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Differential rotation on the lower main sequence
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Abstract. We compute the differential rotation of main sequence giitee spectral types F, G, K, and M by solving the
equation of motion and the equation of convective heat pamsn a mean-field formulation. For each spectral type the
rotation rate is varied to study the dependence of the stidhear on this parameter. The resulting rotation pattemalba
solar-type. The horizontal shear turns out to depend styanythe effective temperature and only weakly on the rotati
rate. The meridional flow depends more strongly on the mtatate and has different directions in the cases of very slow
and very fast rotation, respectively.
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1. Introduction does notindicate any dependence on the rotation rate (Barne
etal. 2004).

The surface rotation of the Sun shows a shorter period at the
equator than at the poles. Helioseismology has shown that The problem of stellar differential rotation is closely
this pattern persists throughout the convection zone asd dinked with that of the meridional flow. On the one hand the
appears at its bottom (Thompson et al. 2003). So far diffehear along the axis of rotation is one of the forces drivireg t
ential rotation can not be measured directly for other maifiow, on the other hand the flow is a powerful transporter of
sequence stars. It has, however, been inferred from changegular momentum. Both the flow and the shear are key in-
of the observed rotation period with the phase of the magredients in the current theory of the solar dynamo (Durney
netic activity cycle. Stellar butterfly diagrams can be inte1995, Choudhuri et al. 1995, Kuker et al. 2001). The shear in
preted as the consequence of horizontal shear and a variatfte overshoot layer beneath the convection zone geneffates o
of the active latitude over the cycle, as observed in cadesof the toroidal field whereas the meridional flow at the bottom
Sun. Recently, differential rotation has been detectedtspe 0f the CZ produces a horizontal drift of the field belts tovgard
scopically for a number of rapidly-rotating F stars by Reirthe equator and thus the butterfly diagram. For this dynamo
ers & Schmitt (2003a, 2003b). Finally, surface spot rotatido work a counter-clockwise circulation with an amplitude o
has been observed for a number of stars by Doppler imagihg order 10 m/s is needed.
(Collier Cameron 2002; Kovari et al. 2004).

One of the key questions in understanding both surface The meridional flow in the surface layer of the solar con-
rotation and magnetic activity is what determines the fotat VECtionis directed towards the poles, with an amplitudelof 2

pattern, the surface shear, and the meridional flow pattefyfS (£hao & Kosovichev 2004). For depths greater than 12

Observational studies have so far focused on finding a reldm and stars other than the Sun the flow is unknown. Ob-

tion between surface shear and the mean rotation period. Ffgvations of stellar activity cycles show solar-type a8 as

results found suggest a rather weak dependence of the tyti-Solar butterfly diagrams. The latter can be interpréte
two ways, either as a solar-type dynamo with the active lat-

0Q o Qg (1) itudes moving towards the equator or a different type of dy-
namo with the activity belts moving towards the poles. The
i{st case would imply anti-solar rotation, i.e. a shortéaro
jon period at the poles than at the equator. Solar-type rota
on, on the other hand, would imply a different type of dy-
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with the values forn derived by photometry and spectroscop
ranging from 0.3 to 0.8 (Henry et al. 1995; Donahue
al. 1996; Messina & Guinan 2003) while Doppler imagin
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2. The mod€ required by the Taylor-Proudman theorem. This is avoided
by taking into account the anisotropy of the convective heat

Recent models by Kitchatinov & Rudiger (1999) and afransport caused by the Coriolis force, which gives rise to a

Kiker & Stix (2001) successfully reproduce the basic feamall horizontal temperature gradient and thus a baraclini

tures of the observed rotation pattern. The main generétort@rm in the equation of motion.

rotational shear is the Reynolds stress, which in a rotating The appearance of the baroclinic term changes the

stratified fluid generally has a non-diffusive componenhi t agsymptotic form of the equation for the meridional flow for
azimuthal direction. Detailed expressions for the stressdr fast rotation from

as a function of the mean gas motion have been derived fy
Kitchatinov & Ruidiger (1993) and Kitchatinov et al. (1994) 5~ ~ 0 (10)
We use these expressions to solve the equation of motion[%r
axisymmetric flow in an anelastic fluid. )

We use the mean field approach, where the velocity fie,kginoﬁ _ i@ ~
is splitinto a mean and a fluctuating part: z Ty 90
) Solar-type differential rotation can thus exist at muclyéar

) ) ~ 7 Taylor numbers than in the purely hydrodynamic case.
The equations of motion for the mean gas motion is the

Reynolds equation,

(11)

u=u+u.

