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Abstract

We use action-angle variables to describe the basic physics of coherent scalar field oscillations

in the expanding universe. These analytical mechanics methods have some advantages, like the

identification of adiabatic invariants. As an application, we show some instances of potentials

leading to equations of state with p < −ρ/3, thus contributing to the dark energy that causes the

observed acceleration of the universe.
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I. INTRODUCTION

The standard model of cosmology assumes the Friedmann-Robertson-Walker metric

ds2 = −dt2 +R2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(1)

corresponding to an homogeneous and isotropic universe. Here k is the curvature signature

and R is the expansion factor, whose time change is given by the Friedmann equation

H2 ≡
(
Ṙ

R

)2

=
8πG

3
ρT − k

R2
. (2)

We have written the equation in such a way that the cosmological constant is included in

the total energy density ρT .

There are different contributions to ρT . Matter and radiation are among them. They can

be introduced as a fluid with pressure proportional to the energy density, p = wρ; w = 0

corresponds to matter and w = 1/3 to radiation. Recent results coming from high-redshift

supernovae [1], cosmic background radiation [2], and galaxy survey [3] suggest contributions

with w ≈ −1. This is the so-called dark energy that leads to the present acceleration of

the universe. This acceleration may be produced by a cosmological constant, since it has

an equation of state with w = −1. However, there might be other causes, like quintessence

[4], cardassian expansion [5], etc. Of course, there might be several components building up

dark energy.

In this paper, we would like to discuss some aspects of the contribution to the energy

density of coherent scalar field oscillations in a potential. The physics of such oscillations

was analyzed in a pioneer work by Turner [6]. The purpose of our paper is the following.

First, in Sect.II, we find the analytical form of the field oscillations in a couple of interesting

cases. In Sect.III, we treat the general case and derive relevant physical results using the

action and angle variables of analytical mechanics [7]. We find this language very useful,

particularly when an adiabatic change of the potential is present. Another objective of

our paper is to show that scalar field oscillations may contribute to the dark energy of the

universe. We do this in Sect.IV, where we present some instances of potentials leading to

an accelerated universe.
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II. ANALYTICAL SOLUTIONS FOR SCALAR FIELD OSCILLATIONS

A classical scalar field in a potential has the Lagrangian density

L = −1

2
∂µφ ∂µφ− V (φ). (3)

In the metric (1), and considering spatially homogeneous configurations, the equation of

motion for the field is

φ̈+ 3Hφ̇+ V ′(φ) = 0. (4)

Here dot means time-derivative and prime means d/dφ.

In this section we concentrate on two particular potentials, V ∼ φ2 and V ∼ φ4, where

one can find analytical solutions. While the solution for the harmonic potential is in the

literature [8], the solution we find for φ4 is new, as far as we know.

For the quadratic potential

V =
1

2
m2φ2 (5)

we have harmonic oscillations, φ(t) = A sin(mt + ϕ), in the case H = 0.

When H 6= 0, but in the case H ≪ m and Ḣ/H ≪ m, we expect a time dependent

amplitude and, perhaps, a different frequency. We make the following ansatz

φ̃(t) = A(t) sin(λmt+ ϕ). (6)

We find λ = 1 and the following equation

Ȧ = −3

2
HA. (7)

The energy density ρ corresponding to φ̃ evolves as

ρ ∝ A2 ∝ R−3 (8)

where in the last proportionality we have used the solution of (7). This corresponds to the

behavior of non-relativistic matter in the expanding universe.

The second potential to be solved is

V =
1

2
m2φ4. (9)

We shall work in complete analogy with the previous example. We first find the solution to

(4) for H = 0, which is

φ(t) = B sn(Bmt + ϕ) (10)
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where sn is the Jacobi elliptic function sn(Bmt + ϕ,−1) [9].

