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ABSTRACT

We present a systematic numerical study of the effect of turbulent velocity

fluctuations on the thermal pressure distribution in thermally bistable flows. The

turbulent fluctuations are characterized by their rms Mach number M (with re-

spect to the warm medium) and the energy injection wavenumber, kfor = 1/ℓ,

where ℓ is the injection size scale in units of the box size L =100 pc. The nu-

merical simulations employ random turbulent driving generated in Fourier space

rather than star-like heating, in order to allow for precise control of the parame-

ters. Our range of parameters is 0.5 ≤ M ≤ 1.25 and 2 ≤ kfor ≤ 16. Our results

are consistent with the picture that as either of these parameters is increased, the

local ratio of turbulent crossing time to cooling time decreases, causing transient

structures in which the effective behavior is intermediate between the thermal-

equilibrium and adiabatic regimes. As a result, the effective polytropic exponent

γe of the simulations ranges between ∼ 0.2 to ∼ 1.1, and the mean pressure of

the diffuse gas is generally reduced below the thermal equilibrium pressure Peq,

while that of the dense gas is increased with respect to Peq. The fraction of

high-density zones (n > 7.1 cm−3) with P > 104 K cm−3 increases from roughly

0.1% at kfor = 2 and M = 0.5 to roughly 70% for kfor = 16 and M = 1.25. A pre-

liminary comparison with the recent pressure measurements of Jenkins (2004)

in CI favors our case with M = 0.5 and kfor = 2. In all cases, the dynamic

range of the pressure in any given density interval is larger than one order of

http://arxiv.org/abs/astro-ph/0504444v2


– 2 –

magnitude, and the total dynamic range, summed over the entire density range,

typically spans 3–4 orders of magnitude. The total pressure histogram widens

as the Mach number is increased, and moreover develops near-power-law tails at

high (resp. low) pressures when γe . 0.5 (resp. γe & 1), which occurs at kfor = 2

(resp. kfor = 16) in our simulations. The opposite side of the pressure histogram

decays rapidly, in an approximately lognormal form. This behavior resembles

that of the corresponding density histograms, in spite of the large scatter of the

pressure in any given density interval. Our results show that turbulent advec-

tion alone can generate large pressure scatters, with power-law high-P tails for

large-scale driving, and provide validation for approaches attempting to derive

the shape of the pressure histogram through a change of variable from the known

form of the density histogram, such as that performed by Mac Low et al. (2004).

Subject headings: ISM: structure — instabilities — turbulence — hydrodynamics

— ISM: kinematics and dynamics

1. Introduction

The atomic interstellar medium (ISM) is generally believed to be thermally bistable.

This property arises because the neutral gas is thermally unstable for 300 K . T . 5000 K

under the isobaric mode of thermal instability (TI; Field 1965; see also the review by Meerson

1996), allowing for a configuration in which gas with temperatures above and below this range

can coexist in thermal pressure equilibrium (Field, Goldsmith & Habing 1969; Wolfire et al.

1995, 2003), being mediated by a thin interface of thickness comparable to the conductive

length (Begelman & McKee 1990). This tendency of the HI gas to naturally segregate in two

phases has long been thought to be the dominant mechanism in forming and maintaining

cold cloudlets of sizes ∼ 0.1 pc confined by the thermal pressure of a warm, dilute substrate.

On the other hand, the ISM is known to be globally turbulent, with numerous kinds of

energy sources acting on a wide range of scales (e.g., Scalo 1987; Norman & Ferrara 1996),

including spiral arm shocks, large-scale combined instabilities, supernova and HII-region

energy input, etc. (see, e.g., Mac Low & Klessen 2004 for a review). The net effect is to

produce and maintain a turbulent velocity dispersion that is transonic with respect to the

warm gas, and supersonic with respect to the cold medium (e.g., Heiles & Troland 2003).

In recent years the interplay between TI and turbulence has been studied by several

groups. Some of the main issues are: The development and signatures of TI in a turbulent

ISM (e.g. Vázquez-Semadeni, Gazol & Scalo 2000; Sánchez-Salcedo, Vázquez-Semadeni &
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Gazol 2002; Vázquez-Semadeni et al. 2003), the triggering of TI by strong compressions

in the warm medium (Hennebelle & Pérault 1999, 2000), the generation of turbulence at

the nonlinear stages of development of TI (Koyama & Inutsuka 2002; Kritsuk & Norman

2002), the production and maintenance of small-scale cold structures (Burkert & Lin 2000;

Koyama & Inutsuka 2000, 2002; Audit & Hennebelle 2005), the interaction between TI and

magneto-rotational instability (Piontek & Ostriker 2004) the production and maintenance

of significant amouts of gas at thermally unstable temperatures (Gazol et al. 2001; Audit

& Hennebelle 2004), as motivated by the reports of several observational studies (Dickey,

Salpeter & Terzian 1977; Kalberla, Schwarz & Goss 1985; Spitzer & Fitzpatrick 1995; Fitz-

patrick & Spitzer 1997; Heiles 2001; Heiles & Troland 2003; Kanekar et al. 2003), and the

thermal pressure distribution in the turbulent ISM (Audit & Hennebelle 2004; de Avillez &

Breitschwerdt 2004; Mac Low et al. 2004; see also Vázquez-Semadeni et al. 1995; Korpi et

al. 1999 for discussions of cases without thermal bistability.)

Physical discussions of the effect of turbulent velocity fluctuations in a thermally bistable

medium have been given by Sánchez-Salcedo & al. (2002), Vázquez-Semadeni et al. (2003),

Wolfire et al. (2003), and Audit & Hennebelle (2004). The first two of these works noted

that velocity fluctuations induce perturbations on the gas that can range from behaving

adiabatically, when the turbulent crossing time τt across the perturbation size scale is much

shorter than the cooling time τc, to behaving according to the thermal equilibrium condition

between cooling and heating, in the opposite limit. The turbulent crossing time, in turn,

depends on the scale and amplitude of the velocity fluctuations, and therefore the higher the

Mach number, or the smaller the typical scale of the turbulence, the higher the fraction of

fluid parcels that are expected to transiently behave closer to an adiabatic regime, and farther

away from thermal equilibrium. Sánchez-Salcedo & al. (2002) and Vázquez-Semadeni et al.