Py 3. Results
p[EJr(ﬁ'V)ﬁ]— ~V-(pQ) = Vp+pg+V -7 (3) _ _ . . _
The model is applied to a series of main-sequence stars with
where 1.2,1.0, 0.7, and 0.4 solar masses, respectively. Thble1 su
Ty = —pQij = —pluladl), (4) Mmaries their overall properties. For each star the rotatiuh

] o flow are computed as function of the mean rotation period,
is the Reynolds stress. A similar ansatz for the temperatyfgrineq by dividing the angular momentum of the stellar con-
leads to the heat transport equation, vection zone by its moment of inertia. For the Sun, this value
V- (F©™ 4 F™d) — pe,u-B =0, (5) equals the surface rotation period at about 30 deg latitude.
The model has been gauged by the choice of the viscosity pa-

where the convective heat flux is given b . X
g y rameter,c,, as defined by the expression for the turbulence

Fo™ = pe, (ulT'). (6) viscosity,
Convection is driven by the superadiabatic temperature ga — ¢y, (12)
dient,

g ~ wherel is the mixing length and. the convection velocity.
B = P VT. (7) A series of computations with varying value @f was

P i _ carried out with a fixed rotation period of 27 days. A value
The importance of the global rotation for the convectiv g 15 yields the best reproduction of the solar surfacarshe
transport is measured by the Coriolis numier, = 27.8, 54 \was therefore chosen for all subsequent computations.
wherer. is the convective turnover time. _ Figure[l shows the (normalised) rotation rate (right diegra
~ Equations[(B) and5) are solved for axisymmetric sOlypg the meridional flow pattern resulting from this model
tions using a finite-difference code described in Kiiker & Sto the Sun. The equator rotates about 30 percent faster than
(2001)._The den_sity _is prescribed but not constant, i.e. the poles, the variation with radius is weak, and the merid-
anelastic approximation ional flow shows two cells per hemisphere. A shallow cell
V-(p@)=0 (8) of counter-clockwise flow (in the representation shown) re-

holds. As boundary conditions we require that both boun%l'—deS n the upper part of the f:onvecnon zone while a Iarger
cell with clockwise flow occupies the remainder. The flow is

aries be strgss-free and prescribe thelheat flux. The latter.tg)wards the equator both at the bottom and the top of the con-
quirement fixes the temperature gradient on the boundaries, . .
but not the value of the temperature itself Vection zone and towards the poles at the interface between

. ) . e two flow cells. The maximum flow speed is 4 m/s at the
The inclusion of the heat transport equation solves a prgh-

y ) ottom and 6 m/s at the top of the convection zone.
lem known as the "Taylor number puzzle”. In the solar con-  _.
. Figurel2 shows the result for the 0}, M dwarf rotat-
vection zone the Taylor number,

ing with a period of 10 days. The relative depth of the con-
Ta — 40°R* ) vection zone is greater in this type of star than for solaety
vz stars. The rotation is much more rigid than that of the Sun,
where(2 is the rotation frequency? the solar radius, and showing only deviations up to two percent from the average
the turbulence viscosity, is a very large number. Wh= rotation rate. The pattern is much more cylindrical than the
2.7 x 107%71, R = 7 x 10%m, andv ~ 10*2cm/s, a solar rotation pattern, with slow rotation at the polar capd
value of7 x 108 follows. In an isothermal fluid with a Taylor (relatively) fast rotation in the cylinder surrounding thaer
number this large the rotation rate would have to be constaatre. The meridional flow has only one cell per hemisphere,
on cylindrical surfaces aligned with the axis of rotation, awith the flow directed towards the equator at the bottom and
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Fig. 1. Solar meridional flow and DR. Mean rotation periodrig. 2. Meridional flow and DR of an M dwarf of 0.4 solar
is 27d. masses. The mean rotation period is 10d.

