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Abstract. We classify the future of the universe for general cosmological models

including matter and dark energy. If the equation of state of dark energy is less then

−1, the age of the universe becomes finite. We compute the rest of the age of the

universe for such universe models. The behaviour of the future growth of matter

density perturbation is also studied. We find that the collapse of spherical overdensity

region is greatly changed if the equation of state of dark energy is less than −1.
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1. Introduction

The Universe is replete with dark energy whose nature is almost completely unknown,

excepting that its “equation of state”, w = p/ρ, is negative. Dark energy determines

the future of the Universe. Recently, there is renewed interest in the future of the

Universe partly because the state of the future of the universe would dramatically be

changed in the presence of dark energy [1, 2]. Moreover, another motivation comes from

the fact that the equation of state of dark energy is being constrained by cosmological

observations [3] and the discovery of a new type of the future singularity with w < −1

dark energy (called phantom [4, 5]): the big rip [6]. This singularity is intriguing because

a spacetime singularity appears even if the weak energy condition (ρ+p ≥ 0) is violated.

The big rip is the singularity where the universe expands so rapidly due to the repulsive

rather than the attractive nature of gravity that both the scale factor and the Hubble

parameter diverge there.

In this paper, including w < −1 dark energy, we classify the future of the universe

and the conformal diagrams for cosmological models with dark matter and dark energy

with general equation of state. We also calculate the remaining age of the Universe if

the age is finite. We also investigate the future evolution of matter density perturbation

in the universe with dark energy.

Throughout the paper, we limit ourselves to a constant w. However, the case

with time varying w could be obtained by combining our results (however, see [7] for

exceptional cases).

2. Diagram of the Universe

The Friedmann equation for the universe with (nonrelativistic) matter and dark energy

is
(

H

H0

)2

=

(

ȧ

H0a

)2

= ΩMa−3 + ΩXa
−3(1+w) + (1− ΩM − ΩX)a

−2, (1)

where H0 is the present Hubble parameter and w is the equation of state of dark energy

and ΩM and ΩX is present density parameter for matter and dark energy, respectively.

The scale factor has been normalized such that a = 1 at present.

The Friedmann equation Eq.(1) can be read as the “energy equation”:

ȧ2

H2
0

+ V (a) = E, (2)

where the potential energy term V (a) is

V (a) = −ΩMa−1 − ΩXa
−1−3w, (3)

and the total energy E(= ΩK = −K/H2
0 ) is E = 1 − ΩM − ΩX . If there are roots of

E − V (a) = 0 with a > 0, the universe can stop its expansion (ȧ = 0) and recollapse or

bounce. Let us discuss the roots of E − V (a) = 0 in the following.
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Figure 1. The “phase diagram” of the universe in ΩM − ΩX plane for w =

−0.3,−1/3,−0.5,−1,−1.5,−2. The regions, labeled “no big bang”, “expands forever”,

“big rip”, and “recollapses eventually” are divided by the solid lines. The horizontal

dashed line is ΩX = 0. The region of “no big bang” represents the bounce cosmologies.

In the region of “expands forever” for w ≥ −1, the universe will expand forever. In

that of “big rip” for w < −1, the universe will end in a big rip. The expansion of the

universe is currently accelerating above the dotted line, while decelerating below it. In

the region of “recollapses eventually”, the universe will eventually stop its expansion

and recollapse to a big crunch.
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A: ΩX > 0 & 0 > w > −1/3. In this case, the dark energy behaves like a matter

with small negative pressure. If E (= ΩK) < 0, since E − V (a) = 1 > 0 at a = 1

and E − V (a) → E(< 0) for a → ∞, there is a root of E − V (a) at a > 1. Hence

the universe will recollapse in the closed model ΩK < 0. Interestingly, if E > 0 there

is no root and the universe will expand forever. The future of the Universe would be

quite different from that with a cosmological constant: The Universe with negative dark

energy density can expand forever without big crunch.

In top left panel of Fig.1, we show the “phase diagram” of the universe for w = −0.3.

The two regions, labeled “recollapses eventually” and “expands forever”, are divided by

solid line. The horizontal dashed line is ΩX = 0.

