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ABSTRACT

We evaluate the effect of inhomogeneity energy on the expansion rate of the universe. Our method is
to expand to Newtonian order in potential and velocity but to take into account fully nonlinear density
inhomogeneities. To linear order in density, kinetic and gravitational potential energy contribute to
the total energy of the universe with the same scaling with expansion factor as spatial curvature. In
the strongly nonlinear regime, growth saturates, and the net effect of the inhomogeneity energy on
the expansion rate remains negligible at all times. In particular, inhomogeneity contributions never
mimic the effects of dark energy or induce an accelerated expansion.

Subject headings: cosmological parameters — cosmology : theory — large-scale structure of universe

1. INTRODUCTION

Recent observations of type-Ia supernovae (Riess 2000)
and the cosmic microwave background (Bennett et al.
2003) in tandem suggest that the cosmological expansion
is accelerating. Understanding the source of this accel-
erated expansion is one of the greatest current unsolved
problems in cosmology (Peebles & Ratra 2003). Accel-
eration seems to render inadequate a universe consisting
entirely of matter, and appears to require an additional,
unknown type of energy (dark energy, perhaps realized as
a cosmological constant). An alternative to dark energy
is that acceleration arises from a known component of
the universe whose effects on the cosmic expansion have
not been fully examined. One possibility currently being
examined is that inhomogeneities in a matter dominated
universe, on either sub-horizon (Rasanen 2005; Notari
2005) or super-horizon scales (Kolb et al. 2004, 2005a,b;
Barausse et al. 2005), may influence the expansion rate
at late times. The central idea is that the energy induced
by inhomogeneities leads to additional source terms in
the Friedmann equations, with effects on the dynamics
that leave no need for a separate dark energy compo-
nent. In their entirety, these proposals present conflict-
ing claims and a general state of much confusion: does
the inhomogeneity energy produce an accelerated expan-
sion, acting in effect as dark energy (Kolb et al. 2005b),
or does it behave as curvature (Geshnizjani et al. 2005)?
Is the magnitude of the effect small, large, or even di-
vergent, on either large scales (Kolb et al. 2005b), or on
small scales at late times (Notari 2005)?
Part of the confusion arises from the fully relativistic

perturbation theory formulation of many of these calcu-
lations. Although this is undeniably a valid approach,
the number of terms in a perturbation theory calcula-
tion can be large and can mask the underlying physics.
In this Letter, taking advantage of phenomenological re-
sults that have been derived from a combination of quasi-
linear perturbation theory, nonlinear theory, and numer-
ical simulations, we compute the potential and kinetic
inhomogeneity energies within the horizon to Newtonian
order in potential and velocity for fully nonlinear density
contrasts. We find these energies to be small at present,
and their projected values remain small, even far into the

future. Section 2 considers the effect of inhomogeneities,
for weak gravity and slow motions but for arbitrary den-
sity perturbations, characterized in terms of the density
power spectrum. Section 3 presents the results for the
kinetic and potential energies in both the linear and the
fully nonlinear regimes, as a function of the cosmological
expansion factor. Finally, section 4 discusses the impli-
cations of these results.

2. EFFECTS OF INHOMOGENEITIES

The purpose of our work is to investigate whether in-
homogeneity energy can mimic the effects of dark energy
for a universe containing only matter. To this end, we
work in an Ωm = 1 Einstein-de Sitter universe, with
no curvature or cosmological constant, and compute the
effects of inhomogeneities on the cosmic expansion rate.
The dynamics of cosmological expansion are governed by
the Friedmann equations,

( ȧ

a

)2

=
8π

3
Gρ,

( ä

a

)

= −
4π

3
G(ρ+ 3p). (1)

Any mass or energy density that makes up a significant
fraction of the total can influence the evolution of the cos-
mological scale factor a(t). A contribution to the energy
density of the universe with equation of state pi = wρi
has ρi ∝ a−3(1+w), or ρi/ρm ∝ a−3w; in particular, a
component with ρ ∝ a−2 behaves as w = − 1

3 or cur-
vature, and a component with constant ρ behaves as a
cosmological constant or dark energy.
We introduce the effects of inhomogeneities following

the formulation of Seljak & Hui (1996). In the conformal
Newtonian gauge, with metric

ds2 = a2(τ)[−(1 + 2ψ)dτ2 + (1− 2φ)dx2], (2)

the time-time Einstein equation (G0
0) yields

3
( ȧ

a

)2

(1− 2ψ) + (2+6φ)
1

a2
∇2φ+

1

a2
(∇φ)2

=8πGρ̄(1 + δ)(1 + v2), (3)

Where φ ≃ ψ from the space-space components of Gµ
ν .

