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Differential rotation on the lower main sequence
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Abstract. We compute the differential rotation of main sequence starsof the spectral types F, G, K, and M by solving the
equation of motion and the equation of convective heat transport in a mean-field formulation. For each spectral type the
rotation rate is varied to study the dependence of the surface shear on this parameter. The resulting rotation patterns are all
solar-type. The horizontal shear turns out to depend strongly on the effective temperature and only weakly on the rotation
rate. The meridional flow depends more strongly on the rotation rate and has different directions in the cases of very slow
and very fast rotation, respectively.
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1. Introduction

The surface rotation of the Sun shows a shorter period at the
equator than at the poles. Helioseismology has shown that
this pattern persists throughout the convection zone and dis-
appears at its bottom (Thompson et al. 2003). So far differ-
ential rotation can not be measured directly for other main-
sequence stars. It has, however, been inferred from changes
of the observed rotation period with the phase of the mag-
netic activity cycle. Stellar butterfly diagrams can be inter-
preted as the consequence of horizontal shear and a variation
of the active latitude over the cycle, as observed in case of the
Sun. Recently, differential rotation has been detected spectro-
scopically for a number of rapidly-rotating F stars by Rein-
ers & Schmitt (2003a, 2003b). Finally, surface spot rotation
has been observed for a number of stars by Doppler imaging
(Collier Cameron 2002; Kovári et al. 2004).

One of the key questions in understanding both surface
rotation and magnetic activity is what determines the rotation
pattern, the surface shear, and the meridional flow pattern.
Observational studies have so far focused on finding a rela-
tion between surface shear and the mean rotation period. The
results found suggest a rather weak dependence of the type

δΩ ∝ Ωn
0
, (1)

with the values forn derived by photometry and spectroscopy
ranging from 0.3 to 0.8 (Henry et al. 1995; Donahue et
al. 1996; Messina & Guinan 2003) while Doppler imaging
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does not indicate any dependence on the rotation rate (Barnes
et al. 2004).

The problem of stellar differential rotation is closely
linked with that of the meridional flow. On the one hand the
shear along the axis of rotation is one of the forces driving the
flow, on the other hand the flow is a powerful transporter of
angular momentum. Both the flow and the shear are key in-
gredients in the current theory of the solar dynamo (Durney
1995, Choudhuri et al. 1995, Küker et al. 2001). The shear in
the overshoot layer beneath the convection zone generates of
the toroidal field whereas the meridional flow at the bottom
of the CZ produces a horizontal drift of the field belts towards
the equator and thus the butterfly diagram. For this dynamo
to work a counter-clockwise circulation with an amplitude of
the order 10 m/s is needed.

The meridional flow in the surface layer of the solar con-
vection is directed towards the poles, with an amplitude of 20
m/s (Zhao & Kosovichev 2004). For depths greater than 12
Mm and stars other than the Sun the flow is unknown. Ob-
servations of stellar activity cycles show solar-type as well as
anti-solar butterfly diagrams. The latter can be interpreted in
two ways, either as a solar-type dynamo with the active lat-
itudes moving towards the equator or a different type of dy-
namo with the activity belts moving towards the poles. The
first case would imply anti-solar rotation, i.e. a shorter rota-
tion period at the poles than at the equator. Solar-type rota-
tion, on the other hand, would imply a different type of dy-
namo.
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2. The model

Recent models by Kitchatinov & Rüdiger (1999) and of
Küker & Stix (2001) successfully reproduce the basic fea-
tures of the observed rotation pattern. The main generator of
rotational shear is the Reynolds stress, which in a rotating,
stratified fluid generally has a non-diffusive component in the
azimuthal direction. Detailed expressions for the stress tensor
as a function of the mean gas motion have been derived by
Kitchatinov & Rüdiger (1993) and Kitchatinov et al. (1994).
We use these expressions to solve the equation of motion for
axisymmetric flow in an anelastic fluid.

We use the mean field approach, where the velocity field
is split into a mean and a fluctuating part:

u = ū+ u′. (2)

The equations of motion for the mean gas motion is the
Reynolds equation,

ρ

[

∂ū

∂t
+ (ū · ∇)ū

]

= −∇ · (ρQ)−∇p̄+ ρg +∇ · π (3)

where

Tij = −ρQij = −ρ〈u′
iu

′
j〉, (4)

is the Reynolds stress. A similar ansatz for the temperature
leads to the heat transport equation,

∇ · (F conv + F rad)− ρcpu · β = 0, (5)

where the convective heat flux is given by

F conv

i = ρcp〈u
′
iT

′〉. (6)

Convection is driven by the superadiabatic temperature gra-
dient,

β =
g

cp
−∇T̄ . (7)

The importance of the global rotation for the convective
transport is measured by the Coriolis number,Ω∗ = 2τcΩ,
whereτc is the convective turnover time.

