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Spatially flat loitering universe models have recently been shown to arise in the context of brane
world scenarios. Such models allow more time for structure formation to take place at high redshifts,
easing, e.g., the tension between the observed and predicted evolution of the quasar population with
redshift. While having the desirable effect of boosting the growth of structures, we show that in such
models the position of the first peak in the power spectrum of the cosmic microwave background
anisotropies severely constrain the amount of loitering at high redshifts.

I. INTRODUCTION

The last few years of intense observational develop-
ments have provided cosmology with a standard model: a
universe with geometry described by the flat Robertson-
Walker metric, with cold pressureless matter contribut-
ing roughly 1/3 and some form of negative pressure ‘dark
energy’ contributing the remaining 2/3 of the critical en-
ergy density. The existence of the last component is mo-
tivated partly by the Hubble diagram from supernovae of
type Ia (SNIa) [1, 2], partly from joint analysis of the cos-
mic microwave background (CMB) anisotropies and the
large-scale distribution of matter, e.g. from the power
spectrum of the galaxy distribution [3, 4]. However,
there are ways of describing the data which do not in-
voke a negative-pressure fluid, namely to postulate some
modification of standard Einstein gravity on large scales.
One way of realizing this is in the braneworld scenario,
where our universe is taken to be a (3+1)-dimensional
membrane (the brane) residing in a higher-dimensional
space (the bulk), see [5] for an overview. The standard
model fields are confined to the brane, whereas grav-
ity can propagate in the full space. The extra dimen-
sions need not be small, and hence gravity can be mod-
ified on scales as large as the size of the present hori-
zon ∼ c/H0 ∼ 3000 h−1 Mpc (where c is the speed of
light, set equal to 1 in the remainder of this paper, and
H0 = 100h km, s−1 Mpc−1 is the present value of the
Hubble parameter.)

Loitering, i.e., a universe which undergoes a phase of
very slow growth, can arise in closed universe models
with a cosmological constant [6]. In the context of extra-
dimensional models such phenomena can occur naturally
in spatially flat geometries and may provide a solution
to several problems. For instance, in brane gas cosmol-
ogy(BGC) [7], loitering may help to solve the horizon
problem and the brane problem of BGC [8]. Recently, the

possibility of a loitering phase has been pointed out by
Sahni and Shtanov [9] in the context of other braneworld
models, where the geometry on our brane is spatially flat.
Such a phase has desirable consequences, since it allows
more time for structure formation [10] and astrophys-
ical processes, alleviating some of the tension between
the concordance ΛCDM model and the observations of
quasars with redshifts z ∼ 6 [11, 12] and the indica-
tions from WMAP of early reionization [13]. The loiter-
ing phase is proposed to occur at high redshifts z ∼ 20,
and the behavior of these loitering models at moderate
redshifts is similar to the ΛCDM model, thus making it
possible to satisfy constraints from e.g. SNIa. However,
as we will show in this paper, the position of the first peak
of the power spectrum of the CMB anisotropies places a
very robust constraint on the high-redshift behavior of
all models.

The structure of this Brief Report is as follows. We
start out by introducing the loitering braneworld models
in section II, and confront them with data in section III.
In section IV we look at constraints on loitering in gen-
eral from the CMB peak positions. We summarize and
conclude in section V.

II. THE LOITERING BRANE WORLD MODEL

The braneworld models considered in [9] are defined
by the action

S = M3
[

∫

bulk

d5x
√
−g

(

R− 2Λb

)

− 2

∫

brane

d4x
√

−g(4)K
]

+m2

∫

brane

d4x
√

−g(4)
(

R(4) − 2
σ

m2

)

+

∫

brane

d4x
√

−g(4)L, (1)
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where M and m are the five and four dimensional Planck
masses, Λb the bulk cosmological constant and σ the
brane tension. The Friedmann equation of the loitering
brane world model is [9]:

(H(z)

H0

)2

= Ωm(1 + z)3 +Ωσ + 2Ωℓ − 2
√

Ωℓ

[

Ωσ +Ωℓ

+Ωm(1 + z)3 +ΩΛ
b
+ΩC(1 + z)4

]1/2

(2)

where

Ωm =
ρ0m

3m2H2
0

, Ωσ =
σ

3m2H022
, Ωℓ =

1

l2H2
0

ΩΛ
b
= − Λb

6H2
0

, ΩC = − C

a40H
2
0

. (3)

The ΩC term is the dark radiation energy density aris-
ing from the brane-bulk interaction. The condition for a
spatially flat universe is

Ωσ = 1− Ωm + 2
√

Ωℓ

√

1 + ΩΛ
b
+ΩC. (4)

Late time acceleration occurs at the critical length
scale corresponding to the present horizon scale, i.e.,
l = 2m2/M3 ∼ H−1