(2003) used this to explain the presence of significant amounts of gas with temperatures

corresponding to the unstable range. Audit & Hennebelle (2004) have further quantified the

problem by producing a semi-analytical model that follows the stretching of a fluid parcel

due to the shearing components of the turbulence while it seeks thermal equilibrium, to give

a relation between the amplitude of this component and the amount of thermally unstable

gas present in the flow. Finally, Wolfire et al. (2003) have given an estimate of the ratio η of

the turbulent crossing time to the cooling time in the warm neutral medium, finding values

0.3–0.9, which led them to suggest that this medium should often exhibit non-equilibrium

temperatures.

These results have implications for the thermal pressure PDF in the flow. As a fluid

parcel departs from thermal equilibrium, its pressure also departs from the equilibrium value,

and we expect a distribution of the thermal pressure around its thermal equilibrium value at

a given density, determined by the distribution of Mach numbers of the velocity fluctuations.
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This holds even in the absence of direct local heating.

The thermal pressure probability density function (PDF) varies significantly among

different models of the ISM. In the simplest equilibrium multiphase model (Field et al. 1969),

the thermal pressure PDF is simply a delta function at the mean value of the pressure in the

midplane. If this value encompasses the unstable range, then the medium is expected to be

segregated into the two phases, both at the mean, equilibrium pressure, but with densities

and temperatures bracketing the unstable range. The next level of complexity was added by

including supernova heating (Cox & Smith 1974; McKee & Ostriker 1977). In particular, the

McKee & Ostriker (1977) model implied a piecewise power-law pressure PDF (Jenkins, Jura

& Lowenstein 1983; see also Mac Low et al. 2004) with slope −19/9 for P ≤ Pc and −23/9

for P > Pc, where Pc/k = 103.67 cm−3K. Moreover, the model predicted no pressures below

the equilibrium pressure of the warm and cold phases. This distribution, however, follows

from a consideration of the probability of a given point in space belonging to a hot supernova

remnant, and the theoretical evolution of these remnants, not from a consideration of the

local thermodynamic changes in the gas due to the turbulent compressions and rarefactions

(advection) that are induced by the supernova energy injection.

Inclusion of advection is naturally accomplished in numerical models of the star-driven

ISM (see Vázquez-Semadeni 2002 for a review). In particular, the recent papers by Mac

Low et al. (2004) and de Avillez & Breitschwerdt (2004) have discussed the pressure PDF

resulting in their simulations, albeit they appear to obtain different functional forms for it:

Mac Low et al. find a lognormal PDF, while de Avillez & Breitschwerdt find PDFs that

appear closer to a power law, with a slope in fact not too different from that predicted

by McKee & Ostriker (1977). From the lognormal shape of their PDF, Mac Low et al.

conclude that it originates from the density PDF for an isothermal turbulent flow. However,

in those simulations it is not possible to disentangle the pressure fluctuations induced purely

by turbulent motions, and those due to direct heating from nearby stellar sources.

Observationally, significant pressure fluctuations have been reported in the cold medium.

Jenkins et al. (1983) found, using Copernicus observations of CI, variations greater than an

order of magnitude in the cold gas pressure with small amounts of gas at up to P/k =

105 K cm−3. More recently, Jenkins & Tripp (2001) used the Space Telescope Imaging

Spectrograph (STIS) to confirm this result with better resolved data. Additionally they

found that their results implied an effective polytropic index for the cold gas γ > 0.9, which

is larger than the γ = 0.72 derived by Wolfire et al. (1995) for cold gas at thermal equilibrium,

mentioning that this could be due to the fact that compressed regions may have a cooling

time larger than the dynamical time, so it may behave closer to adiabatically. Finally, it is

well known that in the local ISM there is an apparent pressure imbalance between the hot
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(T ∼ 106K, P/kb ∼ 11, 000K cm−3) and the warm (T ∼ 6, 700K, P/kb ∼ 2, 300K cm−3) gas

(see e.g. Jenkins 2002; Redfield & Linsky 2004).

In this paper, we present a systematic study aimed at investigating in detail the ef-

fects of turbulent velocity fluctuations on a thermally bistable flow, in particular on the

transition from nearly-adiabatic to near-thermal equilibrium behavior, and on the PDF of

thermal pressure. The simulations we present here are not intended as accurate models of

the ISM, but instead as numerical experiments allowing us to clearly identify the effects of

two fundamental turbulent parameters, the rms Mach number M and the energy injection

scale (characterized by its wavenumber kfor), on the thermodynamic response of a thermally

bistable flow. For this reason, we have opted for using Fourier random driving, trading

up realism for accurate control of these parameters, and consider non-magnetic, non-self-

gravitating flows. Also, in order to allow for the large number of simulations needed to cover

a significant range in parameter space, we have restricted most of the simulations to two

dimensions, although we present a few selected cases in three dimensions (3D) in order to

check that the main trends observed the two-dimensional runs are preserved in 3D.

The outline of the paper is as follows. In §2 we describe the model used for the simu-

lations and its limitations, and in §3, we present convergence tests for this model. In §4 we

then present the main results, concerning the effective thermodynamic behavior of the flow

and the pressure PDF, both in global form and in specific density intervals, as the parameters

M (§4.1) and kfor (§4.2) are varied. Then, in §5 we discuss these results in the context of the

simple physical scenario of a transition from near–thermal-equilibrium to near-adiabaticity

(§5.1), we show persistence of the main trends in 3D (§5.2), and we discuss some implications

of our results for previous models and simulations (§5.3). Finally, in §6 we give a summary

and some conclusions.

2. The Model

2.1. Prescription

We solve the hydrodynamic equations, including the energy equation, to simulate a

region of 100 pc on a side, with periodic boundary conditions. The simulations discussed in

this paper are in two dimensions (2D) except for those described in §5.2.