B: w = −1/3. In this special case, the Friedmann equation Eq.(1) is reduced to

(H/H0)
2 = ΩMa−3+(1−ΩM)a−2 and is independent of ΩX . Dark energy with w = −1/3

behaves like a curvature, so that the destiny of the universe depends only on the matter

density. For ΩM ≤ 1 the universe will expand forever, while for ΩM > 1 it will recollapse.

In top right panel of Fig.1, we show the “phase diagram” for w = −1/3.

C: ΩX > 0 & w < −1/3. The universe can recollapse or bounce if E < Vm =

max(V (a)). Let am be the scale factor at the maximum of V (a), where am is given

by

am =

(

ΩM

−(1 + 3w)ΩX

)−1/3w

, (4)

and Vm is

Vm = − 3w

1 + 3w

ΩM

am
. (5)

Hence the critical condition E − Vm = 0 is rewritten as,
∣

∣

∣

∣

1− ΩM − ΩX

3 w ΩX

∣

∣

∣

∣

−3w

=

∣

∣

∣

∣

ΩM

(1 + 3w) ΩX

∣

∣

∣

∣

−1−3w

. (6)

This equation is the same as Eq.(5) in Moles (1991) if we set w = −1. The bounce

would occur if E < Vm and am < 1; the recollapse would occur if E < Vm and am > 1

[8].

In Fig. 1, we display the “phase diagram” of the universe depending on the equation

of state of dark energy (w = −0.5,−1,−1.5,−2). For w < −1/3, the three regions are

divided by the two solid lines. The region of “no big bang” represents the bounce

cosmologies. As w becomes negatively larger, the region of bounce

becomes larger. This can be understood from

∂Vm

∂w
=

Vm

w
(ln am − ln(ΩX/ΩM)) (7)

for fixed ΩM and ΩX . This implies that for am < 1 (or ΩM < −(1 + 3w)ΩX), Vm

increases as w decreases when ΩM and ΩX fixed, so that the universe can bounce more
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easily. On the other hand, for am > 1, Vm decreases as w decreases when ΩM and ΩX

fixed, so that the universe can recollapse more hardly.

If the equation of the state of dark energy is less than −1 [4, 5], then the universe

expands so rapidly that the scale factor will diverge and the space will eventually

be torn apart and the universe will consequently result in the “big rip” [6]: the

singularity with the positively divergent Hubble parameter. In the bottom panels of

Fig.1 (w = −1.5,−2), the region of “big rip” represents the cosmological models with

big rip singularity. ‡

D: ΩX < 0 & w 6= −1/3. For 0 > w > −1/3 the universe will recollapse if E < Vm.

While for w < −1/3 there is a root at a > 1, since E − V (a) is 1 at a = 1 and

ΩXa
−1−3w (< 0) at a ≫ 1. Hence the universe will recollapse in ΩX < 0 & w < −1/3.

3. The Life of the Universe

For w < −1, the age of the Universe becomes finite even if the energy density of dark

energy is positive. Then the immediate question would be, ”how much time is left for

the Universe?”. So we calculate numerically the remaining age of the universe, tleft, for

general non-flat universe with w < −1:

tleft =

∫

∞

1

da

ȧ
=

∫

∞

1

da

aH

=
1

H0

∫ 1

0

dx

x
√

ΩMx3 + ΩXx3(1+w) + (1− ΩM − ΩX)x2
, (8)

where we have introduced x = 1/a. The case of flat universe is calculated in [4, 9, 10].

Fig. 2 is H0tleft for general non-flat universe models: for w = −1.5, H0tleft is 1.0

from top in step of 0.2; for w = −2.0, H0tleft is 0.6 from top in step of 0.2; for w = −3.0,

H0tleft is 0.3 from top in step of 0.1; for w = −5.0, H0tleft is 0.2 from top in step of 0.1.

Fig. 3 is for a flat model: H0tleft is 5.0, 3.0, 2.0, 1.0, 0.5, 0.3, 0.2 from top to bottom.

