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Abstract. We consider the stability properties of the ocean of accreting magnetic neutron stars. It turns out
that the ocean is always unstable due to the combined influence of the temperature and chemical composition
gradients along the surface and of the Hall effect. Both the oscillatory and non-oscillatory modes can be unstable in
accreting stars. The oscillatory instability grows on a short timescale ∼ 0.1−10 s depending on the lengthscale of
a surface inhomogeneity and the wavelength of perturbations. The instability of non-oscillatory modes is typically
much slower and can develop on a timescale of hours or days. Instability generates a weak turbulence that can
be responsible for mixing between the surface and deep ocean layers and for spreading the accreted material over
the stellar surface. Spectral features of heavy elements can be detected in the atmospheres of accreting stars due
to mixing, and these features should be different in neutron stars with both stable and unstable burning. Motions
caused by instability can also be the reason for slow variations in the luminosity.
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1. Introduction

The surface layers of accreting neutron stars are in a
melted state because of the heat production due to nu-
clear burning of the accreted material. The way a neutron
star burns the accreted hydrogen and helium to heavier
elements is sensitive to the accretion rate (e.g., Bildsten
1998). This nuclear burning is very to be stable for rel-
atively high accretion rate, Ṁ ≥ 2.6 × 10−8M⊙ yr−1.
Burning at such accretion rates is not hot enough to pro-
duce iron group or heavier elements; thus the surface lay-
ers of neutron stars consist mainly of CNO group elements
(Brown & Bildsten 1998). Fusion of this fuel to heavier el-
ements does not occur at the density ρ ≤ 109 g cm−3. If
the neutron star is accreting pure He then the burning at
ρ > 109 g cm−3 produces iron group elements, but if the
star accretes a mixture of H and He then the products are
much havier (Schatz et al 1999). The low ionic charge and
a relatively high temperature (≥ 108K) caused by the nu-
clear burning delay cristallization until very high densities
are reached. Therefore neutron stars accreting at a high
accretion rate are covered with massive oceans. Neutron
stars accreting at lower rates, Ṁ < 2.6 × 10−8M⊙yr

−1,
burn accreted H and He directly onto iron group elements
(Lewin, van Paradijs & Taam 1992, Schatz et al. 2001,
Woosley et al. 2004), while the Coulomb interaction be-
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tween heavy ions leads to crystallization at much lower
densities and to a much shallow ocean.

MHD processes in the ocean are of general interest
to studies of magnetic and thermal evolution, thermonu-
clear burning, neutron star seismology, and properties of
quasi-periodic oscillations. For instance, in weakly magne-
tized accreting neutron stars, the ocean of light elements
supports shallow water waves, which can be the reason
for low frequency (∼ 5− 7 Hz) quasi-periodic oscillations
in the brightest X–ray sources (Bildsten & Cutler 1995,
Bildsten, Ushomirski & Cutler 1996). Under certain con-
ditions, large-scale flows in the ocean can influence the
magnetic evolution of accreting neutron stars (Bisnovatyi-
Kogan & Komberg 1974, Rai Choudhuri & Konar 2002).
MHD phenomena can play a particular role during ther-
monuclear X-ray bursts. Thus, if an unstable nuclear burn-
ing is not spherically symmetric, then burning fronts can
spread around the star by igniting the accumulated cold
fuel ahead of the moving front (Fryxell & Woosley 1982,
Bildsten 1993, Spitkovsky, Levin & Ushomirsky 2001).
The propagation speed can be considerably increased
when convection and enhanced mixing are occurring at
the burning front since convective motions are very ef-
ficient at transporting heat in the ocean. Note that ef-
fects caused by rotation should be important during X-
ray bursts since most bursters are rapidly rotating. Most
likely, an expanding ocean rotates differentially, and dif-
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ferential rotation can be the reason for MHD instabilities
(Cumming & Bildsten 2000, Menou 2004).

Mixing in stars is often atributed to hydrodynamic in-
stabilities, such as convection. Standard thermal convec-
tion arises if the temperature gradient is superadiabatic
and occurs only in the atmosphere of hot NSs with a
weak magnetic field (Miralles, Urpin & Van Riper 1997).
Convection, however, is not the only instability that oc-
curs in the ocean. Stability properties of accreting neu-
tron stars can be complicated because of the presence of
a strong magnetic field, B ∼ 1012 − 1013 G, and of the
thermal and compositional gradients that generally are
not parallel to gravity g. A possibile occurrence of the
Kruskal-Schwarzschild instability in polar caps of accret-
ing neutron stars has been considered by Litwin, Brown &
Rosner (2001), who found that ballooning modes with the
displacement perpendicular to the magnetic field can be
unstable if the overpressure at the bottom of the neutron
star ocean exceeds magnetic pressure by a factor ∼ 8a/h,
where a and h are the horizontal lengthscale of the cap and
the density scale hight, respectively. The crucial point of
the instability is line-tying to the neutron star crust and,
therefore, unstable modes are localized to within a density
scale height of the ocean bottom. The ballooning instabil-
ity can arise on a timescale ∼ 30 hr if Ṁ ∼ 10−10M⊙/yr
and, most likely does not affect the nuclear burning but
can degrade the confinement to prevent accumulation of
mass above the instability threshold.

One more instability that can manifest itself in ac-
creting neutron stars is the well-known Parker instabil-
ity (Parker 1966). The downward flow of accreted matter
may generate strong non-uniformity in the magnetic field
and, hence, the electric current, which in turn can lead
to Parker-type instability (Cumming, Zweibel & Bildsten
2001). Note that this instability arises only if both the
magnetic field and its non-uniformities are sufficiently
strong and if the field decreases with height. Employing
the effect of thermal diffusivity, Cumming, Zweibel &
Bildsten (2001) estimated that the critical field above
which the instability occurs is ∼ 1012 G at the top of
the crust. The Parker-type instability can be of particular
importance if the magnetic field in the surface layers has
a complex geometry, for example, such as one considered
by Urpin & Gil (2004).