The equations are solved by means of a MUSCL-type scheme (Monotone Upstream-

centered Scheme for Conservation Laws) with HLL Riemann solvers (Harten, Lax, & van

Leer 1983; Toro 1999), augmented with model terms for radiative cooling and background

heating, and a prescription for random turbulent forcing. The background heating is taken
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as a constant Γ0 = 2.51× 10−26erg s−1H−1, where “H−1” means “per Hydrogen atom”. This

is the value of the photo-electric heating rate at density n = 1 cm−3 reported by Wolfire et

al. (1995), and is roughly within half an order of magnitude of its value throughout the range

10−2cm−3 ≤ n ≤ 103cm−3, as reported by those authors. We then use this value to fit the

“standard” equilibrium P vs. ρ curve of Wolfire et al. (1995) assuming that the background

heating is in equilibrium with a cooling function that has a piece-wise power-law dependence

on the temperature. We find (Sánchez-Salcedo et al. 2002)

Λ =



























0 T < 15K

3.42× 1016T 2.13 15K ≤ T < 141K

9.10× 1018T 141K ≤ T < 313K

1.11× 1020T 0.565 313K ≤ T < 6101K

2.00× 108T 3.67 6101K ≤ T



























(1)

where the coefficients have units of erg s−1g−2cm3K−β, with β being the temperature ex-

ponent in the corresponding interval. Under thermal equilibrium conditions, the gas is

thermally unstable under the isobaric mode for 313 K < T < 6102 K, and marginally stable

for 141 K < T < 313 K. In thermal equilibrium, the transition temperatures T = 6102, 313

and 141 K correspond to densities n = 0.60, 3.2 and 7.1 cm−3, respectively.

The turbulent driving is 100% solenoidal, and is done in Fourier space at a specified

narrow two- or three-dimensional wavenumber band, kfor−1 ≤ k ≤ kfor, where k ≡
√

k2
x + k2

y

in 2D and k ≡
√

k2
x + k2

y + k2
z in 3D, and with the Gaussian deviates having zero mean and

unitary standard deviation. The amplitude of velocity perturbations is fixed by a constant

injection rate of kinetic energy as in the prescription of Mac Low (1999), although with the

difference that we use a different random seed at each driving time. The kinetic energy input

rate is chosen as to approximately maintain a desired sonic Mach number.

In the set of simulations presented in §4, the fluid is initially at rest and has a uniform

density (n0 = 1 cm−3) and temperature (T0 = 2399 K), so that, in the absence of turbulence,

the medium would spontaneously segregate into warm-diffuse (n = 0.34 cm−3, T = 7104 K)

and cold-dense (n = 37.2 cm−3, T = 64.5 K) phases. The time unit t0 is chosen to be the

sound crossing time across the numerical box at a speed of 9.1 km s−1, corresponding to the

isothermal sound speed at 104 K. Thus, t0 = 10.8 Myr. Mach numbers are expressed with

respect to this sound speed.

For the parameters we use as initial conditions, and in the presence of realistic thermal

conductivity (see §3), the maximum linear growth rate occurs at scales ∼ 8.3 pc, while

the so called Field length (the minimum unstable scale) is 0.7 pc. In our simulations,

thermal conductivity is not included, other than the numerical diffusion caused by the finite-

differencing. This causes a “numerical Field length” ∼ 3 pc in simulations at a resolution
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of 5122, with the maximum growth rate occurring at scales between 12.5 and 25 pc, as

determined through the tests described in §3. Thus, the unstable wavelength range in our

simulations is somewhat more compressed than the real unstable range in the linear regime.

We discuss the neglect of thermal conductivity further in §2.2.2, and resolution issues in §3.

2.2. Features and limitations of the model

2.2.1. Random Fourier driving

In the simulations presented here, the turbulence is driven using a random scheme

executed in Fourier space. This means that every point in physical space is subject to a

force at any given time. This is not a very realistic way of driving the turbulence, as in

the real ISM the driving sources, such as supernova explosions or spiral-arm shock waves

are localized in space. Nevertheless, turbulence is expected to “propagate away” from the

localized sources (Avila-Reese & Vázquez-Semadeni 2001), generating a general turbulent

flow. More importantly, we choose this form of driving because of two reasons. First, it

allows us to precisely control the scale of energy injection as well as the rms Mach number

in the flow. This is very important, because one of our motivations is to test the scenario

described in Sánchez-Salcedo et al. (2002) and Vázquez-Semadeni et al. (2003) that velocity

fluctuations behave closer to an adiabatic regime as the turbulent crossing time becomes

shorter than the cooling time, and the turbulent crossing time is directly a function of the

scale size and amplitude of the velocity perturbations.

The second reason is that random Fourier driving guarantees that all pressure fluc-

tuations that develop are caused purely by advection (fluid transport) and not by direct

injection of heat by stellar sources, allowing us to isolate the effects of velocity fluctuations

on the pressure distribution. This implies that the widths of the pressure distributions in our

simulations should constitute a lower limit to the actual widths expected in the actual ISM,

in which the energy is injected as heat by stellar sources, directly raising the local pressure,

in addition to any effects of the turbulent advection.

2.2.2. Neglect of thermal conductivity

The equations solved in our simulations do not include a model term for the thermal

conductivity. Koyama & Inutsuka (2004) have suggested that thermal conductivity should

always be included in numerical simulations of thermally unstable flows, and that enough

resolution to resolve the so called “Field length” (Field 1965; Begelman & McKee 1990)
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should be always be used, because of mainly two reasons. First, if no thermal conduction at

all is included, then the TI growth rate asymptotically approaches its maximum value as the

perturbation length scale approaches zero. This means that, in a finite-resolution numerical

grid, the smallest resolved scale is maximally unstable, regardless of the resolution used,

creating numerical problems. However, in practice this does not occur, as the numerical

diffusion of the code creates a “numerical Field length”, that is, a minimum unstable scale

larger than the grid cell size, even if it does not have the same functional temperature

dependence as the actual Field length. Indeed, we have verified that density perturbations

of amplitude 2.5% and wavelength λ = 16 pixels (3.1 pc) in a simulation of resolution 5122

remain stationary (thus being the “numerical Field length”), while pertubations with λ = 4

pixels (0.8 pc) are completely damped in times ∼ 3 Myr. This timescale is comparable to the

e-folding time of the growing modes described in §3. Thus, numerical diffusion adequately

prevents instability of the smallest resolved scales. Because of the very small wavelength,

numerical dissipation is more effective than TI, which results in damping rather than growing

of the perturbation.

Note that Koyama & Inutsuka (2004) also warned that if no realistic thermal conductiv-

ity is employed, then the results are resolution-dependent, because the characteristic scale of

numerical diffusion depends on the resolution. Thus, they concluded that, in order to have

numerically converged results in the presence of TI, one should i) include an explicit conduc-

tion term that is larger than the conduction due to numerical diffusion, ii) use a cell size that

is smaller than one third of the conductive Field length. However, for the global properties

that interest us here, such as PDFs of thermal pressure and density, the difference between

the effects of numerical diffusion and of an explicit conduction term, whose associated Field

length is comparable or smaller than the cell size, is probably not significant. Indeed, in §3
we show that our simulations are perfectly converged at high densities and pressures (which

is normally the regime of most concern; e.g., Audit & Hennebelle 2004) at the resolution we

use.

