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Testing Dark Energy and Light Particles via Black Hole Evaporation at Colliders
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We show that collider experiments have the potential to exclude a light scalar field as well as
generic models of modified gravity as dark energy candidates. Our mechanism uses the spectrum
radiated by black holes and can equally well be applied to determine the number of light degrees
of freedom. We obtain the grey body factors for massive scalar particles and calculate the total
emissivity. While the Large Hadron Collider (LHC) may not get to the desired accuracy, the
measurement is within reach of next generation colliders.
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Observations indicate that our universe is in a phase
of accelerated expansion [1, 2, 3]. Some mysterious dark
energy seems to drive this acceleration. Revealing its
true nature will likely entail a breakthrough in funda-
mental physics. One explanation is Einstein’s cosmolog-
ical constant [4]. It describes observations well, but is
plagued by an enormous fine tuning problem: Quantum
Field Theory generically yields a 10120 times larger value.
Scalar field dark energy cosmologies addressing this is-
sue [5, 6, 7] have been under investigation for more than
a decade. Currently, observations only provide bounds
[8, 9] on the evolution of such an (effective [10, 11]) scalar
field. In addition, it may well be that the field evolution
closely mimics that of a cosmological constant in the late
universe. For years to come, astrophysical and cosmo-
logical tests may not be able to settle the issue [8, 12]
and perhaps may never be. Tabletop experiments can-
not be used to measure the vacuum energy [13, 14] and
hence provide no clue to the true nature of dark energy.
Likewise, direct detection of a scalar dark energy field is
next to impossible if the interaction strength of the field
is at the gravitational level and no detectable violation of
the equivalence principle is induced [15, 16, 17, 18, 19].
Using the cooling of an ordinary black body provides no
solution either: even though the cooling rate is propor-
tional to the number of degrees of freedom, scalar dark
energy couples too weakly to reach thermal equilibrium
and radiate.

Here, we propose a measurement with the potential to
exclude all scalar dark energy as well as modified gravity
models. Our test is based on the prediction that black
holes may be produced at colliders, provided there are
extra dimensions. By studying the Hawking evapora-
tion of such black holes, it will be possible to count the
number of light degrees of freedom – including a scalar
dark energy field if it exists. Our test uses that a scalar
dark energy field has particle-like excitations with very
small mass. A genuine cosmological constant is devoid
of such excitations. Thermodynamically the scalar field
excitation adds a degree of freedom. To first approxi-
mation, radiation leaving a black hole resembles a black
body spectrum composed of all effective degrees of free-
dom. The Hawking temperature [20] corresponding to
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FIG. 1: Total emissivity of a scalar particle as a function of
particle massm over temperature TH of a black hole with mass
MH ≫ m. The total emissivity is obtained by integrating
Equation (2) over energy ω and using grey body factors for
massive particles (see Equation (3)). We have normalized
such that a massless scalar corresponds to unity both for n =
1 dashed (blue) line and n = 7 dashed-dotted (red) line. The
normalization for n = 7 (and hence the un-scaled emissivity)
is ∼ 136 times larger than that for n = 1. For comparison we
show the result for a perfect black body (solid black line).

this spectrum is given by [21]
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Here, the dimensionality of space-time is n + 4, the
Schwarzschild radius is rH, the black hole has mass MH

and the 4 + n-dimensional Planck mass M⋆ is related to
the Newtonian constant by Gn+4 = M−(n+2)

⋆ . As the
radiation originates from gravitational interactions it is
universal for all particles, including a scalar dark energy
field (which is at least minimally coupled to gravity).
So suppose we knew (for details see below) the mass of

a black hole generated in a collision and also the dimen-
sionality of space-time. Suppose that we further knew the
particle content that can be efficiently radiated away by
the black hole. From the energy deposited into the detec-
tors and the theoretically predicted emission of particles
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that leave undetected (such as neutrinos), we can1 sum
up and compare to the known mass of the black hole.
A scalar dark energy field will be excluded if there is no
energy missing.

Unfortunately, astrophysical black holes in four
dimensional space-time have temperatures TH ∼
62M⊙/MH nK, that are too low to emit detectable radia-
tion. This and the (luckily) inconveniently large distance
to the next black hole make a measurement prohibitively
difficult.