The material accreted from a companion star car-
ries angular momentum. The inflow of angular momen-
tum promotes differential rotation in the ocean of neu-
tron stars and can cause rotation induced instabilities.
These instabilities occur when the angular velocity gra-
dient is so steep that the destabilizing effect of shear over-
whelms the stabilizing effect of buoyancy (see, e.g., Zahn
1983). In the context of neutron star oceans, the instabil-
ities caused by differential rotation have been considered
by Fujimoto (1988, 1993). Turbulent motions generated
by the instabilities transport the angular momentum in
the ocean effectively, but the elemental mixing is much
less efficient because it is hampered by a stable stratifica-
tion. Note that a stable stratification can suppress some

rotation induced instabilities since the Brunt-Väisälä fre-
quency is typically much larger than the angular velocity
in accreting neutron stars (Cumming & Bildsten 2000). If
differential rotation departs from the cylindrical symme-
try, then the ocean can be subject to baroclinic instability
(Cumming & Bildsten 2000). A stable stratification gen-
erally suppresses the modes with horizontal lengthscales
that are much longer than a pressure scale height, but
short-wavelength can be unstable, and turbulent trans-
port caused by the baroclinic instability can be significant
during type 1 X-ray bursts. Note also that some mixing
in accreting neutron stars can be provided by tidal waves
(Lou 2001). It is unlikely, however, that this mechanism is
efficient since tidal waves in the neutron star ocean shoud
have a small amplitude because of high gravity.

In the present paper, we consider the instability caused
by horizontal inhomogeneities of the temperature and
chemical composition in the ocean of accreting magnetic
neutron stars. The thermal and compositional state of
the ocean departs substantially from the spherical sym-
metry for such stars. The departure can be caused, for
example, by the accreted hydrogen and helium focusing
onto the magnetic poles. It is usually assumed that the
accretion flow interacts with the magnetosphere at the so-
called Alfvén radius, RA, which is determined by the bal-
ance of the magnetic and inertial forces. For the standard
neutron star with a dipole magnetic field and with mass
M = 1.4M⊙ and radius R ≈ 106cm, the Alfvén radius is
given by

RA ∼ 2× 109B
4/7
13 Ṁ

−2/7
−10 cm, (1)

where B13 = B/1013G and Ṁ−10 = Ṁ/(10−10M⊙yr
−1).

For a weakly magnetized star accreting at a high accre-
tion rate, the Alfvén radius becomes comparable to the
stellar radius, and the magnetic field cannot funnel the
accreted material onto the magnetic poles. Therefore, the
distribution of the accreted material over the stellar sur-
face is more or less smoothed in such stars. In contrast,
a strongly magnetized neutron star accretes the mate-
rial predominantly onto the magnetic poles, and distribu-
tion of the chemical composition and temperature is sub-
stantially non-spherical in the ocean of magnetized stars
(Brown & Bildsten 1998).

It has been shown by Urpin (2004) that the combined
influence of the Hall effect and a thermal gradient perpen-
dicular to g can be responsible for instability in the ocean
of isolated neutron stars. In accreting neutron stars, the
presence of a compositional gradient that generally is also
non-parallel to g can lead to similar instability. This sort
of instability is qualitatively different from instabilities al-
ready considered in accreting neutron stars because it oc-
curs only in the presence of the Hall effect. The criterion of
instability can be satisfied in many accreting neutron stars
if the compositional gradient is not parallel to gravity.

This paper is organized as follows. In Section 2, we
consider the main equations governing hydrodynamic mo-
tions in the ocean of accreting magnetic neutron stars and
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derive the dispersion equation. Section 3 deals with the
criterion and growth time of instability. In Section 4, we
discuss mixing processes associated to compositional in-
stability in the ocean.

2. The basic equations

We consider the linear stability of the ocean on an accret-
ing neutron star assuming that both the temperature and
chemical composition can generally depart from spherical
symmetry in the unperturbed state. We do not specify the
mechanisms responsible for these departures but they can
originate, for example, in the magnetic fieldB that funnels
the accretion flow onto the poles and provides anisotropy
to the heat transport. As a result, gradients of the temper-
ature and chemical composition are not parallel to gravity
g, which is approximately radial in the ocean.

The depth of the ocean depends crucially on the tem-
perature and chemical composition and varies over a wide
range. Crystallization of a Coulomb liquid occurs when
the ion coupling parameter Γ = Z2e2/(akBT ) reaches the
critical value Γ = Γm ≈ 170− 180 (Slattery, Doolen & De
Witt 1980, Potekhin & Chabrier 2000); a = (3/4πni)

1/3

is the mean inter-ion distance, ni and Z are the number
density and the charge number of ions, respectively; kB
is the Boltzmann constant. Then, the crystallization tem-
perature is

Tm =
Z2e2

akBΓm
≈ 1.3× 105Z5/3x1/3

(

170

Γm

)

K, (2)

where x = Zρ/106A g/cm3, and A is the atomic number
of ions. In neutron stars with temperature T ≥ 108 which
is more or less typical for stars accreting with the rate
∼ 10−9M⊙ yr−1, crystallization occurs at the density ρ ∼
3× 1010 g/cm3 if Z = 8.