For H 6= 0 we choose an ansatz of the form

φ̃(t) = B(t)sn(B(t)λmt + ϕ). (11)

The calculus here is more complicated than in the previous example, when introducing (11)

in (4). We obtain a differential equation for the evolution of the amplitude B:

d2(Bt)3

dt2
+

(
3H − 2

t

)
d(Bt)3

dt
= 0. (12)

This equation can be easily solved for the usual form H = c t−1, where the value of the

constant c depends on which kind of energy dominates the universe (c = 1/2 for a radiation-

dominated universe and c = 2/3 for a matter-dominated one). From (12) we obtain

d(Bt)3

dt
∝ t2−3c (13)

that gives

B ∝ t−c. (14)

Since we are assuming H = ct−1, which gives R ∝ tc, we conclude that, for any value of c,

B ∝ R−1. (15)

Also, we get an equation for λ, which now depends on the relative variation of B

λ =

(
1 +

Ḃ

B
t

)
−1

=
1

1− c
(16)

where in the last equality we took into account (14).

The energy density in this case is given by

ρ =
1

2
(
˙̃
φ)2 +

1

2
m2(φ̃)4 =

1

2
m2B4 (17)

where we have used properties of the Jacobi elliptic functions [9]. Thus, taking into account

(15), we have

ρ ∝ B4 ∝ R−4. (18)

This type of R-dependence corresponds to a fluid of relativistic particles, or equivalently, to

radiation. The form of the oscillations in a φ4 potential with small friction H was also found

in [10], in the context of preheating after inflation. The method used in [10] was to make
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a conformal transformation of the space-time metric and the fields, as well as a number

of re-scalings. Even if we get the same final results, we present our method because it is

somewhat simpler.

The two examples discussed here are particular cases in which it is possible to analytically

solve the equation of motion that describes the oscillations of the field φ in the expanding

universe. For other potentials that can be considered, it might be impossible to find an-

alytical solutions to (4), so the method applied before might not succeed in obtaining the

dependence of the energy density ρ on the scale factor R. For this purpose, one needs to

find another method, in which the evolution of ρ(R) can be obtained without necessity of

solving the equation of motion (4). This is what we develop in the next section.

III. ACTION-ANGLE FORMALISM

We are concerned with the oscillations of the φ-field about some minimum of the potential,

but we shall not restrict to the case that the oscillation amplitude is small. Thus, we are

faced with a system with a periodic motion, whose details might be complicated. Often, we

are not specially interested in these details, but rather in the frequencies of the oscillations,

the contribution to the energy density, etc. A method of analytical mechanics tailored for

such a situation is provided by the use of action-angle variables.

As before, it is convenient to start with H = 0 in (4); we have then a conservative system

with hamiltonian density H

H(φ,Π) =
1

2
Π2 + V (φ) ≡ ρ (19)

with the momentum Π = φ̇ and energy density ρ. When having a periodic motion, one

introduces [7] the action variable

J ≡
∮

Π dφ (20)

where the integration is over a complete period of oscillation. Using Π =
√
2(ρ− V ) from

(19), J can be written as

J = 2

∫ φmax

φmin

√
2(ρ− V )dφ (21)

where φmin and φmax are the return points, V (φmin) = V (φmax) = ρ. J is chosen as the new

(conserved) momentum in the integration of the Hamilton-Jacobi equation. The generating
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function given by the abbreviated action

W =

∫
Πdφ (22)

allows to canonically transform (φ,Π) into (α, J), with the angle variable defined by

α =
∂W

∂J
. (23)

Since W does not explicitly depend on time, the new hamiltonian H̄ coincides with the old

one H = ρ. The energy ρ is only a function of J , which amounts to say that α is cyclic and

J is constant

J̇ = −∂H̄
∂α

= 0. (24)

The other Hamilton equation is

α̇ =
∂H̄(J)

∂J
≡ ν, (25)

with ν = ν(J) constant. We can integrate (25) to obtain

α(t) = νt+ α(0) (26)

and in a complete period, α(τ) = α(0). In this way, we identify ν in (25) with the frequency

of the motion:

ν =
1

τ
=

dρ

dJ
. (27)

Until here, we have reminded ourselves of the standard approach that uses action-angle

variables to find the frequency [7].