From Fig. 2, we find that the remaining age is primarily determined by ΩX . Moreover,

for negatively larger w dependence on ΩX becomes weak and the age is essentially

determined by w (see Fig. 2 for w = −5.0). This fact can easily be found from Eq.(8);

since for |w| ≫ 1 dark energy becomes dominant during most of the remaining age of

the universe, the integral can be approximately estimated as

H0tleft ≃
∫ 1

0

dx√
ΩXx(5+3w)/2

=
2

3|1 + w|
√
ΩX

, (9)

which explicitely shows that tleft is more sensitive to w than to ΩX . It is found from

numerical calculations that this approximates the integral Eq.(8) well (within 10%) for

0.5 . ΩX . 2.0 if w . −1.3.

‡ The properties of the singularity and the existence of a stable fixed point are studied in [11].
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Figure 2. H0tleft for general universe model: for w = −1.5, H0tleft is 3.0 from top in

step of 0.2; for w = −2.0, 0.6 from top in step of 0.2; for w = −3.0, H0tleft is 0.3 from

top in step of 0.1; for w = −5.0, H0tleft is 0.2 from top in step of 0.1.

4. Conformal Diagrams

Similar to the fate of the universe, an interesting question would be “what is the entire

structure of spacetime for the universe with dark energy?”. We show the conformal

diagrams of flat cosmological models with various dark energy. There are several works

which have some overlap [12, 13, 17, 15, 16, 17, 18]. Our aim here is to collect and classify

these results including matter and w < −1 case for comparison and for completeness.
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Figure 3. H0tleft for flat models. H0tleft = 5.0, 3.0, 2.0, 1.0, 0.5, 0.3, 0.2 from top to

bottom.

4.1. Dark Energy without Matter

For simplicity, we first consider cosmological models without matter. The conformal

diagrams of such cosmological models (for w ≥ −1) are studied in [12, 14]. We include

cosmological models with w < −1 dark energy as well.

Since the metric of flat models is conformal to Minkowski spacetime

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2) = a(η)2(−dη2 + dr2 + r2dΩ2), (10)

the conformal diagram is a subset of that of the Minkowski spacetime and the range of

the conformal time η depends on w.
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A: w > −1/3. Since a(t) = t2/3(1+w),

η =

∫

dt

a
=

3(1 + w)

1 + 3w
t(1+3w)/3(1+w). (11)

The range of η corresponding to that of t (0 ≤ t < ∞) is, 0 ≤ η < ∞, so that the

conformal diagram is the upper half of the conformal diagram of Minkowski spacetime.

B: w = −1/3. Since a = t, η = ln t. The range of η is −∞ < η < ∞, and the

diagram is almost the same as that of the Minkowski spacetime excepting the presence

of big-bang singularity at the past null infinity.

Since there is a past null singularity, the physical size of the past light cone dH for

an observer at r = 0 (particle horizon) is given by

dH = a(t)

∫ t

0

dt′

a(t′)
, (12)

and it is infinite for w = −1/3. Hence, there is no horizon problem in this case.

C: −1 < w < −1/3. Since a(t) = t2/3(1+w) and the exponent is greater than unity,

η ∝ −t(1+3w)/3(1+w). The range of η corresponding to that of t (0 ≤ t < ∞) is

−∞ < η ≤ 0, so that the conformal diagram is the lower half of the conformal diagram of

Minkowski spacetime with the big-bang singularity. Since there is a past null singularity,

dH is infinite in this case as well.

D: w = −1. Since a = exp(Ht) (−∞ < t < ∞), η ∝ − exp(−Ht). Again, the

conformal diagram is the lower half of the conformal diagram of Minkowski spacetime

but without the big bang singularity.

E: w < −1. Since a = (−t)2/3(1+w), η ∝ −(−t)(1+3w)/3(1+w). The range of η

corresponding to that of t (−∞ < t ≤ 0) is −∞ < η ≤ 0, so that the conformal

diagram is again the lower half of the conformal diagram of Minkowski spacetime but

this time with the big rip singularity at the future spacelike infinity. Since the past null

singularity is null, dH is infinite in this case as well.