The way out are black holes with temperatures
0.1 eV . TH . 100GeV. Here, the lower limit en-
sures sufficient emission, while the upper bound keeps
the effect in an energy range where our understanding
of existing particle species is good. If the accelerator
energy is comparable to the fundamental Planck mass
M⋆ in higher dimensional theories [22], such black holes
will be produced [23, 24, 25]. In theories with extra di-
mensions, all standard model particles except for gravi-
tons are confined to a four dimensional membrane (sim-
ply called ’brane’) embedded in a higher dimensional
’bulk’ space-time. As the size l . 1mm of these extra
dimensions may be much larger than the typical scale
lP ∼ 1/MP ∼ 10−32mm of our four dimensional theory,
MP ∼ M2+n

⋆ ln can substantially exceed M⋆. For n ≥ 5
higher dimensional Planck masses as low as M⋆ ∼ TeV
are allowed by current constraints [21]. For lower dimen-
sions the constraints are stronger. Roughly speaking, a
black hole forms when some energy E ∼ MH is concen-
trated within a radius rH. Hence the production cross
section is σ ∼ πr2H, where rH is inferred from the cen-
ter of mass energy plugged into Equation (1). Due to
the smaller fundamental Planck scale M⋆, higher dimen-
sional black holes are larger (and cooler) than their four
dimensional counterparts. This substantially increases
the cross section and black holes may be formed at rea-
sonable rate at LHC [26, 27, 28] or by interactions of
cosmic rays with our atmosphere [29, 30, 31, 32]

Inserting M⋆ = 1TeV and MH = 10TeV into Equation
(1) we find temperature in the range 55GeV− 580GeV
for n = 1 − 7. As seen in Figure 1, a particle can only
contribute efficiently to the evaporation for as long as
its mass m . TH. So for our purpose, temperatures
TH . 580GeV are quite agréable, in particular since fu-
ture colliders may improve our knowledge of particles up
to ∼ TeV. More massive black holes are still preferable
since they are cooler, emit more particles and are less
subject to quantum gravity effects.

The emission rate for one species is described by [33]

Ė(s)(ω) =
∑

j

σ
(s)
j,n(ω, rH)

ω

exp( ω
TH

)± 1

dn+3k

(2π)n+3
. (2)

1 This is only simple in a Gedankenexperiment. In reality the task

might be a challenge to even the finest experimental physicists.

Here s and j are spin and angular momentum of the
emitted particle, ω =

√
m2 + k2 is the energy and σ is

the grey body factor [34, 35]. In the case of a black
body, σ is the area of the emitter. For black holes, it is
a function of the frequency of the emitted particle which
depends on the state of the black hole and in particular on
the particles mass and angular momentum. Essentially,
σ incorporates that a particle emitted at the horizon may
be reflected back into the black hole due to the non-trivial
interaction with the black hole. We have extended the
calculation of [33] to incorporate scalar particles of mass
m. For these, the Klein-Gordon equation in the induced
black hole metric becomes

d2R(r)

dr2
= −

(

2

r
+

d ln[h(r)]

dr

)

dR(r)

dr

+R(r)

(
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h
−

ω2

h2
+

λ

hr2

)

, (3)

which is to be compared to Equation (3.3) in [33]. We
have numerically integrated (3) to obtain the transmis-
sion coefficients and grey body factors along the lines of
[33]. For the massless case presented in [33], our results
are in perfect agreement (i.e. we reproduced Figure 1 of
[33]).

Although it seems like a complication the dependence
of the grey body factors on the properties of the black
hole is quite useful. In particular, it can be used to de-
termine the number of extra dimensions [33] via the ratio
of the energies emitted into particles with different spin,
i.e. scalars, gauge bosons and fermions.

Standard model particles and the dark energy scalar
live on the brane (of course, the dark energy scalar might
also live in the bulk). For these, one sets n = 0 in the in-
tegration measure of Equation (2), whereas bulk scalars
and gravitons command the full 4+n dimensional phase
space. This does not lead to a drastic enhancement of
radiation into the bulk [25, 33]. Indeed, the emitted en-
ergy per degree of freedom for bulk fields is comparable to
those on the brane. There are, however (n+3)(n+2)/2−1
graviton polarization states which for n = 7 yields a sub-
stantial number of 44 states (see also Figure 2).

The higher dimensional Planck mass can be deter-
mined from the production cross section of gravitons in
collisions where no black hole is formed [36]. As the grey
body factors depend on the number of extra dimensions,
we can furthermore infer n from the relative abundances
[33] of particles with different spin. Measuring the spec-
trum of particles emitted and using Equations (1) and
(2) one can infer the radius, temperature and mass of
the black hole.

We define the effectiveness n(x) of some degree of free-
dom x by comparing the emission rate into channel x to
the emission into one massless scalar

n(x)(MH) ≡
∫ Λ

m

dω Ė(x)(ω)

/

∫ MH/2

0

dω Ė(m.s.)(ω). (4)
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Here, the cut-off Λ = min(MH[1 +m2/M2
H]/2,MH) lim-

its the energy of emitted particles and is due to energy-
momentum conservation and finite black hole mass and
Λ ≥ m is understood. Please note that MH de-
creases steadily during evaporation. The number of ef-
fective degrees of freedom is then given by neff(MH) =
∑

x n
(x)(MH). It is not directly observable, as experi-

ments lack resolution to connect particles to their cor-
responding emission times. What we can observe is the
integral over the evaporation process, where the energy
deposited into one massless scalar is

E(m.s.)(Mini.
H ) =

∫ Mini.
H

0

dM

neff(M)
. (5)

Inverting this relation (5) and normalizing to Mini.
H , the

integrated number of degrees of freedom n̄eff(M
ini.
H ) ≡

Mini.
H /E(m.s.)(Mini.