The realistic case of the expanding universe, with H 6= 0, can be treated with the same

method, provided H and Ḣ/H are small compared to the frequency of the φ oscillations,

that is to say,

H ≪ ν ; Ḣ/H ≪ ν. (28)

Notice that for the usual form H = ct−1, Ḣ/H ∼ H so that the two conditions in (28) are

actually the same. The conditions (28) ensure that the motion is almost periodic, and that

it makes sense averaging over one cycle. The H-term in (4) represents a time-dependent

friction, so we expect energy to decrease; however, we are assuming this friction small enough

so that we can consider the energy constant in one-cycle period.
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We still define J as in (20) and (21), and also the energy density ρ as in (19). The

decrease rate of ρ can be obtained rewriting the equation of motion (4),

dρ

dt
= −3Hφ̇2. (29)

When averaging the r.h.s. over one cycle, we can take H out of the average, 〈Hφ̇2〉 ≃ H〈φ̇2〉.
The average of φ̇2 is related to J :

〈φ̇2〉 = 1
τ

∮
Πφ̇ dt

= 1
τ

∮
Πdφ = 1

τ
J

(30)

(this is essentially the virial theorem). Thus,

〈φ̇2〉 = dρ

dJ
J. (31)

With the help of (31), (29) reads
1

J

dJ

dt
= −3H. (32)

What is remarkable about this equation is that the change in the action variable J is

independent of the form and details of V . The equation can be readily integrated to show

that J dilutes as a volume in an expanding universe

J ∝ R−3. (33)

Eqs.(32) and (33) are one of our main results. To find more, we notice that the pressure can

also be averaged in one oscillation period,

p = 〈1
2
φ̇2〉 − 〈V 〉 = 〈φ̇2〉 − ρ = wρ. (34)

To calculate w, we first use (31) and get

w =
J

ρ

1

dJ/dρ
− 1 (35)

and, introducing (21), we finally obtain

w =
2

ρ

∫ φmax

φmin

(ρ− V )1/2dφ
∫ φmax

φmin

(ρ− V )−1/2dφ
− 1. (36)

Eq.(36) coincides with the corresponding expression in Ref.[6], where another formalism was

used.

7



There is another useful relation that can be easily obtained using our formalism. When-

ever w is constant, we can integrate (35) to obtain

ρ ∝ Jw+1. (37)

Then, making use of (33), we get the well-known relation

ρ ∝ R−3(w+1). (38)

As an example, let us apply the method described above for the following power-law

potential

V = aφn (39)

for which the action variable can be exactly calculated

J =
4
√
2π Γ

(
1
n

)

(n + 2)Γ
(
1
2
+ 1

n

)√ρ
(ρ
a

)1/n
. (40)

Using (27), we get the frequency of the motion

ν =
nΓ
(
1
2
+ 1

n

)

2
√
2π Γ

(
1
n

)√ρ
(ρ
a

)
−1/n

(41)

and using (35), we get the parameter w

w =
n− 2

n+ 2
. (42)

Let us show that these results coincide with what we obtained in Sect.II. For n = 2, we get

from (42) that w = 0, which corresponds to the equation of state for non-relativistic matter,

p = 0. Equivalently, from eq.(38), we obtain that

ρ ∝ R−3 (43)

which is the same as (8). Still for the harmonic potential, n = 2, taking a = 1
2
m2, we can

calculate J by making use of (40)

J = 2π
ρ

m
(44)

which is nothing else than the number density of particles of mass m, except the factor of 2π.

We now see that, in this case, (33) is equivalent to assert that the number density decreases

as R−3 in an expanding universe.
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For n = 4, (42) gives w = 1/3, and (38) gives ρ ∝ R−4 which coincides with (18) and

corresponds to the equation of state for relativistic matter.

As expected, we have recovered the same results of Sect.II without the need to solve the

equation of motion, eq(4). For this reason, the action-angle formalism will allow us to study

more general cases of potentials for which there is no analytical solution to (4). This is what

we will do in the next section.