(Our numerical factors are slightly different from those of
Seljak & Hui; they make little difference in the results.)
The source on the right-hand side includes a density per-
turbation δ = δρ/ρ̄ in the material rest frame, with the
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transformation to the cosmological frame expanded to
leading order for small v2. Ignoring φ∇2φ, (∇φ)2, and
v2, the homogeneous part of this equation reproduces
the usual Friedmann equation. The inhomogeneous part
reveals that φ obeys the Poisson equation with source
4πGρ̄a2δ. The volume average of the entire equation
then leads to

( ȧ

a

)2

=
8π

3
Gρ̄ (1− 5W + 2K) , (4)

whereW and K are the Newtonian potential and kinetic
energy per unit mass,

W = 1
2 〈(1 + δ)φ 〉, K = 1

2 〈(1 + δ)v2 〉 . (5)

These expressions are correct to first order in φ and v2,
but neither an assumption nor an approximation in δ.
We assume that 〈∇2φ 〉 = 0; in all other places the Pois-
son equation is adequate to determine φ.
The Newtonian potential and kinetic energies thus can

influence cosmological expansion. We can compute both
W and also K completely and exactly from knowledge
only of the density power spectrum. The potential is re-
lated to the density inhomogeneity by the Poisson equa-
tion, ∇2φ = 4πGρ̄a2 δ, an expression which holds even
for nonlinear inhomogeneities. From this, we obtain

W = −
1

2
4πGρ̄a2

∫

d3k

(2π)3
P (k)

k2
= −

∫

dk

k
∆2

W (k),

(6)
an expression correct in both linear and nonlinear
regimes if P (k) is the appropriate linear or nonlinear
power spectrum. The last equality defines the dimen-
sionless spectral density ∆2

W (k).
In linear perturbation theory, valid for small inhomo-

geneities, the density contrast grows as δ = δ0(x)D(t),
where in a matter dominated universeD(t) ∝ a(t) ∝ t2/3

(Peebles 1980). The kinetic energy follows from the lin-

earized equation of continuity, δ̇ +∇ · v/a = 0 (Peebles
1980),

Klin =
1

2
ȧ2

∫

d3k

(2π)3
P (k)

k2
(7)

(the usual factor f(Ω) ≃ Ω0.6 = 1 for Ωm = 1). The ki-
netic energy scales with a(t) as ȧ2D2, while the potential
energy scales as ρ̄a2D2; and so both W and K grow as
D2/a ∝ a(t), or ρU = ρ̄(W +K) ∝ a−2. As was noted
by Geshnizjani et al. (2005) for super-horizon inhomo-
geneities, in perturbation theory inhomogeneity energy
has the same effect on the expansion rate as spatial cur-
vature. We note that Klin/|Wlin| = H2/4πGρ̄ = 2

3 , a
fixed ratio in the linear regime. The full kinetic energy
in principle involves higher order correlation functions
and is not a simple integral over the power spectrum.
Nonetheless, the full kinetic energy can be obtained sim-
ply from the potential energy through the cosmic energy
equation of Irvine (1961) and Layzer (1963),

(

d

dt
+

2ȧ

a

)

K = −

(

d

dt
+
ȧ

a

)

W, (8)

with initial conditions set in the linear regime, Klin =
2
3 |Wlin|. Equations (6) and (8) provide us with expres-
sions sufficient to calculate nonperturbative contribu-
tions to the expansion rate for both the gravitational
potential perturbation and kinetic energy components.
The results of these calculations are given in the next
section.

3. RESULTS

Equations (6) and (8) determine the inhomogeneity en-
ergy of the universe as a function of epoch, which we
characterize by the expansion factor a/a0. For the pri-
mordial power spectrum, we use the CDM power spec-
trum as given by Bardeen et al. (1986), with spectral
index n = 1, Ωm = 1, and COBE normalized ampli-
tude δH = 1.9× 10−5 (Bunn & White 1997). To obtain
the nonlinear power spectrum we use the linear-nonlinear
mapping of Peacock & Dodds (1994, 1996). The results
of these calculations are shown in Figures 1 and 2.