These results are shown in Fig. 4. For w < −1/3, since the conformal time is

bounded above, there is a future cosmological event horizon [19, 14]. The light rays

emitted beyond the horizon never reach an observer at r = 0. Hence, the asymptotic

region of spacetime cannot be measured, and there is no S-matrix [14].§ The proper

radius of the horizon Rc is given by

Rc = a(t)

∫

∞

t

dt′

a(t′)
= −3(1 + w)

1 + 3w
t, (13)

for −1 < w < −1/3. Rc = H−1 for w = −1, and Rc = (3(1 + w)/(1 + 3w))(−t) for

w < −1. (Note that the range of t is bounded above for w < −1.) The size of the

§ However, the situation is not improved much for w > −1/3. see [20].
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Figure 4. Conformal diagrams of flat cosmological models with dark energy but

without matter for w > −1/3, w = −1/3,−1 < w < −1/3, w = −1, w < −1. The thin

solid line is the future event horizon.

horizon grows for −1 < w < −1/3 and remains constant for w = −1 but decreases for

w < −1 because phantom matter violates the dominant energy condition.

4.2. Including Matter

When matter is included, lower half parts of the diagrams are replaced with big

bang singularity. We plot the corresponding diagrams in Fig. 5. Because matter

was dominated in the past, ] the size of the particle horizon becomes finite even for

w ≤ −1/3. However, the presence of the cosmological event horizon is not affected by

including matter, since the universe would be dominated by dark energy in the future

(see [15, 16, 17, 18] for the detailed discussion of the evolution of the horizon).
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Figure 5. Conformal diagrams of flat cosmological models with matter and dark

energy for w ≥ −1/3,−1 ≤ w < −1/3, w < −1. The thin solid line is the future event

horizon.

5. Growth of Structures

In this section, we study the formation of structures in flat universe models with dark

energy. First, we consider the evolution of linear matter perturbation, and then on the

base of it, we consider the nonlinear evolution of perturbation using spherical collapse

model.

5.1. Linear perturbation

The growth of linear matter density perturbation δ = δρM/ρM in various flat

cosmological models with dark energy is determined by the following equation [21]:

δ̈ + 2Hδ̇ − 4πGρMδ = 0. (14)

Eq.(14) can be rewritten in terms of g = δ/a as

(ΩM+Ωxa
−3w)

d2g

d ln a2
+

(

5

2
ΩM +

5− 3w

2
ΩXa

−3w

)

dg

d ln a
+
3

2
(1−w)ΩXa

−3wg = 0.(15)

The exact solution of the linear perturbation equation (15) was obtained by Silveira

and Waga [22, 23] (see also [24] for w = −1) for a constant w. Denoting the solution as

D(a)/a, it is given by

D(a)

a
= 2F1

(

− 1

3w
,
w − 1

2w
, 1− 5

6w
;−ΩX

ΩM
a−3w

)

, (16)

where 2F1 is the Gauss’s hypergeometric function. Here D(a) is normalized so that

D(a) → a at a → 0.

We compute the evolution of density perturbation as a function of scale factor or

cosmic time. The results are shown in Fig. 6 and Fig. 7. Matter density perturbation

is normalized by its present value, D0 ≡ D(a = 1). We assume ΩM = 1 − ΩX = 0.3.

The future growth of the density perturbation becomes more suppressed for negatively
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Figure 6. The linear growth rate as a function of scale factor for w = −0.3(dot),

−0.5(dot-dash), −1(solid) and −2(dash) with ΩM = 0.3. D(a) is normalized by its

present value, D0 ≡ D(a = 1).

large w. We find from Eq.(16) that D(a) asymptotically converges toward a constant

value in the limit of a → ∞ for w < −1/3 [25],

D(a) → Γ(1− 5
6w
)Γ(1

2
− 1

6w
)

Γ(1− 1
2w
)Γ(1

2
− 1

2w
)

(

ΩX

ΩM

)1/3w
(

1 +

Γ(−1
2
+ 1

6w
)Γ(1− 1

2w
)Γ(1

2
− 1

2w
)

Γ(1
2
− 1

6w
)Γ(1

2
− 1

3w
)Γ(− 1

3w
)

(

ΩX

ΩM

)
1

6w
−

1

2

a−
1

2
+ 3w

2

)