The second warning of Koyama & Inutsuka (2004) refers to the possibility of missing

dynamical effects originating from the effects of the thermal conduction. Specifically, they

describe the generation of motions with Mach numbers up to 0.13 due to the pressure gra-

dients generated by the conductivity. Moreover, in their simulations of the development of

TI alone, these motions cause the resulting condensations to coalesce, so that at the end of

the simulation the number of condensations has decreased by almost a factor of 2. However,

Koyama & Inutsuka (2004) noted that the initial number of condensations formed in their

simulations was determined by the initial fluctuations, not by the inclusion or omission of

thermal conductivity. In addition, the Mach numbers generated in their simulations are at

least 5 times smaller than those of the smallest turbulent motions we impose on the flow, and
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therefore, in our simulations, density fluctuation production and coalescence is dominated

by the turbulent velocity fluctuations, not by TI in the presence of thermal conductivity.

Thus, for our purposes, the motions produced by thermal conductivity can be neglected.

3. Convergence test

Here we present results from 20 simulations tailored to investigate the convergence of

the model described in §2.

We first consider the linear regime. In figure 1 we show the temporal growth of sinu-

soidal density perturbations with an initial amplitude of 2.5%. The spatial period of these

perturbations is 50 pc (upper left panel), 25 pc (upper right panel), 12.5 pc (lower left panel)

and 6.25 pc (lower right panel), respectively corresponding to wave-numbers (kp) of 2, 4,

8 and 16 respectively. The solid, dotted and dashed lines are for resolutions of N = 2562,

5122 and 10242, respectively. The thick line in each frame indicates the theoretical growth

rate at the corresponding scale. To obtain this slope, we have solved the dispersion relation

(Field 1965) using the cooling function described above (eq. (1)) and a realistic, although

temperature-independent, value of the conductivity K = K0 = 5/3(kbT0l/vrms)n0(3kb/2m)

(Lang 1999), where kb is Boltzmann’s constant, and we have taken T0 = 2400K, n0 = 1

cm−3, m = mH , l = 3.2 × 10−3pc and vrms = 5.7 km s−1, the adiabatic sound speed at T0.

These simulations are initially at rest and have a uniform temperature of T0 = 2400K. It

can be seen that for kp = 2, 4, and 8 the linear growth rate of the perturbations in the

simulations at all three resolutions is in good agreement with the theoretical growth rate.

For kp = 16, we see that the run with N = 512 has nearly converged to the correct growth

rate, while the run with N = 256 severely damps the growth of this mode. We conclude

that a resolution N = 512 is an acceptable resolution for capturing the linear growth, in the

presence of realistic conductivity, of modes with sizes down to 1/16 the box size.

We now turn to the nonlinear case, which is the most relevant one for the driven-

turbulence simulations presented in this paper. In figure 2 we display the temporal growth

of sinusoidal density perturbations with an initial amplitude of 2.5% for simulations with

sinusoidal large-amplitude (Mach number 1.0 with respect to the unperturbed medium) ve-

locity perturbations. The velocity and density perturbations are in phase, with wavelengths

6.25 pc (left) and 12.5 pc (right). In this case the comparison with the theoretical growth

rate is not meaningful. However, it can be seen that the difference between the growth rates

for N = 512 and N = 1024 at kp = 16 is smaller than for the pure density perturbation case.

As a final test, we compare the total time-averaged (from 1.1 to 2 simulation sound
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crossing times) pressure and density histograms for two fully turbulent simulations with

driving wavenumber kfor = 2 and rms Mach number M = 1, at resolutions of 5122 and 10242

(fig. 3). We see that the right sides (high values) of the histograms are perfectly converged

at 5122, while the left sides (low values) are approximately so, with the same relative number

of points as the 10242 run in density and pressure intervals within a factor of 3 from the

histogram maximum, and deviations by factors no larger than ∼ 3 in more distant density or

pressure intervals. From all of the above results, we therefore adoptN = 512 as a compromise

between acceptable resolution, and the ability to perform the numerous simulations needed

for this study.

Note that with a box of 100 pc on each side and N = 512, the smallest resolved scale,

even neglecting the effects of numerical diffusion, is ∼ 0.2 pc. This is larger than the typical

size (∼ 0.1 pc) of the cold structures generated by TI and thus our simulations probably

overestimate the sizes of those cloudlets that are formed by the instability rather than by

larger-scale, coherent turbulent compressions, and certainly do not resolve their internal

structure. However, our interest here is in statistical quantities, such as the distribution of the

pressure values at every density interval, and the fraction of the volume occupied by gas with

a given pressure. The fact that the high-value sides of the density and pressure histograms

at 5122 and 10242 resolutions are nearly identical suggests that this information deos not

require resolving the tiniest structures, and is accurately captured by our simulations.

4. Results

We now describe the results of 10 simulations aimed at characterizing the effect of

velocity fluctuations on the thermal pressure distribution in a thermally bistable flow. The

simulations analyzed in the next two sections are performed in 2D, with a resolution of

512 grid points per dimension, whereas the simulations described in §5.2 are performed in

two and three dimensions, with 256 grid points in each direction. The forcing is applied at

wavenumbers of kfor = 2, 4, 8 and 16, implying a driving scale of 50, 25, 12.5 and 6.25 pc

respectively, and has the necessary amplitude to induce turbulent motions with rms Mach

numbers M ∼ 0.5, 1.0 and 1.25. This is intended to represent realistic values of the Mach

number in the warm phase. Of course, actual local Mach numbers can be much higher, as

the temperature is generally lower in higher density gas.

Initially, all our simulations are at rest and have a uniform density (n0 = 1 cm−3) and

temperature (T0 = 2400K). In order to allow the simulations to reach a stationary regime,

we evolve the simulations for at least two crossing times across the turbulence driving scale,

given by t0/Mkfor. Specifically, cases with kfor ≥ 4 are evolved for two code time units (2t0),
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while those with kfor = 2 are evolved for 4t0. These times represent several cooling times at

T0, given by

τcool =
cvT

ρeqΛ(T )
= 6.27× 105 yr,

where cV is the specific heat at constant volume and ρeq is the unstable equilibrium density.