Equations (3) and (5) are solved for axisymmetric solu-
tions using a finite-difference code described in Küker & Stix
(2001). The density is prescribed but not constant, i.e. the
anelastic approximation

∇ · (ρū) = 0 (8)

holds. As boundary conditions we require that both bound-
aries be stress-free and prescribe the heat flux. The latter re-
quirement fixes the temperature gradient on the boundaries,
but not the value of the temperature itself.

The inclusion of the heat transport equation solves a prob-
lem known as the ”Taylor number puzzle”. In the solar con-
vection zone the Taylor number,

Ta =
4Ω2R4

ν2
, (9)

whereΩ is the rotation frequency,R the solar radius, andν
the turbulence viscosity, is a very large number. WithΩ =
2.7 × 10−6s−1, R = 7 × 1010cm, andν ≈ 1012cm/s, a
value of7× 108 follows. In an isothermal fluid with a Taylor
number this large the rotation rate would have to be constant
on cylindrical surfaces aligned with the axis of rotation, as

required by the Taylor-Proudman theorem. This is avoided
by taking into account the anisotropy of the convective heat
transport caused by the Coriolis force, which gives rise to a
small horizontal temperature gradient and thus a baroclinic
term in the equation of motion.

The appearance of the baroclinic term changes the
asymptotic form of the equation for the meridional flow for
fast rotation from
∂Ω

∂z
≈ 0 (10)

to

r sin θ
∂Ω2

∂z
−

g

rcp

∂s

∂θ
≈ 0. (11)

Solar-type differential rotation can thus exist at much larger
Taylor numbers than in the purely hydrodynamic case.

3. Results

The model is applied to a series of main-sequence stars with
1.2, 1.0, 0.7, and 0.4 solar masses, respectively. Table 1 sum-
maries their overall properties. For each star the rotationand
flow are computed as function of the mean rotation period,
defined by dividing the angular momentum of the stellar con-
vection zone by its moment of inertia. For the Sun, this value
equals the surface rotation period at about 30 deg latitude.
The model has been gauged by the choice of the viscosity pa-
rameter,cν , as defined by the expression for the turbulence
viscosity,

νt = cν luc, (12)

wherel is the mixing length anduc the convection velocity.
A series of computations with varying value ofcν was

carried out with a fixed rotation period of 27 days. A value
of 0.15 yields the best reproduction of the solar surface shear
and was therefore chosen for all subsequent computations.
Figure 1 shows the (normalised) rotation rate (right diagram)
and the meridional flow pattern resulting from this model
for the Sun. The equator rotates about 30 percent faster than
the poles, the variation with radius is weak, and the merid-
ional flow shows two cells per hemisphere. A shallow cell
of counter-clockwise flow (in the representation shown) re-
sides in the upper part of the convection zone while a larger
cell with clockwise flow occupies the remainder. The flow is
towards the equator both at the bottom and the top of the con-
vection zone and towards the poles at the interface between
the two flow cells. The maximum flow speed is 4 m/s at the
bottom and 6 m/s at the top of the convection zone.

Figure 2 shows the result for the 0.4M⊙ M dwarf rotat-
ing with a period of 10 days. The relative depth of the con-
vection zone is greater in this type of star than for solar-type
stars. The rotation is much more rigid than that of the Sun,
showing only deviations up to two percent from the average
rotation rate. The pattern is much more cylindrical than the
solar rotation pattern, with slow rotation at the polar capsand
(relatively) fast rotation in the cylinder surrounding theinner
core. The meridional flow has only one cell per hemisphere,
with the flow directed towards the equator at the bottom and
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Fig. 1. Solar meridional flow and DR. Mean rotation period
is 27d.

towards the poles at the top of the convections zone, respec-
tively. The flow amplitude is 1.4 m/s at the bottom and 0.5
m/s at the top of the convection zone.

Figure 3 shows the rotation rate vs. radius for the four
types of star at different latitudes. The relative shear is great-
est for the solar-type star. As it rotates much faster, however,
the F star has the largest value of the absolute surface shear. In
all four cases the rotation is solar-type, i.e. the equator rotates
faster than the poles. In all cases the radial shear is weak. The
meridional flow at the bottom has an amplitude of 17.4 m/s
for the F star and 2.8 m/s for the K dwarf. The correspond-
ing values at the top are 33.2 m/s and 0.8 m/s. The surface
temperature differences between poles and equator are 47.8
K for the F star, 1.7 K for the solar-type star, 0.4 K for the K
dwarf, and 0.1 K for the K dwarf. In all cases the poles are
hotter than the equator.