, (17)
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Figure 7. Same as Fig.6, but as a function of cosmic time. For w = −2, the dashed

line ends in big rip singularity (cross).

while for 0 > w > −1/3

D(a) → Γ(1− 5
6w
)Γ(1

2
− 1

6w
)

Γ(1− 1
2w
)Γ(1

2
− 1

2w
)

(

ΩX

ΩM

)1/3w (

1 +
w − 1

w(6w − 5)

(

ΩM

ΩX

)

a3w
)

.(18)

This is because the time scale for expansion ∼ H−1 ∼ (GρX)
−1/2 is much less than

that for growth of density perturbation ∼ (GρM)−1/2 in the future (ρX ≫ ρM) [21]. The

asymptotic constant in Eq.(17) and E.(18) is the same for both cases and is an increasing

function of w. Eq.(17) and Fig.6 show that for negatively larger w, the growth of D is

saturated earlier in the future. This is due to the rapid growth of ρX relative to ρM . The

difference of D between various w may be suppressed when D is plotted as a function
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of cosmic time since time elapses more slowly for negatively large w.

5.2. Spherical collapse

In the previous section we studied the growth of linear density perturbation. In this

section we consider spherical collapse model in order to investigate nonlinear growth

of perturbation. It is already studied both analytically and numerically [26] for a

cosmological constant and the fate of structures for w < −1 is briefly described in

[6]. Our approach here will be more analytic than the former and more quantitative

than the latter for general equation of state of dark energy.

We consider a evolution of spherical overdense region with uniform density ρsp and

radius R [27]. The evolution of radius is described by

R̈

R
= −4πG

3
ρsp −

4πG

3
(1 + 3w) ρX , (19)

where ρsp ∝ R−3 and the mass is M = (4πρsp/3)R
3. The first term represents the

gravitational force which contracts the sphere, while the second term represents the

repulsive force for w < −1/3 due to the dark energy and it prevents the contraction.

Defining dimensionless radius y ≡ R/R0, where R0 is the radius at present, the

above equation (19) is rewritten as,

(

ΩM + ΩXa
−3w

) d2

d ln a2

(y

a

)

+
1

2

[

ΩM + (1− 3w)ΩXa
−3w

] d

d ln a

(y

a

)

− 1

2
ΩM

y

a
+

1

2
∆0ΩM

(y

a

)−2

= 0, (20)

where ∆0 ≡ ρsp(R0)/ρM,0 is the ratio of sphere to background density at present and it

represents nonlinear density contrast. We also define linear density contrast δ0 which is

the density contrast at present if the density perturbation evolve by linear growth rate

D(a). Then, δ0 is given by

δ0 = lim
a→0

δ(a)

D(a)
D0 = lim

a→0

1

D(a)

[

ρsp(R(a))

ρM(a)
− 1

]

D0. (21)

The analytical solution of Eq.(20) at a ≪ 1 is obtained by

y

a
= ∆

1/3
0

[

1− 1

3

δ0
D0

a +O(a2)

]

. (22)

We use the above equation as the boundary condition to solve Eq.(20). Either ∆0 or δ0
can be determined by a condition of y(a = 1) = 1, and hence there is one free parameter.

In order to relate the mass M of sphere to the density contrast δ0, we assume that

the overdense region is formed from the 1σ high-density peak of mass fluctuation. Then,

the linear perturbation at present δ0 is equal to the linear mass fluctuation δM for the

mass M , δ0 = δM . Here, δM is given by

δ2M =
1

2π2

∫

dkk2P (k)W 2(kr), (23)
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where P (k) is the power spectrum and W (kr) with r = (2M/ΩMH2
0 )

1/3 is the top-hat

window function [28]. We normalise δM so that δM = σ8 = 0.9 at r = 8h−1 Mpc. We

assume ΩM = 0.3, the baryon density Ωb = 0.04 and the Hubble parameter h = 0.7.

Evaluating the dimensionless radius y(a) in Eq.(20) for various values of parameters

∆0, M and δ0, we find that the fate of over-density sphere can be classified into three

cases. We display these cases in Fig.8. The left panel is ∆0 − w plane, while the right

panel is M − w plane (we also show δ0).