4.1. The effect of the driving scale

We first discuss the response of the pressure to changes in the driving wavenumber kfor,

and so in this section we restrict ourselves to rms Mach numbers M ≈ 1. Recalling that M

is not directly an input parameter of the simulations, but a result of the energy input rate,

the actual value of M differs slightly from the target value. Specifically, its actual values are

M = 0.97, 0.96, 0.92 and 0.95 for the runs with kfor = 2, 4, 8 and 16, respectively.

Figure 4 shows two-dimensional histograms for these runs, giving the number of grid

points in the simulation in a given (P, n) bin. The contours are logarithmic and are set at

10%, 30%, 50%, 70% and 90% of the log10 of the maximum value of the two-dimensional

histogram for each simulation. The histograms are computed at t = 1.5t0 (resp. t = 3.0t0)

for simulations with kfor > 2 (resp. kfor = 2). It is clearly seen that as the driving scale

decreases (kfor increases), the distribution of points shifts away from the thermal equilibrium

curve (denoted by the broken solid line), and towards adiabatic behavior (with slope 5/3).

It is also seen that at low densities a substantial fraction of the points lies below the thermal

equilibrium curve. That is, they have probably been cooled by negative P dV work, and

have not had time yet to warm back up by the background heating. Finally, an interesting

branch of points seems to lie on the extension of the equilibrium curve for the dense gas, but

at densities corresponding to the diffuse gas.

These trends can also be seen in figure 5, which shows temporally-averaged pressure

histograms computed in three density ranges nc/
√
2 ≤ nc <

√
2nc, with nc = 0.1, 1.0 and

10.0 cm−3, corresponding to the warm, unstable and cold ranges. It can be seen that for low

densities the most probable pressure P (Nmax) is in general lower than the thermal equilib-

rium pressure at nc (Peq, denoted in the figure by the vertical lines), and shifts progressively

farther away from it as kfor increases. At densities corresponding to the thermally unsta-

ble range, the most probable pressure increases with increasing kfor, and passes from being

smaller to being larger than Peq. Finally, at nc = 10.0 cm−3, the four histograms peak close

to Peq, although the height decreases rapidly with increasing kfor. Moreover, a high-pressure

tail is present, which becomes more populated and more extended as kfor is increased. Fi-

nally, we note that, in all histograms displayed in figure 5, the dynamic range is larger than
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an order of magnitude.

The time-averaged pressure and density histograms for the whole field of all the sim-

ulations in this group are shown in figure 6. The pressure histograms span 3–4 orders of

magnitude, with both their width and P (Nmax) increasing as kfor increases. Also, the his-

tograms become more skewed, lifting their low-P side. The density histograms are bimodal,

but as kfor increases, the bimodality becomes less pronounced and the histogram becomes

narrower.

4.2. The effect of the Mach number

We now turn to the effect of the rms Mach number on the pressure distribution. To

this effect, in this section we present results from two sets of three simulations each, with

M ∼ 0.5, 1.0 and 1.25, and kfor = 2 and 16. The actual values of M in these simulations are

M = 0.50, 0.97 and 1.25 at kfor = 2, and M = 0.56, 0.95 and 1.25 at kfor = 16.

The two-dimensional histograms in the pressure-density space are shown in figures 7

and 8 for kfor = 2 and 16, respectively. The contours are set at the same levels as in §4.1.
The dynamic range of both density and pressure is seen to increase with increasing M for

both driving scales. For kfor = 2, a slight variation of the mean slope of the distribution of

points can be easily seen, while a clear steepening of the mean slope is observed at kfor = 16.

This variation is summarized in fig. 13 for all runs. Finally, the tendency of the pressure

distribution to shift away from thermal equilibrium for smaller driving scales, reported in

the previous section, is seen for all three values of M .

The pressure histograms for specific density intervals show a variety of behaviors. For

kfor = 2 (fig. 9), the histogram centered on nc = 0.1 cm−3 shifts from being narrow and

peaking very close to Peq at M = 0.5 to a wider distribution peaking below Peq at M = 1

and 1.25. The histograms for the unstable gas at nc = 1 exhibit almost no shift of their peak

P (Nmax), which is located a half order of magnitude below Peq, as M is increased, although

the high-P tail becomes higher, with a shallower slope, and extends to higher pressures. In

the high-n range, the histograms show almost no change in P (Nmax), but the high-P tail

becomes progressively shallower, and extends up to higher values, as M is increased.

For kfor = 16 (fig. 10), the histograms at nc = 0.1 cm−3 and nc = 1 cm−3 show little

variation in shape and in P (Nmax), although the histogram at nc = 0.1 almost doubles its

height, indicating that a higher fraction of the volume in the simulation is occupied by diffuse

gas as M is increased. This is compensated by a decrease in the volume occupied by the

dense, nc = 10 cm−3 gas, which moreover experiences an increment of roughly one and a
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half orders of magnitude in its typical pressure P (Nmax).

In the pressure histograms for the whole simulations (fig. 11 left) at kfor = 2, the

different behavior between the run with M ∼ 0.5 and those with M ∼ 1.0 and M ∼ 1.25 is

also evident. In the former case the histogram is narrower and close to lognormal, although

with a high-P tail for P & 104 K cm−3. As M increases, P (Nmax) shifts to slightly lower

pressures, and the high-P tail reaches closer to the histogram peak, lifting the entire high-P

side of the histogram and causing it to approximate a power law. On the other hand, the low-

P side of the histogram widens with increasing M , but never seems to lose its approximately

lognormal shape.

In the density histograms for kfor = 2 (fig. 11 right), the distinction between M ∼ 0.5

and the other two cases is also noticeable. The bimodal shape of the histogram becomes less

pronounced as M is increased, with n(Nmax) shifting slightly towards lower densities. The

histogram width increases with increasing M , at least in the range explored.

For kfor = 16 (fig. 12, left), the high-P branch in the pressure histogram decays faster

than the low pressure one at all values of M , and its slope is almost independent of M ,

although P (Nmax) shifts to higher pressures. In this case again the histogram becomes

broader with increasing M , but mainly because the low-P tail is lifted and extends to lower

pressures.