The equations governing velocity, magnetic field, and
thermal balance are (see, e.g., Landau & Lifshitz 1959)

v̇ + (v · ∇)v = −∇p

ρ
+ g +

1

4πρ
(∇×B)×B, (3)

ρ̇+∇ · (ρv) = 0, (4)

Ḃ −∇× (v ×B) = −∇× [η̂ · (∇×B)], (5)

∇ ·B = 0, (6)

Ṫ − β

ρcp
ṗ+ v · (∆∇T ) =

1

ρcp
∇ · (κ̂ · ∇T ), (7)

where v is the fluid velocity; ∆∇T = ∇T − ∇adT is the
difference between the real and adiabatic temperature gra-
dients, ∇adT = β∇p/ρcp; β = −(∂ ln ρ/∂ lnT )p is the
thermal expansion coefficient and cp the specific heat at

constant pressure, p; and finally η̂ = c2R̂/4π, R̂ and κ̂ are
tensors of the electrical resistivity and thermal conductiv-
ity. Following some tensor operations on Eqs. (5) and (7),
we have

κ̂·∇T = κ(0)b(b ·∇T )+κ(B)[∇T−b(b ·∇T )]+κ(∧)b×∇T,

where κ(0) and κ(B) are the tensor components along and
across the magnetic field, respectively, κ(∧) is the so called
Hall component, and b = B/B. An analogous expression
can be written for η̂. Note that for the magnetic diffu-
sivity we have η(0) = η(B) = η(∧)/α where α is the Hall
parameter,

α = ΩBeτ ≈ 9.9× 103B13

ZΛ(1 + x2/3)
, (8)

ΩBe and τ are the electron gyrofrequency and relaxation
time, respectively; and Λ is the Coulomb logarithm.

We neglect the viscous term in the momentum equa-
tion (3) since viscosity plays a less important role among
kinetic processes in the ocean. Usually, both electrons and
ions contribute to the shear viscosity. The ion shear viscos-
ity dominates at a relatively low density but is typically
much smaller than magnetic diffusivity η and thermal dif-
fusivity, χ = κ/ρcp. Electron viscosity is greater in deep
layers of the ocean (Itoh, Kohyama & Takeuchi 1987).
The ratio of electron viscosity νe and magnetic diffusivity
along the magnetic field is given by

νe
η(0)

=
2.2× 102

AZΛ

x5/3

(1 + x2/3)2
, (9)

where Λ is the Coulomb logarithm. The kinematic vis-
cosity becomes comparable to the magnetic one only at
a high density ≥ 109 g/cm3 if the ocean consists of light
elements. Therefore, neglecting viscosity in Eq. (3) seems
to be qualitatively justified.

We assume that the ocean is in hydrostatic equilibrium
in the unperturbed state,

∇p

ρ
= G = g +

1

4πρ
(∇×B)×B. (10)

Taking the curl of this equation, we have

∇ρ×G = − 1

4π
∇× [(∇×B)×B]. (11)

The density and, hence, temperature and compositional
gradients have components perpendicular to G if the mag-
netic field is not force-free in the ocean.

Consider only relatively fast hydrodynamic processes
varying on a timescale shorter than the characteristic
timescale of nuclear reactions. The time to burn all hydro-
gen into CNO-group elements is, for example, on the order
of 20 hours at high accretion rates (see, e.g., Cumming &
Bildsten 2000). Under this assumption, the number den-
sity of a species j satisfies the continuity equation

∂nj

∂t
+∇ · (njv) = 0. (12)

For our purposes, it will be convenient to characterize the
composition by a mass fraction of species Xj = ρj/ρ,
where ρj is the density of species j. Note that if the num-
ber of species is N then onlyN−1 fractionsXj are linearly
independent, since Xj satisfy the condition

∑

N Xj = 1;
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summation is over all species of ions. If the chemical com-
position is frozen in a moving fluid parcel, then the equa-
tions governing Xj read

∂Xj

∂t
+∇ · (Xjv) = 0. (13)

The equations for small perturbations can be ob-
tained by linearization of Eqs. (3)–(7), and (13). We as-
sume that in the unperturbed state, a steady tempera-
ture and composition gradients are maintained, and there
are no motions. In what follows, small perturbations will
be marked by the subscript 1, but subscripts will be
omitted for unperturbed quantities. We consider short-
wavelength perturbations with spatial and temporal de-
pendence exp(γt − ik · r) where k is the wave-vector.
Linearization of Eqs. (3)–(7), (13) yields

γv1 = ik
p1
ρ

+G
ρ1
ρ

− i

4πρ
(k ×B1)×B, (14)

γρ1 + k · v1 = 0, (15)

(γ + ωη)B1 = −i(k ·B)v1 − η∧(k · b)k ×B1, (16)

k ·B1 = 0, (17)

(γ + ωκ)T1 −
γβ

ρcp
p1 = −v1 · (∆∇T ), (18)

γX1j + v1 · ∇Xj = 0, (19)

where the characteristic inverse timescales of the ohmic
dissipation and thermal diffusion are given by ωη = η(0)k2

and ωκ = [κ(B)k2+(κ(0)−κ(B))(k ·b)2]/ρcp, respectively.
Perturbations of the pressure in Eq. (14) can be ex-

pressed in terms of perturbations of the density, temper-
ature, and fractions of species X1j , using the equation of
state,

p1
p

=

(

∂ ln p

∂ ln ρ

)

T,Y

(

ρ1
ρ

+ β
T1

T
+

N−1
∑

δjX1j

)

, (20)

where δj = −(∂ ln ρ/∂Xj)pT are the coefficients of chem-
ical expansion, and summation is over N − 1 linearly in-
dependent species.

Consider Eqs. (14)-(20) in the case kcs ≫ γ that corre-
sponds to the Boussinesq approximation for slowly varying
modes. Then, the dispersion equation reads

γ6 + a5γ
5 + a4γ

4 + a3γ
3 + a2γ

2 + a1γ + a0 = 0 , (21)

where

a5 = ωκ + 2ωη,

a4 = ω2
η + ω2

∧ + 2ωηωκ + 2ω2
A − ω2

0 ,

a3 = ωκ(ω
2
η + ω2

∧ + 2ω2
A − ω2

X) + 2ωη(ω
2
A − ω2

0),

a2 = 2ωηωκ(ω
2
A − ω2

X)− ω2
0(ω

2
η + ω2

∧ + ω2
A) + ω4

A,

a1 = ω2
A[ωκω

2
A − ωη(ω

2
0 + ω2

H ]− ωκω
2
Y (ω

2
η + ω2

∧ + ω2
A),

a0 = −ωκωηω
2
A(ω

2
X + ω2

XH).