Figure 4 shows the solar meridional circulation for three
different rotation periods representing fast, intermediate, and
slow rotation, respectively. The observed rotation periodof
27 days is a case of intermediate rotation. The two-cell pat-
tern found for this period is the result of the two driving
forces, the shear along the z axis and the horizontal tempera-
ture gradient, being equally strong and opposing each other.
The result is a clockwise flow cell in the upper part (where the
Coriolis number is small and the rotation thus ”slow”, and a
cell of counter-clockwise flow in the lower part, where the
Coriolis number is large and the rotation thus ”fast”.

Figure 5 summaries our findings concerning the surface
shear. The total shear turns out to be a function of both rota-
tion rate and spectral type, with the latter dependence being
stronger. Each type of star has a maximum shear at certain
rotation period, around which there is little variation.

4. Discussion

The surface meridional flow found for the Sun with its equa-
torward surface flow is in contradiction with the observations.
The discrepancy is caused by the upper flow cell, caused by
the small value of the Coriolis number in the top layer of
the convection zone. The Kitchatinov & Rüdiger (1993) ex-
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Fig. 2. Meridional flow and DR of an M dwarf of 0.4 solar
masses. The mean rotation period is 10d.

Table 1. stellar properties

Spectral Type Mass Radius Teff δΩ

(M⊙) (R⊙) (K) 10
−2 s−1

M 0.4 0.379 3518 1.7
K 0.7 0.644 4347 3.0
G 1.0 1.0 5777 6.4
F 1.2 1.13 6236 13.0

pressions for theΛ effect lead to positive radial shear in case
of slow rotation, while the observed shear is negative. Box
simulations by Chan (2001) and Käpylä et al. (2004) found
negative values forΛ, in agreement with the observations. We
conclude that the Kitchatinov & Rüdiger (1993) expressions
are invalid for Coriolis numbers smaller than one. The flow
at the bottom of the convection zone is in agreement with the
requirements of the advection-dominated dynamo.

We find solar-type differential rotation in all cases.
The total surface shear is mainly determined by the stel-
lar luminosity and depends only weakly on the rotation
rate. This confirms the observational finding by Barnes et
al. (2004) who found a dependence of the type

δΩ ∝ T 8.92±0.31. (13)

The results from our model are summarised in Tab. 1. The
values listed forδΩ are the maximum values for each star.
Linear regression produces the power law

δΩ ∝ T 3.28±0.52. (14)

The exponent of 3.28 is considerably smaller than the value
found by Barnes et al. (2004) but confirms the general trend.
The dependence on the rotation rate shown in Fig. 5 is weak.
Because of the maximum, it does not follow a simple power
law over the entire range of rotation periods for any of the
stars. For the F, G, and K stars there is no significant depen-
dence at all in the interval studied. Only the M dwarf shows
a distinct increase ofδΩ with the rotation period, i.e., the
shear decreases with increasing rotation rate. This behaviour
is well-known for purely hydrodynamic models where the
meridional flow is driven by the shear alone and always tends
to flatten the rotation profiles. As Fig. 2 shows, the M dwarf
is in the Taylor-Proudman state for a rotation periods of 10
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Fig. 3. The normalised rotation period as a function of the
fractional radius at the equator and at 15, 30, 45, 60, 70, and
90 degree latitude, respectively, from to top bottom in each
diagram. Top left diagram: F star, rotating with a period of
1d. Top right: solar-type star, rotation period = 27d. Bottom
left: K dwarf with a rotation period of 17 d. Bottom right: M
dwarf, rotation period = 10d.

days. Its small luminosity of 0.02L⊙ results in small convec-
tion velocities and hence large values of the Coriolis number
(Ω∗ = 20 in the bulk of the convection zone forP=10 d) and
of the Taylor number (∼ 1012). Under these extreme condi-
tions the stabilising effect of the horizontal temperaturegra-
dient is no longer sufficient to keep up the horizontal shear,
and we find essentially rigid rotation, like in the pure hydro-
dynamic case (Küker & Rüdiger 1997; Rüdiger et al. 1998)
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Kitchatinov, L.L., Rüdiger, G.: 1993, A&A 276, 96
Kitchatinov, L.L., Pipin, V.V., Rüdiger, G.: 1994, AN 315,157
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Rüdiger, G., von Rekowski, B., Donahue, R.A., Baliunas, S.L.:

1998, ApJ 494, 691
Thompson, M.J., Christensen-Dalsgaard, J., Miesch, M.S.,Toomre,

J.: 2003, ARA&A 41, 599
Zhao, J., Kosovichev, A.G.: 2004, ApJ 603, 776

3


	Introduction
	The model
	Results
	Discussion