. Table 1. stellar properties
towards the poles at the top of the convections zone, respec- prop

tively. The flow amplitude is 1.4 m/s at the bottom and 0.5Spectral Type  Mass  Radius Teg 529 :
m/s at the top of the convection zone. Mo) (Ro) (K) 107°s”
Figure[3 shows the rotation rate vs. radius for the four M 0.4 0.379 3518 L7

. . . . K 0.7 0.644 4347 3.0

types of star at different latitudes. The relative shearéat G 10 10 5777 6.4
est for the solar-type star. As it rotates much faster, hewev = 12 113 6236 13.0

the F star has the largest value of the absolute surface shear
all four cases the rotation is solar-type, i.e. the equatiates

faster than the poles. In all cases the radial shear is wéwk. pressions for the effect lead to positive radial shear in case
meridional flow at the bottom has an amplitude of 17.4 m¢t slow rotation, while the observed shear is negative. Box
for the F star and 2.8 m/s for the K dwarf. The correspondimulations by Chan (2001) and Kapyla et al. (2004) found
ing values at the top are 33.2 m/s and 0.8 m/s. The surfaggyative values fak, in agreement with the observations. We
temperature differences between poles and equator are 468clude that the Kitchatinov & Riidiger (1993) expression
K for the F star, 1.7 K for the solar-type star, 0.4 K for the Kgre invalid for Coriolis numbers smaller than one. The flow
dwarf, and 0.1 K for the K dwarf. In all cases the poles aig the bottom of the convection zone is in agreement with the
hotter than the equator. requirements of the advection-dominated dynamo.

Figure[3 shows the solar meridional circulation for three We find solar-type differential rotation in all cases.
different rotation periods representing fast, intermtgiand The total surface shear is mainly determined by the stel-
slow rotation, respectively. The observed rotation peobd |ar luminosity and depends only weakly on the rotation
27 days is a case of intermediate rotation. The two-cell paate. This confirms the observational finding by Barnes et
tern found for this period is the result of the two drivingal. (2004) who found a dependence of the type
forces, the shear along the z axis and the horizontal tempe@ 78.92£0.31 13
ture gradient, being equally strong and opposing each .otHer * : (13)

The resultis a clockwise flow cell in the upper part (where thehe results from our model are summarised in Tab. 1. The
Coriolis number is small and the rotation thus "slow”, and @alues listed for¥Q) are the maximum values for each star.
cell of counter-clockwise flow in the lower part, where thé&inear regression produces the power law

Conghs number is Iar.ge and the .rotatlon thus .”fast”. 59 o T32840.52 (14)

Figure[® summaries our findings concerning the surface _ )
shear. The total shear turns out to be a function of both rots2€ €xponent of 3.28 is considerably smaller than the value
tion rate and spectral type, with the latter dependencegbefRund by Barnes et al. (2004) but confirms the general trend.

stronger. Each type of star has a maximum shear at certhltf dependence on the rotation rate shown in[fig. 5 is weak.
rotation period, around which there is little variation. Because of the maximum, it does not follow a simple power

law over the entire range of rotation periods for any of the

stars. For the F, G, and K stars there is no significant depen-
4. Discussion dence at all in the interval studied. Only the M dwarf shows

a distinct increase of(2 with the rotation period, i.e., the
The surface meridional flow found for the Sun with its equahear decreases with increasing rotation rate. This betiavi
torward surface flow is in contradiction with the observasio is well-known for purely hydrodynamic models where the
The discrepancy is caused by the upper flow cell, causedrgridional flow is driven by the shear alone and always tends
the small value of the Coriolis number in the top layer db flatten the rotation profiles. As Fijl 2 shows, the M dwarf
the convection zone. The Kitchatinov & Rudiger (1993) exs in the Taylor-Proudman state for a rotation periods of 10
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