The characteristic frequencies in this equation are

ω∧ = αη‖k(k · b) , ωA =
(k ·B)√

4πρ
, ω2

X = D · ∇X ,

ω2
g =

β

T
D ·∆∇T , ω2

0 = ω2
g + ω2

X = βD ·C ,

ω2
H = ω2

gH + ω2
XH , ω2

gH =
αβ(k · b)

k2T
∆∇T · (k ×D) ,

ω2
XH =

α(k · b)
k2

(k ×D) · ∇X ,

where vectors D and C are given by

D = G− k

k2
(k ·G) , C =

∆∇T

T
+

∇X

β
,

and we denote ∇X =
∑N−1

δj∇Xj . In the limit ωX ≈
ωXH ≈ 0, Eq. (21) yields the dispersion equation for a
chemically homogeneous ocean derived by Urpin (2004).

3. The growth rate and criterion of instability

Equation (21) describes six modes that exist in a chem-
ically inhomogeneous ocean of magnetic neutron stars.
Stability properties of the modes depend crucially on k

and, under certain conditions, modes can be unstable. The
dissipative frequences ωη, ω∧, and ωκ are typically smaller
than the dynamical frequences ωA, ω0, and ωH except
perturbations with a very short wavelength, λ = 2π/k.
Therefore, the dispersion relations for some modes can be
obtained by making use of the perturbation method and
assuming that dissipative effects are small. We expand the
growth rate as γ = γ(0) + γ(1) + γ(2) + ... where γ(0), γ(1),
and γ(2) are terms of the zeroth, first, and second order
in dissipative frequencies, respectively. The corresponding
expansion should be made for the coefficients of Eq. (21)
as well. In the zeroth order when dissipation is neglected,
Eq. (21) reduces to a quadratic equation,

γ(0) 4 + (2ω2
A − ω2

0)γ
(0) 2 + ω2

A(ω
2
A − ω2

0) = 0, (22)

This equation describes four modes with the frequencies

γ
(0) 2
1,2 = −ω2

A, γ
(0) 2
3,4 = −ω2

A + ω2
0 . (23)

The fifth and sixth roots of Eq. (21) are vanishing at

the zeroth order of approximation, γ
(0)
5 = γ

(0)
6 = 0.

Usually, γ(0) 2 < 0 for the modes 1-4 because the inequal-
ity ω2

0 > ω2
A requires temperature and composition gradi-

ents that do not exist in neutron stars. Therefore, modes
1-4 are oscillatory, and their instability does not occur at
the zeroth order.

For applicability of the perturbation procedure, the
first corrections to γ(0) caused by dissipative effects have
to satisfy the condition |γ(1)| ≪ |γ(0)| ∼ ωA, since ωA

is usually larger than other frequencies. The real parts of
γ(1) for the modes 1-4 have a particularly simple form if
|ω0| and |ωH | satisfy the inequalities

|ω2
0 | ≫ ωηωκ(1 + α2) , |ω2

H | ≫ ωηωκ(1 + α2). (24)
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Under this condition, the real parts of γ(1) are given by

Re γ
(1)
1,2 =

ωη(ω
2
H − ω2

0)

2ω2
0

, (25)

Re γ
(1)
3,4 = −ωηω

2
A[ω

2
H + ω2

0(1− ζ)]

2ω2
0(ω

2
A − ω2

0)
, (26)

where ζ = ωκω
2
0/ωηω

2
A. Note that if condition (24) is not

fulfilled and dissipative effects dominate the dynamical
influence of temperature and composition gradients along
the surface, then modes 1-4 are stable.

The roots 5 and 6 of Eq. (21) describe a couple of non-
oscillatory modes and are linear in dissipative effects. To
calculate these roots we should keep the terms in Eq. (21)
up to the second order in dissipative frequencies assuming
that γ is linear at these frequencies. Then, roots 5 and 6
are approximately

γ
(1)
5,6 ≈ −A1

2
±
√

A2
1

4
−A0, (27)

where

A0 = −ωκωη(ω
2
X + ω2

XH)

ω2
A − ω2

0

,

A1 =
ωκ(ω

2
A − ω2

X)− ωη(ω
2
0 + ω2

H)

ω2
A − ω2

0

.

Modes 5 and 6 are secular and appear only due to dissipa-
tive effects. Note that contrary to modes 1-4, expression
(27) for non-oscillatory modes applies even for small wave-
lengths which do not satisfy the inequality (24). The only

condition for applying Eq. (27) is |γ(1)
5,6 | ≪ ωA.

3.1. Instability of the oscillatory modes

The real parts of oscillatory modes are given by Eqs. (25)
and (26). Note that the vertical component of ∇X can
be rather large because the chemical composition varies
substantially with the ocean depth. Therefore, the contri-
bution of ∇X to ω2

0 can usually be comparable to (or even
larger than) that of ∆∇T . As mentioned, usually ω2

A > ω2
0

(see Eq. (23)). If ω2
0 > 0 then instability of oscillatory

modes occurs if

ω2
H > ω2

0 or ω2
H < ω2

0(ζ − 1). (28)

In contrast, if stratification is convectively stable and ω2
0 <

0 then these modes are unstable if

ω2
H < ω2

0 or ω2
H > ω2

0(ζ − 1). (29)

In the particular case when gradients of the temper-
ature and chemical composition are parallel to G and
ω2
gH = ω2

XH = 0, modes 1 and 2 are stable but modes
3 and 4 can be unstable if ζ > 1, or

ωκω
2
0 > ωηω

2
A. (30)

This condition generalizes the well-known criterion of os-
cillatory convection (see, e.g., Chandrasekhar 1961) for the

case of a chemically inhomogeneous fluid. In the ocean of
neutron stars, parameter ζ can be estimated as

ζ ∼ 3× 10−3 T7λ
2
2

ZΛ2B2
13H3

x2[1 + (1 + x2/3)1/2]

(1 + x2/3)2
, (31)

where H = C−1
‖ = (H−1

T +H−1
X )−1, HT ≡ |(∆∇T/T )−1

‖ |,
and HX = β|(∇X)‖|−1 are the lengthscales of the temper-
ature and chemical composition along G (the subscript ‖
denotes the component parallel to G), H3 = H/103 cm;
and λ2 = λ/100 cm. Usually ζ < 1, and condition (30) is
not satisfied except for very hot stars with a low magnetic
field (Miralles, Urpin & Van Riper 1997).

