfactory
convergence is obtained for gλ in [ -0.8 ; 0.8 ] range which includes the optical
properties of typical astrophysical grains scattering photons from microwave
up to extreme UV wavelengths.

Other model properties, such as optical depth τλ and the relative amount
of scattered radiation (dependent on albedo ωλ) seem to have relatively lit-
tle effect on the quality of the solution. However, models with large optical
depth (of order of a few 100’s), particularly having a steep matter distribution
gradients, require a significant amount of computing time and storage.

The application of this code is not restricted to the systems with dis-
persed sources and absorbers, the algorithm being easily extended to include
treatment of interaction between radiation field and surfaces of macroscopic
objects.
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