0 , which sets Ωℓ ∼ O(1). Since
ΩΛ

b
corresponds to the five-dimensional bulk cosmolog-

ical constant, it can naturally have a much larger value
than the other parameters that correspond to quantities
on the brane, ΩΛ

b
≫ Ωm, ΩC, Ωℓ. Hence, at high red-

shifts, z >∼ 10, at which loitering occurs, we can well
approximate Eq. (2) by:

(H(z)

H0

)2

≈ Ωm(1 + z)3 + 2
√

ΩℓΩΛ
b

−2
√

Ωℓ

(

ΩΛ
b
+ΩC(1 + z)4

)1/2

. (5)

Note that this is somewhat different what was consid-
ered in [9] where they also drop the ΩΛ

b
term inside the

last square root. However, using the example parameter
values given in [9], one sees that this is not well justified.
As discussed in [9], the Friedmann equation can ex-

hibit different behavior depending on the values of the
parameters. Here we are interested in loitering behavior
with respect to the ΛCDM model and hence instead of
H(z), we consider X(z) ≡ H/HΛCDM. This function has
a well defined minimum for parameter values for which
the interpretation of H(z) is not as straightforward (see
Fig. 1 in [9]).
We can now unambiguously define the loitering red-

shift asX ′(zloit) = 0. In the high redshift approximation,
one finds that

1 + zloit =
(

3
ΩΛ

b

ΩC

)1/4

. (6)

Positivity at this minimum point, H2(zloit) > 0, gives us
a condition on ΩΛ

b
:

ΩΛ
b
>

24

33
Ω2

ℓΩ
3
C

Ω4
m

. (7)

Within the high loitering redshift approximation, it is
then clear that for a given loitering redshift, zloit, ΩC is
constrained by

3
ΩΛ

b

(1 + zloit)4
< ΩC < (

33Ω4
m

24Ω2
ℓ

ΩΛ
b
)1/3, (8)

indicating that both ΩC and ΩΛ
b
have a maximum value

for a given zloit.

III. CONSTRAINTS ON BRANEWORLD

LOITERING

The CMB shift parameter determines the shift of the
peaks in the CMB power spectrum when cosmological
parameters are varied [14, 15, 16]. It is given by

R =
√

ΩmH0r(zdec), (9)

where r(z) =
∫ z

0
dz/H(z) is the comoving distance in a

flat universe, and zdec is the redshift at decoupling. This
expression is derived in the ΛCDM model, and depends
on the ratio between the sound horizon at decoupling
and the angular diameter distance to zdec. We can apply
it straightforwardly in our case also, since the only way
equation (9) could be radically changed is if the sound
horizon were to change significantly in the brane world
models conidered here, and we have checked that this
is not the case. Observationally, from WMAP we have
zdec = 1088+1

−2, and Robs = 1.716± 0.062 [13].
The WMAP constraint on R places severe constraints

on loitering models. We have run a grid of models, fix-
ing Ωm = 0.3, Ωl = 3.0, and allowing ΩΛb

and ΩC

to vary. We compute R from Eq. (9), and compute
χ2 = (R−Robs)

2/σ2
R
, where σR = 0.062. The resulting

contours are shown in Fig. 1. They effectively rule out
any significant amount of loitering. For example, picking
a model along the 68 % contour, one finds that deviations
from the standard ΛCDM behavior are tiny. In figure
1 we have also plotted contours of constant increase in
age at z = 6 for the loitering model compared with the
ΛCDM model, in units of Gyr. The age of the ΛCDM
model at z = 6 is 0.92 Gyr for Ωm = 0.3, h = 0.7. Only
a modest increase in age is allowed, a change of 0.3 Gyr
being ruled out at more than 99% confidence.
One can also quantify the amount of loitering allowed

by considering how structures grow in the braneworld
model considered here, compared to the ΛCDM model.
The linear growth factor, D, is given by

D̈ + 2HḊ− 3

2

Ωm

a3
D = 0 (10)

and it is easy to see that in the Einstein de Sitter-case,
a simple growing solution exists, D ∼ a. We have
calculated how the linear growth factor evolves in the
braneworld model for different values of the parameters
and compared it to the value in the ΛCDM model. The
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FIG. 1: Confidence contours (68(darkest), 95 and 99(lightest)
%) imposed by the CMB shift parameter on the parameters
ΩΛb

and ΩC. Also shown are lines of constant increase in age
at z = 6 compared with the ΛCDM model: ∆t = 0.05 (solid),
0.1 (dotted), 0.3 (dashed) Gyr.

results are shown in Fig. 2 for z = 6. As a reference,
for ΩC = 8.0, ΩΛ

b
= 4.5 × 105 considered in [9] (and

clearly ruled out by the shift parameter) for which H(z)
has a clear loitering phase at z ∼ 20, one finds that
D/DΛCDM (z = 6) ≈ 42. From the figure one sees that
within the 99% region, with zloit = 20, the linear growth
factor can only be about twice the value of that in the
ΛCDM model.