If |ζ| ≪ 1, then conditions (28) and (29) read

| ω2
H |>| ω2

0 | . (32)

This inequality can always be satisfied by a corresponding
choice of k once (∆∇T )⊥ 6= 0 or (∇X)⊥ 6= 0, where ⊥
denotes the component perpendicular to G. Introducing
local coordinates with the z-axis antiparallel to G and the
x-axis aligned with k⊥, we have G = −Gez, k = kxex +
kzez; ex, ey, and ez are unit vectors. The expressions for
ω2
0 and ω2

H read in these coordinates

ω2
0 =

kx
k2

βG(kzCx − kxCz) , ω2
H =

kx
k2

αβG(k · b)Cy , (33)

where Cx,y,z are the corresponding components of C.
Then, condition (32) yields

α | k · b | | Cy | > | kxCz − kzCx |, (34)

The instability occurs only if k has a non-vanishing com-
ponent perpendicular to the plane (G,C). Perturbations
are suppressed if k is parallel to this plane and, hence,
Cy = 0.

Equation (34) applies only if condition (24) is satisfied
and

|kxCz − kzCx| ≫
k2ωηωκ

βGkx
(1 + α2). (35)

If inequality (35) is satisfied then we have for unstable
perturbations

α|k · b|Cy ≫ k2ωηωκ

βGkx
(1 + α2). (36)

Note the important difference between Eqs. (34) and (35).
Condition (34) is linear in k, so it can always be satisfied
by proper choice of the direction of k. On the contrary,
inequality (35) is non-linear and yields restrictions on the
wavelength of unstable perturbations rather than on their
direction.

Consider initially condition (34). This condition is ob-
viously fulfilled if the wavevector is close to the direction
determined by

kx
kz

=
Cx

Cz
∼ H

L
, (37)

where L = C−1
⊥ ∼ (L−1

T + L−1
X )−1, LT ≡ |(∆∇T/T )−1

⊥ |,
and LX = β|(∇Y )⊥|−1 are the temperature and compo-
sition lengthscales perpendicular to G. One can estimate
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the angle ∆θ around this direction where inequality (34)
is still satisfied. Restricting ourselves by linear terms in
∆θ, we have from Eq. (34)

∆θ < α
|Cy |
|Cz |

∣

∣

∣

∣

bz + bx
Cx

Cz

∣

∣

∣

∣

. (38)

Note that the components Cx and Cy are usually small
compared to Cz,

|Cz | ∼
1

H
≫ |Cx| ∼ |Cy| ∼

1

L
. (39)

Therefore, Eq. (38) is approximately equivalent to

∆θ < α|bz|
|Cy |
|Cz |

∼ α|bz|
H

L
(40)

except the region near the magnetic equator where bz ≈ 0.
This estimate is correct if α < L/H , or

B < 2× 1011ZL5H
−1
3 (1 + x2/3) G, (41)

where L5 = L/105 cm. Note, that for all perturbations
with k within angle ∆θ we have kx < kz . If magnetization
is very strong and α ≥ L/H then inequality (34) can be
satisfied even for perturbations with kx ∼ kz.

Condition (35) determines the wavelength of unstable
perturbations. Estimating Cx ∼ 1/L, we can transform
Eq. (35) into

1

L
>

k

kx

ωηωκ

βG
f(α) , f(α) = 1 + α2 (42)

(we assume that k is not perpendicular to B). Using the
definitions of ωη and ωκ and taking account of Eq. (37),
this expression can be rewritten as the condition for the
wavelength,

λ > λcr = 2πL1/4

(

k

kx

)1/4(
η0κ0

βG

)1/4

f1/4(α)

∼ 0.6 f1/4

(

Z2L2
5

H3x1/3

)1/4

[1 + (1 + x2/3)1/2]−1/4cm; (43)

we use the electron thermal conductivity by Urpin &
Yakovlev (1980). For applicability of a short wavelength
approximation, λ and λcr should be smaller than the verti-
cal lengthscale in the ocean,H ∼ 10−20m. This condition
can in general be satisfied for a wide range of parameters
except in the case of a very strong magnetic field. In such
field α ≫ 1, and we have f ≈ α. Then, critical wavelength
λcr becomes larger than H if

B > Bd ∼ 4× 1015
(

H3

L2
5

)1/2

x1/6(1 + x2/3)

×[1 + (1 + x2/3)1/2]1/2G. (44)

Critical field Bd is much stronger than typical magnetic
fields of the majority of pulsars.

The growth rate of instability depends on the wave-
length and can vary within a wide range. If ω2

A ≫ ω2
0 and

ζ < 1, then Reγ for unstable modes is given by

Re γ ≈ ± ωη

2ω2
0

(ω2
H ∓ ω2

0) = ±ωη

2

[

α(kb)Cy

kxCz − kzCx
∓ 1

]

.(45)

The growth rate is maximal if k lies in the plane perpen-
dicular to the plane (G,C). Then Cx = 0 and, estimating
Cy/Cz ∼ H/L, from Eq. (45) we have

Reγ≈ η0k
2

2

α(kb)Cy

kxCz
∼ 10−3B13ǫ

−1x−1λ−2
2

H3

L5
s−1. (46)

The growth rate increases rapidly with increasing k and
reaches its maximum at λ ∼ λcr. According to Eq. (37),
the minimal value of the ratio ǫ = kx/k is on the order of
H/L. Substituting this estimate into Eq. (46) and assum-
ing, for example, that λ2 ∼ 1, we have

Reγ ∼ 0.1 B13x
−1 s−1. (47)

The growth time for such perturbations is ∼ 10 s in the
layer with ρ ∼ 106 g/cm3 if B ∼ 1013G. Perturbations
with a shorter vertical wavelength can grow even faster.
For example, perturbations with λ ∼ λcr ∼ 10 cm grow
on a timescale of about 0.1 s.