Concerning the density histograms, similarly to the case with kfor = 2, for kfor = 16,

an increase in M leads to a less bimodal density histogram (fig. 12, right), but in this case,

the histogram broadens with increasing M , although mainly by lifting its low-n tail. A

comparison between the density histograms shown in figures 11 and 12 confirms the fact,

discussed in previous section, that the density distribution becomes narrower with increasing

kfor.

5. Discussion

5.1. A unified physical picture

The main results of §4 can be summarized as follows: (1) The distribution of points

in the P -n diagram widens and steepens as either M or kfor are increased. (2) The mean

pressure in a given density interval drifts away from the equilibrium value Peq as kfor is

increased, moving towards P > Peq for the dense gas, and towards P < Peq for the diffuse

gas. (3) The pressure histograms in these density ranges as well as the global pressure

histograms are generally skewed, and tend to reverse their skewness with increasing kfor. (4)
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The pressure histograms in specific density ranges increase their width as M is increased.

(5) The global pressure histograms develop one near-power-law side and one near-lognormal

side. For low kfor, the near-power-law develops on the high-P side, while for high kfor the

near-power-law side develops at low P . In general, the slope of the power law flattens as M

is increased.

Most of these results can be understood simply as a consequence of the turbulent cross-

ing time becoming shorter in local compressions as either the Mach number M or the driving

wavenumber kfor are increased, creating a larger fraction of compressions that evolve closer

to adiabatically, and thus temporarily drift away from thermal equilibrium. Indeed, for our

choice of parameters, the cooling and sound crossing times in the unstable gas are equal at a

scale λeq ∼ 4 pc. For the warm medium in thermal equilibrium, this scale increases to ∼ 23

pc. The scale λeq also applies for equality of the turbulent crossing time and the cooling time

for Mach-1 motions. Below this scale, classical isobaric perturbations would evolve nearly

isobarically, because condensation occurs on roughly the cooling time, which is longer than

the time needed to restore pressure balance (the sound crossing time). However, velocity

perturbations below this scale generate perturbations that approach adiabatic behavior as

their Mach number increases, because in this case the externally-applied turbulent compres-

sion exerts PdV work on the fluid parcel, heating it on timescales shorter than the cooling

time. Adiabatic perturbations are stable to first order (Field 1965), and imply that the

pressure increases with increasing density. The net behavior in transonic flows is expected

to be intermediate between thermal equilibrium and adiabaticity.

The tendency towards adiabatic behavior causes a progressive increase in the slope (or

effective polytropic exponent, γe) of the ensemble of points in the P -n diagram (fig. 13,

left panel). This causes a decrease in the mean pressure of the diffuse gas, and an increase

in the mean pressure of the dense gas, because the point distribution is centered in the

unstable range. For the dense gas, this furthermore causes a tendency towards producing

flatter-topped histograms, because the fraction of high-pressure zones increases, but the

short cooling time at those densities always produces a significant fraction (most frequently

a majority) of points near Peq. Only for the case with the highest M and kfor does the

peak of the pressure histogram for the dense gas shift to the high-P part of the histogram.

Nevertheless, the fraction of zones in the simulations with P ≥ 104 K cm−3 is seen to increase

monotonically with either M or kfor (fig. 13, right panel). The fraction of the total number of

cells with n > 7.1 cm−3 and P ≥ 104 K cm−3 increases from 0.07% at kfor = 2 and M = 0.5

to 69% at kfor = 16 and M = 1.25.

In addition, larger rms Mach numbers are known to cause wider density PDFs (Padoan

et al. 1997; Passot & Vázquez-Semadeni 1998), with the amplitude of the density fluctuations
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depending on γe (Vázquez-Semadeni et al. 1996). As a consequence, wider pressure PDFs

are also expected for stiffer-than-isobaric (i.e., γe > 0) behavior, in which the pressure is

positively correlated with the density.

For the density PDF, Passot & Vázquez-Semadeni (1998; see also Scalo et al. 1998;

Nordlund & Padoan 1999) showed that the density PDF is lognormal for isothermal flows

(γe = 1; see also Vázquez-Semadeni 1994), but develops a power-law tail at high densities

for γe < 1, and at low densities for γe > 1. A similar trend is also observed here in response

to the resulting effective polytropic exponent: simulations with kfor = 2 have γe . 0.5 (fig.

13, left), and their resulting density PDFs are skewed to the left, with shallower high-n tails

that extend further from the PDF peak than the low-n side (fig. 11 right), although with

signatures of the bimodality associated with the thermal bistability for the cases with the

lowest-M . Instead, simulations with kfor = 16, have density PDFs in which the low-n side is

shallower and generally more extended, although again with signatures of bimodality on the

high-n side at low M (fig. 12 right). Thus, the kfor = 2 runs generally behave as if having

γe < 1, while kfor = 16 runs behave as if having γe > 1.

Interestingly, this dependence of the density PDF on γe is also apparent in the pressure

histograms, and in fact it is even more pronounced, as can be seen in figs. 11 and 12 (left

panels). This is somewhat surprising, given the large scatter of the P -n points in any given

density interval. Naively, one would expect that such a large scatter would preclude any

copying of the density-PDF features into the pressure histogram. Indeed, most features of

the distribution do not survive the change of variable from density to pressure. This is the

case of the scaling of the histogram width or the shift in position of the histogram peak with

Mach number. Nevertheless, the development of a near power-law tail depending on the

value of γe does seem to be preserved, and even amplified, in the pressure histogram.

5.2. Three-dimensional tests

The results from §§4.1 and 4.2 have been obtained in two-dimensional (2D) simulations

exclusively, and it is thus important to determine whether these results are expected to persist

in three dimensions (3D). The distinction between the 2D and 3D cases has been extensively

discussed by Vázquez-Semadeni (1994) and Avila-Reese & Vázquez-Semadeni (2001). These

authors have argued that the distinction is less pronounced in the highly compressible case,

in which shocks are an important ingredient in the dynamics. This is because shocks are

essentially one-dimensional structures, independently of the dimensionality of the global flow.

In order to confirm this expectation in the case of our particular problem, in this section
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we present a comparison between selected cases in 2D and 3D, using simulations with 256

grid points in each direction. The 3D simulations are performed using a parallel version of

the code. We first consider two simulations with kfor = 2 and M ∼ 0.9, one in 2D and the

other in 3D. The precise Mach numbers are 0.90 and 0.85, respectively. Figure 14 shows

the total histograms of pressure (left) and density (right). There we see that the pressure

distribution of the 3D run is systematically shifted to higher values, by a factor . 2, with

respect to that of the 2D one. On the other hand, the density distributions of the two runs

coincide at high densities, but the 3D case has its peak and its low-density side again shifted

to higher densities by about a factor of 2.