As another application of the action-angle variables, we discuss the issue of adiabatic

invariants. When a parameter a of the potential changes with time slowly compared with

the natural frequency of the system,
ȧ

a
≪ ν, (45)

we say it changes adiabatically. When there is such an explicit time change in the potential,

W in (22) depends on time, and H̄ and ρ do not coincide any longer

H̄ = ρ+
∂W

∂t
= ρ+W,aȧ (46)

where the derivative W,a ≡ ∂W/∂a is taken at constant J . Instead of (32), we now have

J̇ = −3HJ − 〈∂H̄/∂α〉
= −3HJ − 〈(∂W,a/∂α)ȧ〉.

(47)

When averaging this identity, due to (45), we can consider ȧ as constant during a cycle, i.e.,

〈(∂W,a/∂α)ȧ〉 ≃ 〈(∂W,a/∂α)〉ȧ. The average 〈∂W,a/∂α〉 vanishes, since W,a is a periodic

function of α. It follows that

J̇ = −3HJ, (48)

namely, eqs.(32) and (33) are still valid, although we stress that V is changing with time.

For H = 0, the system is conservative and we have J̇ = 0, i.e., J is identified with an

adiabatic invariant [7].

An instance where we can apply these results is the invisible axion model. In this model

we have a time-dependent axion mass, m = ma(t) in (5). Even if ρ(t) and ma(t) are

complicated functions of time, we conclude after our study that, provided the change is

adiabatic, the combination
J

2π
=

ρ(t)

ma(t)
∝ R−3 (49)

behaves as the axion number density. This behavior is what is expected on general grounds.

This result was derived in [8] when calculating the relic axion density. What we have done
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in the present paper is a kind of generalization of (49), that may be applied when having

other potentials and/or other types of adiabatic change.

IV. DARK ENERGY FROM FIELD OSCILLATIONS

In the standard model of cosmology, besides eq.(2), there is another equation that one

can get from Einstein equations. It can be put in the form

R̈

R
= −4πG

3
(ρ+ 3p). (50)

For the simple equation of state p = wρ, we see that w < −1/3 leads to an accelerated

universe. We will show in this section that such values of w can be obtained from an

oscillating scalar field whose energy density dominates. An application based on this idea

in the context of inflation was developed by Damour and Mukhanov in [11] (see also [12]).

In order to check whether a given potential may lead to acceleration, we will calculate

w using the expression (35), that involves an average over one cicle [16]. The value of w

depends on the form of the potential and on the return values φmax and φmin. In turn, these

change with time due to the friction produced by the expansion of the universe, so that, in

general, w depends on time.

A remarkable exception to this dependence on the return values is given by the power-

law potential (39). As shown in (42), w only depends on the power n. For integer n, we

do not have oscillations neither for n = 0, nor for n = 1. The potential V = aφ2 leads

to oscillations that correspond to non-relativistic matter with w = 0. The next potential

leading to oscillations is V = aφ4, that we saw it implies w = 1/3. Higher values of the

power n lead to higher values for w. No integer value of n, leading to oscillations, can

correspond to a fluid with w < −1/3 [17].

In order to have smaller w values, one clearly needs a field φ that, even oscillating, has

a slow-roll for enough time. To illustrate that this is possible, we shall investigate a few

potentials. In all of them, we shall put the center of the oscillations at φ = 0. In addition,

we will work with symmetric potentials, so that −φmin = φmax ≡ φ0.

Let us start with the ”Mexican hat” potential shown in Fig.1,

V1(φ) = λ1(φ
2 − v21)

2 (51)
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with λ1 a coupling and v1 an energy scale. We consider φ0 >
√
2v1, to have oscillations

around φ = 0. The parameter w, calculated numerically, is a function of φ0/v1 and it is

displayed in Fig.2. We see that when φ0 is close enough to
√
2v1, we have values w < −1/3.

However, an unsatisfactory feature is that one has to tune the return value φ0.