3.2. Instability of the non-oscillatory modes

Root (27) describes a couple of non-oscillatory modes that
can generally be unstable in the ocean. The instability
conditions of these modes are

A0 < 0 or A1 < 0. (48)

If we assume ω2
A ≫ ω2

0 , which is typical for those neutron

stars with B > 3× 108x1/2λ2H
1/2
3 L−1

5 G, then conditions
(48) read

ω2
X + ω2

XH > 0, (49)

or

ωκ(ω
2
A − ω2

X)− ωη(ω
2
0 + ω2

H) < 0. (50)

Consider initially the condition (49). If the magnetic
field is weak or G and ∇X are almost parallel (or antipar-
allel), we have |ω2

X | ≫ |ω2
XH |, and inequality (49) trans-

forms into ω2
X > 0. This condition has exactly the same

form as the standard criterion of the Ledoux convection.
Note, however, the big difference because the standard
Ledoux convection is a dynamical instability, whereas the
instability considered in this subsection is secular. Using
the local cartesian coordinates, we can represent condition
ω2
X > 0 as

∇zX ≡
N−1
∑

j=1

δj
dXj

dz
< 0. (51)

As an example, in the simplest case of a mixture of two
species with the atomic masses m1 and m2, Eq. (52) reads
δ1dX1/dz < 0. If m2 > m1 then δ1 = −(∂ρ/∂X1)pT is
positive, and the condition of instability is dX1/dz < 0, or
d(n1/n2)/dz < 0 where n1 and n2 are the number density
of species 1 and 2, respectively. Therefore, the instability
occurs if the relative number density of a light species
increases with depth. Most likely, however, the relative
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concentration of heavy elements increases with depth and
ω2
X < 0. Therefore, the instability most likely does not

occur in the ocean if ∇X ‖ G.
If ∇X and G are not parallel, then the stability prop-

erties change drastically. In the general case, inequality
(49) yields

G·∇X− 1

k2
(k·G)(k·∇X)−α(k · b)

k2
G·(k×∇X) > 0.(52)

Again using the local cartesian coordinates, we have from
this equation

kxkz(αbz∇yX +∇xX) > k2x(∇zX − αbx∇yX), (53)

where ∇x,y,zX are cartesian components of ∇X . If the
composition varies over the surface, then for any distri-
bution of chemicals, there exists a region in the (kx, kz)-
plane where the condition of instability (53) is satisfied.
The non-oscillatory modes become unstable if even one
of the components ∇xX or ∇yX is non-vanishing. If the
vertical component of a chemical gradient is large and
∇zX > αbx∇yX , then the instability occurs if
∣

∣

∣

∣

kx
kz

∣

∣

∣

∣

<

∣

∣

∣

∣

αbz∇yX +∇xX

∇zX − αbx∇yX

∣

∣

∣

∣

. (54)

If ∇zX < αbx∇yX , then the condition of instability is
∣

∣

∣

∣

kx
kz

∣

∣

∣

∣

>

∣

∣

∣

∣

αbz∇yX +∇xX

∇zX − αbx∇yX

∣

∣

∣

∣

. (55)

Note that the instability occurs even if the magnetic field
is weak and the magnetization parameter α is small, α ≪
1. In this case, a surface chemical inhomogeneity can be
caused, for example, by accretion from the disc and may
have a belt-like structure. If α ≪ 1, then from Eq. (54)
we have
∣

∣

∣

∣

kx
kz

∣

∣

∣

∣

<

∣

∣

∣

∣

∇xX

∇zX

∣

∣

∣

∣

∼ HX

LX
, (56)

and the instability arises only for perturbations with the
vertical wavelength much shorter than the horizontal one.
In a moderate magnetic field with LX/HX > α > 1, in-
equality (55) yields
∣

∣

∣

∣

kx
kz

∣

∣

∣

∣

<

∣

∣

∣

∣

αbz∇yX

∇zX

∣

∣

∣

∣

∼ α
HX

LX
, (57)

and the region of unstable wavevectors is more extended
than where α ≪ 1. If α > LX/HX , then the condition of
instability is given by Eq. (56) and reads
∣

∣

∣

∣

kx
kz

∣

∣

∣

∣

>

∣

∣

∣

∣

bz
bx

∣

∣

∣

∣

∼ 1. (58)

Note, however, that the condition α > LX/HX requires a
rather strong magnetic field,

B > 2× 1011Z(1 + x2/3)
LX5

HX3
G, (59)

which is impossible in many accreting pulsars (HX3 =
HX/103 cm, LX5 = LX/105 cm).

Condition (50) generalizes the Chandrasekhar crite-
ria of stationary convection for the case of a chemically
inhomogeneous fluid with non-parallel gravity and com-
position gradient. Since ωA is typically much larger than
other characteristic frequencies and ωκ ≫ ωη, it is unlikely
that inequality (50) is fulfilled in “standard” neutron stars
because these conditions require very low magnetic field
and large chemical gradient.