H ) follows. In contrast to neff , we can
measure n̄eff from the total energy E(x) deposited into a

known species x using E(m.s.) = E(x)/
∫Mini.

H

0 n(x)(M) dM
from Equation (4).
If standard model particles and gravitational polariza-

tion states can2 account for n̄eff , a scalar dark energy field
will be ruled out. The same is true for bulk scalars and
weakly interacting brane particles with masses . T ini.

H .
This would leave us with a cosmological constant as the
only explanation for the acceleration of our Universe.
Please note that long distance modifications such as [37]
would also be ruled out as they are equivalent to scalar
field models with light scalars [38, 39, 40].
If, on the other hand we find missing energy which

cannot be accounted for then possible candidates must
have m . T ini.

H . Distinguishing between bulk and brane
fields would then require a high precision measurement
making use of the slightly different emission rates.
Standard model particles contribute roughly one hun-

dred degrees of freedom. In addition, we have (n+3)(n+
2)/2 − 1 gravitational modes. Assuming that the latter
radiate approximately like a scalar field, we see that n̄eff

needs to be determined to better than 0.5% (see also Fig-
ure 2). A recent study of possible black hole decays at
LHC [28] predicts an accuracy for the measurement of the
total energy emitted into known particles of ∼ 30% for a
5TeV and ∼ 15% for a 8TeV black hole (M⋆ = 1TeV).
This is not yet sufficient for our measurement – but

only by two orders of magnitude. Future colliders will
probe higher and higher energies and produce black holes
with ever increasing mass. As more massive black holes
are cooler, they emit a smaller variety of particles with

2 There is one subtlety concerning the still unknown nature of

neutrinos. Dirac neutrinos will effectively contribute twice as

much degrees of freedom as Majorana neutrinos. Turned around

this might also give us a hint about the true nature of neutrinos.

Nevertheless, it is quite likely that the nature of neutrinos can

be inferred from other experiments like, e.g., ones to detect the

neutrinoless double β decay.
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FIG. 2: Degrees of freedom neff (MH) as a function of black
hole mass for n = 7 (solid upper [black] line), n = 3 (solid
middle [red] line) and n = 1 (solid lower [blue] line). The
dashed lines below each solid line are the corresponding in-
tegrated degrees of freedom n̄eff (M

ini.

H ). Experimentally, one
cannot resolve neff , but rather measures n̄eff . Overall, there
are more degrees of freedom for the n = 7 model, because
graviton polarizations contribute 44 states. While the initial
temperature for n = 7 in the mass range depicted is sufficient
to radiate all known degrees of freedom, the initial temper-
ature T ini.

H ∼ 1.7GeV for n = 1 and Mini.

H = 104TeV is too
low to efficiently radiate top and bottom quarks, the Higgs
scalar as well as W and Z bosons. As the black hole evapo-
rates, the mass drops leading to an increase in TH and hence
to an increase in neff until black hole masses MH ∼ 1TeV
are reached. At even smaller masses, neff drops as more
and more particles approach the kinematically allowed cut
off Λ = min(MH[1 +m2/M2

H]/2,MH).

considerably better statistics. Hence, the measurement
proposed is within reach of next generation colliders.
Beside experimental challenges there remain theoreti-

cal problems to be solved. First, the emission of gravity
modes into the bulk must be better understood. More-
over, the data for Figures 1 and 2 was inferred for a
spherically symmetric black hole in semiclassical approx-
imation. Yet, a typical black hole produced in high
energy collisions goes through several phases [26]. Ini-
tially, such a black holes is asymmetric and has non-
vanishing angular momentum as well as charges origi-
nating from the producing particles. In the “balding”
phase it loses quantum numbers and asymmetry inher-
ited from the original collision. During the ”spin down”
phase it radiates away angular momentum. Then it en-
ters the ”Schwarzschild” phase where the black hole is
spherical and our semiclassical considerations are valid.
Finally, it enters the ”Planck” phase where its mass is
∼ M⋆ and quantum gravity effects become important.
So far, only the Schwarzschild phase in which it roughly
deposits ∼ 60% of its energy is well understood. Early
attempts to calculate the ”spin-down” are underway [35].
Conclusions: We have shown how missing energy in

the decay of higher dimensional black holes produced at
colliders may be used to discern the number of light par-
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ticles/fields. In particular, a scalar dark energy field can
be excluded provided all energy radiated away from the
black hole is accounted for by known particles and gravi-
ton polarization states. Counting light degrees of free-
dom could answer additional questions. It might, for
example, reveal the Majorana/Dirac nature of neutrinos.
The proposed measurement is challenging for experimen-

talists and necessitates a better understanding of black
holes produced at colliders. Yet, it may be the one and
only way to rule out a light scalar field or modified grav-
ity as dark energy candidates.
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