We speculate that these effects may be due to the fact that the density peaks are built

by compressions of varying dimensionality, up to the dimensionality of the flow. The higher

fraction of low-density regions in 2D can be understood as a consequence that a peak of

a given average density and size contains a larger fraction of the total mass in 2D than in

3D. Thus, the “voids” surrounding the peaks are more heavily evacuated, giving a higher

fraction of low-density zones and histograms that extend to lower values of the density. This

typically lower density of the voids in 2D can also explain the typically lower values of the

pressure at the low-pressure side of the distribution. On the other hand, for a density peak

formed by a compression at a given characteristic velocity Ṙ ≡ dR/dt, the density varies

more rapidly in 3D than in 2D. That is, assume that ρ ∝ MR−m, where M and R are

respectively the mass and radius of the compressed parcel, and m = 2 in 2D and 3 in 3D.

Then ρ̇ = −mMR−m−1Ṙ, and the density rate of change is larger in 3D than in 2D at a

given compression velocity Ṙ. Thus, in 3D the characteristic time for variation of the density

is comparatively shorter than the cooling time in 3D, and the behavior should be slightly

closer to adiabatic, explaining the higher transient pressures in 3D at high densities.

Nevertheless, the differences in the histograms in 2D and 3D are relatively minor, prob-

ably because the occurrence of high-dimensional compressions must be a relatively rare event

in comparison with one-dimensional ones (shocks). The pressure distribution in 3D is shifted

by factors not larger than 2 in the 3D case, and in fact the P -n relation is very similar in the

2D and 3D cases, as seen from two-dimensional histograms in the pressure-density space (fig.

15), with the main difference being that the distribution of points in the 3D case extends

slightly farther above the thermal equilibrium curve at densities n ∼ 1 cm−3. The least

squares slopes of the distributions are also very similar, at 0.35 and 0.38 for 2D and 3D,

respectively.

The trends described in previous sections for the pressure and density distributions

resulting from 2D simulations as M and kfor are varied are also maintained in the 3D case.

In fig. 16a and b we respectively show the pressure and density histograms resulting from
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three simulations with (M, kfor) = (0.85, 2), (0.90, 8), and (1.35, 2). It can be observed that

as kfor increases, the width of the pressure distribution and the value of P (Nmax) increase

while the density histogram becomes narrower and with a less pronounced bimodality. On

the other hand, when the value ofM is increased, the pressure distribution widens noticeably,

while the density distribution widens marginally; also, the bimodality of the latter is slightly

less pronounced.

Finally, the fraction of cells with n > 7.1 cm−3 and P ≥ 104 K cm−3 for the 3D

simulation with kfor = 2 and M = 0.85 is 1.3%, while that obtained in the 2D run with

kfor = 2 and M = 0.97 is 1.2%, again showing a high consistency between the 2D and 3D

cases.

We conclude that the results obtained from the 2D simulations presented in §§4.1 and

4.2, as well as the discussion from §5.1, still hold in 3D.

5.3. Relation to previous work

Our results support the scenario that in a turbulent, thermally bistable flow, there

exists a fraction of fluid parcels that are out of thermal equilibrium, and that this fraction

depends on the local ratio η of the turbulent crossing time to the cooling time. Recently,

Wolfire et al. (2003) have estimated this ratio for the warm neutral medium (WNM), using

an approximation for the turbulent crossing time given by tshock ∼ λs/cs (i.e., the “mean

time between shocks”), where cs is the sound speed and λs is the scale at which the typical

turbulent velocity difference equals cs. We refer to λs as the “sonic” scale. Wolfire et al.

(2003) estimated λs ∼ 200 pc for the WNM, and ∼ 0.3 pc for the cold neutral medium

(CNM), although they warned that this is a very uncertain quantity. With these estimates,

they found η ∼ 0.3–0.9 for the WNM, concluding that non-equilibrium temperatures should

often be found in the WNM, in agreement with observations (Dickey et al. 1977; Kalberla

et al. 1985; Spitzer & Fitzpatrick 1995; Fitzpatrick & Spitzer 1997; Heiles 2001; Heiles &

Troland 2003; Kanekar et al. 2003) and previous numerical studies (Gazol et al. 2001).

This conclusion is also consistent with our present results. Adopting their value of

∼ 200 pc for λs, and a Kolmogorov velocity dispersion scaling law ∆v ∝ λ1/3, appropriate

for incompressible turbulence, we see that the rms Mach number with respect to the WNM

at a scale of our simulation boxes (100 pc), should be ∼ 2−1/3 ≈ 0.8. Thus, based on

their estimates, the WNM on scales of 100 pc should be bracketed by our simulations with

M = 0.5 and M = 1, at the largest driving scales (kfor = 2), with the M = 1 case being the

most relevant.
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However, it is possible that the above regime, arrived at through the considerations of

Wolfire et al. (2003), still somewhat underestimates the role of turbulence. Those authors

noted that, because of the scaling of the turbulent velocity with size, below the sonic scale

the medium should roughly be in pressure equilibrium. However, this does not guarantee

that thermal instability will be fully unimpeded in the generation of the density structures

below this scale. As discussed by Vázquez-Semadeni et al. (2003), in a turbulent, thermally-

bistable flow, there are three competing timescales: the sound crossing time τs, the turbulent

crossing time τt, and the cooling time τc. In the standard linear analysis (Field 1965), the

largest growth rate of the instability is given by the inverse of the cooling time, which is

independent of scale in the linear regime. This largest growth rate occurs at an intermediate-

wavelength regime λF ≪ λ . λeq, where λF is the Field length and λeq is the scale at which

τs ∼ τc (c.f. §5.1). On the other hand, the sound and turbulent crossing times do depend

on scale, with τs ∝ λ and τt ∝ λ2/3 (assuming an incompressible Kolmogorov spectrum),

or τt ∝ λ1/2 (assuming a highly compressible, Burgers-like spectrum, appropriate for the

unstable range). So, even though indeed the ratio of sound-to-turbulent crossing times

becomes progressively smaller with decreasing scale size, the ratio η ≡ τt/τc also becomes

smaller. This suggests that nearly incompressible, shearing turbulent fluctuations may have

time to disrupt TI-induced condensations before they grow, at least partially. This effect

may be enhanced in the presence of magnetic fields, which increase the solenoidal (shearing)

fraction of the turbulent kinetic energy (Vázquez-Semadeni et al. 1996). Indeed, even in our

weakest-turbulence (largest-η) simulations (M = 0.5, kfor = 2), the bimodality of the density

PDF (caused by the thermal bistability) is moderate (fig. 11 right panel), and the global

effective polytropic exponent is already positive across the thermally unstable range (fig. 13,

left panel)).