The growth rate of the composition-driven instability
(A0 < 0) is always proportional to the gradient of X along
the surface. Taking into account that ωκ ≫ ωη and assum-
ing that the Alfvén frequency is much greater than any
other characteristic frequency, we obtain |A1|2 ≫ |A0|.
Then, roots 5 and 6 are approximately given by

γ
(1)
5 ≈ −A0

A1
, γ

(1)
6 ≈ −A1 . (60)

As it was mentioned, the condition A1 < 0 is most likely
not fulfilled in the ocean, which means mode 6 is usually
stable. Mode 5, however, can be unstable if A0 < 0. Since
ω2
A ≫ |ω2

0 | the growth rate of this mode is

γ
(1)
5 ≈ ωη

ω2
A

(ω2
X + ω2

XH) =

4πρGη0kx
(k ·B)2

[α(k ·B)∇yX − kx∇zX + kz∇xX ]. (61)

We estimate the growth rate for the case when k lies in
the plane perpendicular to the plane (G,∇X) and, hence,
(∇X)x = 0. Assuming that the magnetic field is not very
strong (LX/HX > α) and the wavevector satisfies the
condition of instability (54), we obtain from Eq. (61)

γ
(1)
5 ≈ kx

|k · b|
G

ωpi
|∇yX | ∼ 10−8A

Z

kx
kz

g14
B13LX5

s−1, (62)

where ωpi = ZeB/Ampc is the ion gyrofrequency and
g14 = g/1014 cm/s2. In contrast to the case of oscillatory
modes, the growth rate of a non-oscillatory mode depends
on the direction of a wavevector rather than on its value.
Instability is faster in a neutron star where the surface in-
homogeneities of a chemical composition are stronger. If
the magnetic field is not very strong and satisfies the con-
dition LX/HX > α > 1 (or 1011ZΛ(1+ x2/3)LX5/HX5 >
B > 109ZΛ(1 + x2/3)), then the non-oscillatory mode
grows on a relatively short timescale ∼ 1 d if L ∼ 100
m. Note that the chemical and thermal gradients are very
likely to be larger in accreting neutron stars than in iso-
lated ones and one could thus expect more efficient hydro-
dynamic motions in the ocean of accreting stars.

4. Discussion

It turns out that the ocean of neutron stars is subject to
different instabilities if the temperature or chemical com-
position varies over the surface. The main driving forces
of instability are the Hall effect and horizontal advection
of heat or composition; as a result, the growth rate of
instability is proportional to the Hall parameter α and
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the component of ∇T or ∇X along the surface. This
point can be clarified by a simple qualitative considera-
tion. Consider the case of oscillatory modes in the magne-
tized ocean (α > 1) with strong chemical inhomogeneities
(|∇X | ≫ β|∆∇T |/T ). Then, the amplitude of unstable
magnetic perturbations is changed mainly by the Hall ef-
fect. For example, amplitude B1y increases after ∆t by

∆B1y

∆t
∼ η∧(kb)(k ×B1)y ∼ η∧(kb)

k2

kx
B1z (63)

(using the divergence-free condition (6) forB1), and small
perturbations are marked by the subscript “1”. Since os-
cillatory perturbations are approximately Alfvenic in the
ocean, the components of velocity and magnetic field are
related by B1z ∼ B1y(v1z/v1y). For the oscillatory in-
stability, perturbations of the composition are relatively
small, X1 ∝ (v1 · ∇X) ≈ 0, then v1z/v1y ∼ ∇Xy/∇Yz .
Substituting these expressions into Eq. (63), we obtain the
growth rate (46). It is seen from this simple consideration
that the Hall effect (Eq. (63)) is one of the driving forces of
instability which makes qualitatively different from other
instabilities in accreting stars.

It is worth noting that we neglect rotation in our sta-
bility analysis. Rapid rotation will often change the stabil-
ity properties of accreting neutron stars. The dispersion
equation (21) is valid until angular velocity Ω is small
compared to all dynamical frequencies. Since ωA is larger
than ω0 in many cases of interest, our analysis applies
if min(ω0, ωH) > Ω. This condition can be written as
Ω ≪

√

α/(1 + α)ω0 or, using expression (33) for ω0, as

P > 2× 10−3 L5

H3

√

1 + α

α
s, (64)

where P is the rotation period.

The growth time of both the oscillatory and non-
oscillatory instabilities is relatively short, and instabili-
ties are likely to operate operate in a non-linear regime.
We can estimate the saturation velocity using the mixing-
length model (e.g., Schwarzschild 1958) that assumes that
the turnover time of turbulence generated by instabil-
ity is on the order of the growth time of this instability.
Consider, for example, the saturation regime of oscillatory
modes. Then, in a turbulent cell with the characteristic
vertical lengthscale λz , the vertical velocity component in
saturation can be estimated as vTz(λz) ∼ λz Reγ(λz).
Using Eq. (46), we have

vTz ∼ 0.1B13x
−1ǫ−1λ−1

z2

H3

L5
cm/s. (65)

Since the instability is anisotropic, the saturated turbu-
lent velocity should be anisotropic as well. From Eq. (4),
we can estimate the turbulent velocity along the surface as
vTx ∼ vTz(λx/λz) where λx is the characteristic length-
scale of turbulence along the surface.

Turbulent motions can enhance transport in the ocean
both vertically and horizontally. For example, turbulence

can efficiently mix the material in the ocean. The coeffi-
cient of turbulent diffusion can be estimated as a prod-
uct of the turbulent lengthscale and velocity in the corre-
sponding direction. Then, we have

νTz ∼ vTzλz ∼ 10B13ǫ
−1x−1H3

L5
cm2/s (66)

for the coefficient of vertical diffusion, and

νTx ∼ vTxλx ∼ νTz
λ2
x

λ2
z

∼ 10B13ǫ
−1x−1H3

L5

λ2
x

λ2
z

cm2/s (67)

for the coefficient of diffusion along the surface. Assuming
that ǫ ≈ kx/kz ∼ H/L and B13 = 0.1, x = 1, we obtain
νTz ∼ 102 cm2/s. Such diffusion is sufficient for mixing the
outer layer with depth ∼ 10 m on a timescale ∼hours. The
rate of vertical turbulent diffusion should be compared to
the gravitational sedimentation in the ocean. The coeffi-
cient of interspecies diffusion (Brown, Bildsten & Chang
2002) reads in our notations as

D ∼ 4× 10−3

A0.5Z0.7Z0.3
2

T 1.2
7

x0.6
cm2s−1, (68)

where Z2 is the charge of a trace component. This quantity
is usually much smaller than νTz. As a result, heavy ele-
ments can be transported by turbulence from deep ocean
layers to the surface and manifest themselves in spectra
of both isolated and accreting neutron stars. Spectral fea-
tures should be different in spectra of accreting neutron
stars with stable and unstable burning. If the accretion
rate is high and the burning stable, then spectral features
corresponding to CNO group elements could be detected
in such stars. For example, these features could be ob-
served in spectra of strongly magnetized accreting neutron
stars where the burning is stable and a deep ocean of CNO
group elements is formed (see, e.g., Bildsten 1998). On
the other hand, if burning is unstable and the star burns
H and He directly to iron group elements, then mixing
caused by instability could increase abundances of these
elements in the atmosphere and make the corresponding
spectral features detectable.