(i) The region of “Monotonously Expands”. For low density region, ∆0 . 10, the

sphere monotonously expands forever. This is because the linear perturbation at

far future, lima→∞ δ(a) = δ0/D0 lima→∞ D(a), is a constant value from Eq.(17) and

Eq.(18) and cannot reach the critical over density δc ∼ 1.68 [29] which is δ when

the sphere collapses. In the far future, a ≫ 1, the radius increases in proportional

to the scale factor, R ∝ a.

(ii) The region of “Collapses”. For high density region, the sphere stops its expansion

and collapses to R = 0.

(iii) The region of “Expands-Contracts-ReExpands”. For intermediate mass density,

10 . ∆0 . 20 with w < −1, the sphere stop its expansion and turns around. But

the repulsive force due to the dark energy, which increases with time, prevents its

contraction and the sphere re-expands forever.

In Fig.9, we show the radius R as a function of time with w = −1.5 forM = 1014M⊙

(dot-dash), 4 × 1013M⊙ (solid) and 2 × 1013M⊙ (dash), as an example of these three

types. The radius at present is R0 = [3M/(4πρM,0∆0)]
1/3. As shown in Fig.9, we note

that the behavior of R is not symmetric about the turn-around time for w 6= −1.

The fraction of collapsed objects with mass greater than M at the scale factor a is

given by [29]

F (M, a) =
2√

2πδM (a)

∫

∞

δc(a)

dδe−δ2/2δ2
M

(a), (24)

where δM(a) is the mass fluctuation at a, δM(a) = δMD(a)/D0. The critical density

δc(a) is the linear perturbation when the sphere collapses at a. In Fig.10, we show

F (M, a) as a function of the scale factor with M = 1011M⊙ (dash), M = 1013M⊙

(solid), M = 1014M⊙ (dot), M = 1015M⊙ (dot-dash) and M = 1016M⊙ (dot-dot-dash).

For larger w the objects with the larger mass M & 1015M⊙ can form, while for smaller w

the growth of density fluctuation is suppressed and the mass fraction becomes constant

in the near future.

6. Summary

In this paper, we have classified the future of the universe with dark energy with various

equation of state. Moreover we have investigated the future structure formation of the

universe.
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Figure 8. The fate of spherical overdense region. ∆0 is the ratio of spherical density

to background density at present, M is its mass and δ0 is the linear perturbation at

present. In the region of “Monotonously Expands”, the sphere monotonously expands

forever. In the region of “Collapses”, the sphere stops its expansion and collapses

to R = 0. In the region of “Expands-Contracts-ReExpands”, the sphere stops its

expansion and turns around. But the repulsive force due to the dark energy, which

increases with time, prevents its contraction and the sphere re-expands forever.

We have found that the phase diagrams of the universe in ΩM − ΩX plane are

drastically different between w ≥ −1/3 and w < −1/3. Infinitesimally small change of

w from w = −1/3 to w < −1/3 moves regions of “expands forever” and “recollapses

eventually” to completely different places. Moreover, for w < −1/3, there is a region of

“no big bang”, which does not exist for w ≥ −1/3. On the other hand, phase diagrams

of −1/3 > w ≥ −1 or w < −1 are about same, except the “expands forever” region of

the former is replaced with the “big rip” region of the latter.

This discontinuity at w = −1/3 can be seen in conformal diagrams too such that

the event horizon appears for w < −1/3, but w ≥ −1/3. The size of the event horizon

grows, remains constant and decreases for −1 < w < −1/3, w = −1, and w < −1,

respectively.

Concerning the structure formation, we have found the linear evolution

asymptotically converges to a constant value for w < 0 and obtained the value in

the limit of a → ∞ as a function of w.

However, it is not always the case that these linear perturbations eventually

turn into collapsed objects. We have classified the fate of the overdense regions into

three categories, i.e., “monotonously expands”, “collapses”, and “expands-contracts-re

expands”. And we have shown each region in w − ∆0 plane, where ∆0 is the ratio of

density of the spherical region to background density at the present epoch. We have

also found the largest structure in the future universe as a function of w.
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