Fig. 1.— Spectral density of gravitational potential energy
∆2

W (k) [the integrand of eq. (6)], evaluated at the present, plotted

as a function of wavenumber k. The dashed line shows ∆2

W in
linear perturbation theory; the solid line shows the fully nonlinear
form.

Figure 1 shows the dimensionless spectral density of
gravitational potential energy ∆2

W (k) defined in eq. (6),
evaluated at the present, plotted as a function of
wavenumber k. The dashed curve shows the density in
linear perturbation theory, and the solid curve shows its
fully nonlinear form.

Fig. 2.— Fractional contributions of gravitational potential
energy W (long-dashed line) and kinetic energy K (solid line) to
the total energy density of the universe, plotted as a function of
past and future expansion factor for an Ωm = 1 universe. The
short-dashed line is the sum of contributions from inhomogeneities.
The dotted lines show results from linear perturbation theory.



3

Figure 2 shows the contributions of potential energy
and kinetic energy to the energy density of the universe,
for past and future expansion factors in an Ωm = 1 uni-
verse. At early times, perturbation theory gives an ac-
curate result, but at a/a0 ≈ 0.05 (redshift z ≈ 20) the
behavior starts to change, for an interval growing faster
than a1 with the fastest growth as a1.2, and then satu-
rating and growing significantly more slowly, eventually
as ln a.

4. DISCUSSION

In this Letter we have evaluated the size and the time
evolution of the contribution of inhomogeneities to the
expansion dynamics of a matter-dominated universe, in-
cluding the effects of fully nonlinear density inhomo-
geneities. When density fluctuations are in the linear
regime, the ratio of the inhomogeneity contribution to
the matter density grows linearly with expansion factor,
as does curvature in an open universe, making only a very
small contribution to the expansion rate. As density fluc-
tuations begin to go nonlinear, the inhomogeneity energy
grows at a slightly faster rate, at most as a1.2 ∝ a−3w,
or w = −0.4. This by itself, even if the dominant en-
ergy component, would be only temporarily and only
very slightly accelerating, with deceleration parameter
q0 = 1

2 (1 + 3w) = −0.1. Since, at this time, the total

fraction of inhomogeneity energy is ΩU ≈ 10−5 ≪ 1, this
has a negligible effect on cosmological expansion dynam-
ics.
As the universe further evolves, so that the main con-

tributions to W and K come from deeply nonlinear
scales, we compute the potential energy from integration
of the nonlinear power spectrum, and obtain kinetic en-
ergy from the cosmic energy equation (eq. [8]). In a scale-
invariant model with power spectrum P ∼ kn as k → 0,
the kinetic and potential energiesK andW scale with the
expansion factor as a(1−n)/(3+n) (Davis & Peebles 1977)
(logarithmically in a as n→ 1), with ratio

K

|W |
=

4

7 + n
. (9)

Numerical simulations show that this continues to hold
for the CDM spectrum with effective index n =
d logP/d log k at an appropriate scale, the basis of
the linear-nonlinear mapping (Peacock & Dodds 1994,
1996). For the CDM spectrum, with n → 1 on large
scales, this means that growth stops, and the ratio tends
to the virial value K/|W | → 1

2 at late times. We note
that aside from the integration of the Layzer-Irvine equa-
tion, many of these results were obtained by Seljak & Hui
(1996).
Our results show that the contributions of the potential

and kinetic energies of inhomogeneities has never been
strong enough to dominate the expansion dynamics of
the universe. For a universe with Ωm = 1 today, nor-
malized to the large scale fluctuations in the microwave
background, the net effect of inhomogeneities today is
that of a slightly open universe, with Ωk ≈ 10−4 in cur-
vature. The maximum contribution comes from scales
of order 1 Mpc, falling off rapidly for smaller and larger
k, as illustrated in Figure 1. The behavior on asymp-
totically small scales (k ≫ 106 hMpc−1) depends on an

extrapolation that ignores such details as star forma-
tion, but Fukugita & Peebles (2004) estimate that the
net contribution of dissipative gravitational settling from
baryon-dominated parts of galaxies, including main se-
quence stars and substellar objects, white dwarfs, neu-
tron stars, stellar mass black holes, and galactic nuclei,
is in total 10−4.9 of the critical energy density.
The suggestion that nonlinear effects for large inhomo-

geneities may mimic the effect of dark energy is not the
case for the fully nonlinear theory. It is true that higher
order terms in perturbation theory grow faster; the gen-
eral n-th order term grows as Dn(t). There indeed comes
a scale in space or an evolution in time where the behav-
ior of higher order terms appears to diverge. Neverthe-
less, the fully nonlinear result is well behaved. It is only
the perturbation expansion that breaks down, and the
actual energy saturates and grows more and more slowly
at late times. As illustrated in Figure 2, the nonlinear
potential and kinetic energies remain small compared to
the total matter density at all times, even an expansion
factor of 103 into the future. Inhomogeneity effects do
not substantially affect the expansion rate at any epoch.