A potential that does not have this fine-tuning problem is given by

V2(φ) =
v′2

4φ2

φ2 + v22
(52)

(see Fig.3). Here, v2 and v′2 are energy scales. The values of w are shown in Fig.4, where

we see that w < −1/3 for φ0 > 1.2 v2. To get the observed acceleration of the universe, we

should have v′2 ≃ 2 × 10−3 eV, as expected. Notice that in the past, field oscillations give

w ≃ −1 always. As happens in the case of a cosmological constant, the contribution we

are discussing was subdominant in the past, as soon as non-relativistic matter enters in the

stage and dominates.

One could find other potentials giving acceleration. One such example was discussed in

[11]. There, the objective was to get first slow-roll inflation and, after, oscillations provoking

further inflation. In contrast to [11], we work in the period of dark energy domination and

we would like to know the future of the universe. We see in Fig.4 that the oscillations will

end up giving w = 0, i.e., being harmonic and consequently matter dominated.

One may think that for all potentials, when the field is close enough to the minimum,

one ends with the usual harmonic potential (5) that well approximates oscillations around

the minimum, so that one obtains w = 0. We would like to point out that there is at least

one exception. Consider the potential

V3(φ) = v′3
4
e−v2

3
/φ2

(53)

with v3 and v′3 some energy scales (see Fig.5). An inspection to the potential shows that

for φ0 large enough, we should have w < −1/3. We have calculated w and our results are

shown in Fig.6. Indeed, we see that w < −1/3 for φ0 > 1.8 v3. For smaller values of φ0,

higher values of w are obtained. We notice that in the limit φ0/v3 → 0 the value w = 0 is

not obtained, but rather w = 1. This corresponds to a fluid with p = ρ. The reason for this

very particular behavior is the well-known fact that V3(φ) in (53) can not be developed in a

Taylor-Maclaurin series around φ = 0. Again we should check that V3 is consistent with the

observational constraints. With v′3 ≃ 2× 10−3 eV the oscillations fit the acceleration. Also,
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for early times w ≃ −1 so that the oscillations do not contradict the observed evolution of

the universe.

Let us finally address the requirement that dark energy should have very homogeneous

density, with spatial irregularities rearranging at an effective relativistic speed of sound cs,

given by

c2s =
dp

dρ
(54)

In the main spirit of our paper, we should point out that (54) can be calculated following the

technique of action-angle variables. This allows to find cs without reference to the details of

the solution to the equation of motion of the field. The way we do it is through the equation

c2s =
d(wρ)

dρ
=

ρdw/dφ0

dρ/dφ0

+ w =
V0dw/dφ0

dV0/dφ0

+ w (55)

where V0 ≡ V (φ0) = ρ and w was found in (35) or (36).

As a check, we have calculated the integrals (55) for the potential (5) and obtained c2s ≃ 0,

as expected. The implications of a scalar field with the potential (5) when it dominates the

energy density of the universe have been fully investigated in ref.[15]. Here we do not

pretend to do such a complete study for the potentials of Sect.IV since our emphasis is in

the techniques developed in Sect.III. Let us point out, however, that in fact we find that

for the potentials (51), (52) and (53), c2s is near zero or even negative, which indicates that

collapse at small scales would happen or even would lead to dangerous instabilities.

It is not difficult, however, to find potentials giving w ≤ −1/3 and c2s ≃ 1. One example

is

V4(φ) = v′44
φ2

v24 + φ2
+

1

4
λφ4 (56)

We have verified that w from (36) and c2s from (55) for the potential V4 in (56) have the

expected values for a dark energy contribution, for a suitable range for the potential free

parameters.
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FIG. 1: ”Mexican hat” potential V1 defined in (51).
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FIG. 2: w as a function of the amplitude φ0 of the oscillations in the potential V1. The dashed line

indicates w < −1/3.
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FIG. 3: The shape of the potential V2 defined in (52).
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FIG. 4: w as a function of the amplitude φ0 of the oscillations in the potential V2. The dashed line

indicates w < −1/3.
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FIG. 5: The shape of the potential V3 defined in (53).
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FIG. 6: w as a function of the amplitude φ0 of the oscillations in the potential V3. The dashed line

indicates w < −1/3.
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