Turbulent motions can also lead to an efficient hori-
zontal diffusion of the accreted material. The characteris-
tic timescale of turbulent diffusion over the neutron star
surface can be estimated as ts ∼ L2/νTx. Substituting
expression (67) and assuming ǫ ∼ H/L, we obtain

ts ∼ 107L2
5

x

B13

(

λz

λx

)2

s. (69)

If λz/λx = kx/kz ∼ H/L and B13 ∼ 0.1, x ∼ 1 then
spreading of the accreted material over the surface pro-
ceeds on a timescale of about a few hours.

Apart from mixing, turbulence can also enhance the
heat transport. The turbulent thermal diffusivity is com-
parable to νTz , and the ratio of turbulent and electron
thermal diffusivities is

νT
χ(0)

∼ B13T
−1
7 (1 + x2/3)x−1λ−1

z2 . (70)
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In general, these quantities can have the same order of
magnitude. Since ∇T is subadiabatic, turbulent motions
increase the difference between the surface and internal
temperature. Note that turbulent heat transport along the
surface and vertically should be different for the consid-
ered instability with more efficient diffusion along the sur-
face, which can reduce the surface temperature gradient
and decrease the contrast between the polar and equato-
rial temperature.

The non-oscillatory instability, despite being slower
than the oscillatory one, can also manifest itself in accret-
ing neutron stars. A sufficiently strong magnetic field can
efficiently funnel the accreted material onto the magnetic
pole. The characteristic radius of such accretion spots in
the polar region is likely to be substantially smaller than
the stellar radius, L ∼ 104 − 105 cm. In a moderate mag-
netic field satisfying the inequality LX/HX > α > 1, the
growth rate can be estimated if we suppose in Eq. (62)
that kx/kz ∼ αHX/LX (see Eq. (57)). Then,

γ
(1)
5 ∼ 10−6(1 + x2/3)−1 A

Z2Λ
· g14HX3

L−2
X5

s−1. (71)

If Z is not very large and the radius of accretion spots on
the surface is ∼ 100 m, then the growth time of instability
can reach 104 − 105 s. In the non-linear regime, the tur-
bulent velocity induced by this instability is rather small,
∼ 0.1 − 0.01L−1

X5 cm/s, if x ∼ g14 ∼ HX3 ∼ 1. Slow tur-
bulent motions induced by the non-oscillatory instability
in the spot can produce slow variations in the X-ray lu-
minocity of accreting pulsars on the same timescale, which
should be longer for accreting neutron stars with a weaker
magnetic field.

Note that the criteria and growth rates of instability
have been derived under the assumption cs > cA or p >
B2/4π. Neglecting the quantum effects, we have p ≈ 9.7×
1022x5/3 dyne/cm2 in the region where the electron gas is
non-relativistic and x ≤ 1. Then, our results applies if

B < Bcr(x) ≈ 1.1× 1012x5/6 G. (72)

Stability properties of the layers where cA > cs (or
B > Bcr) are different from those considered in our study.
Generally, perturbations of T and X can be suppressed
for modes with γ ∼ ωA > ωs. As a result, a strong mag-
netic field in the region where cA > cs can reduce the
growth rate of instabilities by a factor (cA/cs)

2. Therefore,
the turbulent transport on a short time-scale can be sup-
pressed in these layers, and instability is less efficient in
the surface region where cA > cs or

ρ < ρcr ≈ 2.8× 107B
6/5
13 g/cm3. (73)

A difference in turbulent transport between the regions
with ρ > ρcr and ρ < ρcr could produce a qualitative
difference in the burst activity of strongly and weakly
magnetized accreting neutron stars. The thermonuclear
X-ray burst is triggered when H/He burning becomes un-
stable at the base of the accumulated layer, at a density
∼ 105 − 106 g/cm3 (see, e.g., Bildsten 1998, Cumming

& Bildsten 2000). However, strongly magnetized accret-
ing neutron stars are not observed among X-ray bursters,
despite accretion at rates for which the burning of H/He
should be unstable. This is usually considered as evidence
that material is not spreading over the surface on short
timescales, so the local accretion rate is high enough to
stabilize the burning (Joss & Li 1980). In this model, the
burning can be stabilized if spreading is suppressed only
in the surface layer above the region with ρ ∼ 105 − 106

g/cm3 (or x < 0.1 − 1) where the H/He burning occurs.
One can estimate from Eq. (72) that instability and mix-
ing become less efficient in the layers with ρ < 105 − 106

g/cm3 if

B > Bcr(x ∼ 0.1− 1) ∼ 1011 − 1012 G. (74)

Therefore, one can expect that the accreted material is
spreading over the surface layer with ρ < 105− 106 g/cm3

on a short timescale only in weakly magnetized neutron
stars with B < 1011 − 1012 G, and the H/He burning in
such stars should be unstable. On the contrary, in strongly
magnetized neutron stars with B > 1011 − 1012 G, the
spreading over the surface layer requires a longer time,
and these neutron stars will not manifest themselves as X-
ray bursters. The difference between strongly and weakly
magnetized accreting neutron stars will be considered in
more detail in a forthcoming paper.
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