IV. LOITERING IN GENERAL

The constraints found in the previous section are eas-
ily understood to arise from the fact that if the Hubble
parameter is decreased compared to ΛCDM at high red-
shifts, the comoving distance to the last scattering sur-
face is increased. Thus, the conclusion that loitering is
effectively constrained by the CMB shift parameter is not
specific to the braneworld model, and can be generalized
as shown in the following.
What makes a loitering phase attractive, is the fact

that H(z) is less than the Hubble parameter in ΛCDM
during loitering, so that the universe can spend more
time at high redshifts. In order to quantify this ef-
fect, we model the loitering phase by having a Hub-
ble parameter that reduced by a factor 0 < α < 1
compared with its ΛCDM value in an interval z1 <
z < z2, where z2 < zdec. Then the time the universe
spends between z1 and z2 is increased by a factor 1/α,
since t(z1) − t(z2) =

∫ z2
z1

dz/((1 + z)H(z)). The corre-

FIG. 2: The loitering redshift zloit = 10, 15, 20 (dashed
lines, left to right), relative linear growth factor at z = 6,
D/DΛ = 1.5, 2.0, 2.5 (solid lines, bottom to top) and the
shift parameter confidence regions (in gray) for different val-
ues of (ΩΛb

,ΩC). Also shown is the excluded region where
H(zloit)

2 < 0.

sponding change in the comoving distance to the last
scattering surface compared with the ΛCDM model is
(1/α − 1)

∫ z2
z1

dz/HΛCDM(z), and so the change in the

shift parameter is

∆R =
√

ΩmH0

(

1

α
− 1

)
∫ z2

z1

dz
√

Ωm(1 + z)3 + (1 − Ωm)
.

(11)
In Fig. 3, where we show the result of fitting the param-
eters α and β ≡ z2 − z1 to the CMB shift parameter.
The upper panel shows the likelihood contours for a dip
in the Hubble parameter which starts at a redshift of 10,
and in the lower panel the dip starts at a redshift of 500.
As can be seen from the figure, one can have either a
substantial dip (α → 0) over a very small redshift inter-
val (β ≈ 0), or a small dip (α ≈ 1) over a large redshift
interval (β >> 1). In both cases, the age of the Universe
at z = 6 increases marginally.
In fact, we can be even more general and consider that

the Hubble parameter is some H(z) for z1 < z < z2, and
equal to the Hubble parameter of ΛCDM at all other
redshifts. Assuming z1 < z2 < zdec, the change in the
age compared to the pure ΛCDM model is

∆t(z1) =

∫ z2

z1

dz

1 + z

( 1

H(z)
− 1

HΛCDM(z)
.
)

(12)

Since 1/(1 + z) ≤ 1/(1 + z1), we have

∆t(z1) <
1

z1 + 1
Ω−1/2

m H−1
0 ∆R. (13)
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FIG. 3: (Colour online only) 68, 95 and 99 percent confidence
contours imposed by the CMB shift parameter on the param-
eters α and β for z1 = 10 (upper panel) and z1 = 500 (lower
panel). The ΛCDM model corresponds to the lines α = 1 or
β = 0

For example, for z1 = 6, with h = 0.7, Ωm = 0.3, ∆R =
0.062, this gives the upper limit

∆t(z = 6) < 0.22 Gyr. (14)

In terms of the linear growth factor, general constraints
are not as straightforward to derive as now the exact
features of the loitering phase play a crucial role. The
linear growth rate in terms of the scale factor with H =
XHΛCDM is

D′′+
(3

a
+
H ′

ΛCDM

HΛCDM
+
X ′

X

)

D′− 3

2

H2
0

H2
ΛCDM

Ωm

a5
1

X2
D = 0,

(15)

where ′ ≡ d/da. Since loitering occurs at high redshifts,
we can well approximate H2

ΛCDM ≈ H2
EdS = H2

0Ωm/a3.
Approximating the loitering phase by X(z) ≈ X0 one
finds that during this phase, D ∼ aβ , with β = (−1 +
√

24/X2
0 + 1)/4. For X0 < 1, i.e. when the universe is

loitering, β is larger than one indicating faster growth
than in the ΛCDM (EdS) model. Quantifying the effect
requires detailed knowledge about the loitering phase,
making the age constraint, Eq. (14), a more robust con-
straint on any flat loitering model.

V. CONCLUSIONS

We have considered flat loitering universe models, both
in the specific context of braneworld scenarios, and in
general. While increasing the time the universe spends
at high redshifts and enhancing the linear growth factor
might have desirable consequences for, e.g., modeling of
the quasar population, modifications of the behavior of
the Hubble parameter at high redshifts lead to changing
the size of the sound horizon at recombination. As this
quantity is well measured by the position of the peaks in
the CMB angular power spectrum, only a modest change
is possible. Hence, a substantial increase in the age or
linear growth factor at, say, z = 6 are not allowed. Only
a modest increase in both quantities is possible, indicat-
ing that if a much older universe (or enhanced growth
factor)is needed to accommodate observations, another
new cosmological scenario is required.
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