Fig. 3.— The expected fluctuation in the potential energy per

unit mass 〈(∆W )2 〉1/2 evaluated at the present as a function of in-
frared cutoff kmin for n = 0.95, n = 1, and n = 1.05 (solid lines, top
to bottom). Dashed lines are analytic approximations that asymp-

totically become k−0.025, (log k)1/2, or constant, respectively. The
dotted line shows the result for a rolling spectral index that has
n = 0.95 on the horizon today but approaches n = 1 as k → 0, as
predicted by most models of slow-roll inflation. The mean value
〈W 〉 = 3.1× 10−5 is shown as the horizontal dashed line.

It has been pointed out that although the average in-
homogeneity energy is small, its variance has a logarith-
mically divergent contribution from the variance of the
potential on super-horizon scales (Kolb et al. 2005a),

〈(∆W )2 〉=
1

V 2

∫

d3x d3x′
1

4
ρ̄ 〈φ(x)φ(x′) 〉

=(2πGρ̄a2)2
∫

d3k

(2π)3
P (k)

k4
W 2(kR), (10)

windowed over the horizon volume (for calculational con-
venience we use a Gaussian rolloff rather than a sharp
radial edge). For n → 1 as k → 0, this is indeed loga-
rithmically dependent on the low-k cutoff (and if n < 1
the divergence is worse), but the rest of the integral is fi-
nite for the CDM spectrum. The fluctuation in potential
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energy, 〈(∆W )2 〉
1/2

, is shown in Figure 3 as a function
of the infrared cutoff kmin. The integral is dominated by
the smallest values of k, where perturbations are deep in
the linear regime. For n = 1 the result is very accurately
∆W = 1.45 × 10−5 | ln kminRH |1/2. (We note that for
n → 1 the units of kmin are unimportant.) The fluctua-
tion is comparable to the mean 〈W 〉 = 3.1× 10−5 when
the cutoff is near the scale of the horizon k = H0/c,
and does not become of order 1 until kmin ∼ 10−170

(for n = 0.95), or kmin ∼ 10−109 (for n → 1), or ever
(for n > 1). While such an exponentially vast range of
scales may not be beyond the range of possibility in an
inflationary universe, it requires a fearless extrapolation
well beyond what is known directly from observation.
The fluctuation ∆W is dominated by contributions from
modes that are deep in the linear perturbation regime,
and scales with expansion factor as ∆W ∝ ρ̄a2D, con-
stant in time. This contribution to the energy will ap-
pear dynamically in the Friedmann equation as another
matter component. Furthermore, in the presence of a
true dark energy component, any effects on cosmologi-
cal expansion arising from inhomogeneities quickly be-
comes unimportant once dark energy becomes dominant
(Seljak & Hui 1996).
The fact that fluctuations in the potential diverge re-

mains troublesome. It has been recognized for some time
that potential fluctuations in the standard model with
n → 1 are logarithmically divergent, but since for most
purposes the value of the potential is unimportant, this
has not been perceived as a significant problem. The ef-

fect of potential on the expansion dynamics is real, but
the weak logarithmic divergence and the fact that it is
a feedback of a gravitational energy on gravitational dy-
namics may lead one to hope that this divergence is al-
leviated in a renormalized quantum theory of gravity.
We have found that, to leading order in φ and v2

but with fully nonlinear density fluctuations, inhomo-
geneities on sub-horizon scales have only a minimal ef-
fect on the cosmological expansion dynamics, even far
into the future, and in particular never result in an ac-
celerated expansion. Other authors have also shown
that recent attempts to explain an accelerated expan-
sion through super-horizon perturbations face signifi-
cant difficulties (Flanagan 2005; Geshnizjani et al. 2005;
Hirata & Seljak 2005). The possibility that a known
component of the universe may be responsible for the
accelerated expansion remains intriguing. However, we
conclude that sub-horizon perturbations are not a viable
candidate for explaining the accelerated expansion of the
universe.
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