Our results also have the implication that the development of a high-P power-law tail

is not exclusive to supernova-driven models, such as the McKee & Ostriker (1977) model,

and that pure advective driving can generate approximate power-law tails in low-γe flows at

sufficiently high Mach numbers. On the other hand, noting that we also obtain lognormal-

like shapes in the high-P sides of the PDFs for large kfor suggests that the formation (or

not) of power-law tails in the pressure PDF depends on γe.

Finally, the fact that the pressure histogram partially copies features of the density

histogram, in particular the production of power-law tails as a function of γe, gives validation

to the approach used by Mac Low et al. (2004), who applied a change of variable from density

to pressure in order to understand the functional form of the pressure PDF from the known

shape of the density PDF. On first account, such a procedure might be questioned because

of the large scatter exhibited by the pressure at any given density, but our results suggest

that it may be valid on average.
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Observationally, Jenkins (2004) has recently presented histograms of the pressure in

observations of CI, which can in principle be compared with our results, as well as with

pressure histograms from full ISM simulations, like those of Mac Low et al. (2004) and

de Avillez & Breitschwerdt (2004). However, at this point such a comparison is ambiguous,

because Jenkins (2004) had to assume an effective polytropic exponent in order to correct for

an over-representation of dense points in his observational sample. Since our results indicate

that γe determines the shape of the pressure histogram, it appears difficult to disentangle

this physical role of γe from its possible role in biasing the observed pressure distribution.

A detailed attempt to perform such a comparison will be presented elsewhere, but here we

just note that our fraction of points with P ≥ 104 K cm−3 for the case M = 0.5, kfor = 2, of

order 0.07%, appears consistent with the fraction reported by Jenkins (2004) for approximate

thermal equilibrium in the cold medium, also ∼ 0.1%.

6. Conclusions

In this paper we have carried out a systematic study of the effect of turbulent velocity

fluctuations, characterized by their rms Mach number M and the energy injection wavenum-

ber, kfor, on the thermal pressure distribution in a thermally bistable flow. To this end we

have performed a large number of 2D simulations varying those two parameters in 100-pc

boxes with random turbulent driving generated in Fourier space, which allows precise control

of the parameters. A few test cases in 3D suggest that the 2D results are valid in 3D as well.

Our results are consistent with the picture that as either of these parameters is increased,

the ratio of turbulent crossing time to cooling time decreases, causing a departure from

thermal equilibrium, and an approach towards an adiabatic behavior. This translates into

an increase of the effective polytropic index γe, as measured by the slope of the distribution

of points in the pressure-density diagram, in turn creating a population of underpressured

zones in the diffuse gas, and of overpressured zones in the dense gas, with respect to the

thermal-equilibrium value of the pressure, Peq. In particular, the fraction of zones with den-

sities n > 7.1 cm−3 and with P > 104 K cm−3 increases from roughly 0.1% at kfor = 2 (a

driving scale of 50 pc) and M = 0.5 to roughly 70% for kfor = 16 (a driving scale of 6.25 pc)

and M = 1.25. In particular, for M = 1 and kfor = 2, this fraction is ∼ 1%, similar to the

value reported by Jenkins (2004) from a survey of the fine-structure excitation of CI on the

Glactic plane.

In all cases, the dynamic range of the pressure in any given density interval is larger

than one order of magnitude, and the total dynamic range, summed over the entire density

range, typically spans 3–4 orders of magnitude. The total pressure histogram widens as the
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Mach number is increased, and moreover develops near-power-law tails at high (resp. low)

pressures when γe . 0.5 (resp. γe & 1), which occurs at kfor = 2 (resp. kfor = 16) in our

simulations. The opposite side of the pressure histogram decays rapidly, in an approximately

lognormal form. The development of power-law tails in the pressure PDF is analogous to,

and in fact more pronounced than, that observed in the density PDF, suggesting that the

average value of the pressure is sufficiently correlated with the density as to reflect the same

dependence of its histogram with γe, in spite of the large scatter of the pressure at any given

density. This may validate approaches attempting to obtain the pressure PDF from that of

the density via a change of variables.
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Fig. 1.— Temporal growth of sinusoidal density perturbations with an initial amplitude of

2.5% and a period of 50 pc (upper left), 25 pc (upper right) 12.5 pc (lower left) and 6.25 pc

(lower right). The dashed, dotted and solid lines correspond to resolution of 2562, 5122 and

10242, respectively. The thick straight lines indicate the slope of the theoretical growth rate

at the corresponding scale.
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Fig. 2.— Temporal growth of sinusoidal density perturbations with an initial amplitude of

2.5% and a period of 6.25 pc (left) and 12.5 pc (right) for simulations including an initial

velocity perturbation at amplitude equivalent to Mach number M = 1.0 with respect to the

unstable medium at T = 2400 K. The dashed, dotted and solid lines correspond to resolutions

of 2562, 5122 and 10242, respectively.
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Fig. 3.— Comparison of the total pressure (left) and density (right) histograms for sim-

ulations with resolutions 5122 (dotted lines) and 10242 (solid lines). The histograms are

normalized to the total number of points, and averaged over the time interval 1.1 ≤ t ≤ 2,

where the time unit is the simulation sound crossing time at T = 104 K
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Fig. 4.— Thermal pressure-density relation for simulations with M ∼ 1 and kfor = 2 (upper

left), kfor = 4 (upper right), kfor = 8 (lower left) and kfor = 16 (lower right). The solid line in

each panel denotes the thermal-equilibrium pressure.
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Fig. 5.— Temporally-averaged pressure histograms for simulations with M ∼ 1 and kfor = 2

(solid line), kfor = 4 (dotted line), kfor = 8 (dashed line) and kfor = 16 (dashed-dotted line).

The time averaging is as in fig. 3. The histograms are computed over logarithmic density

intervals nc/
√
2 ≤ nc ≤

√
2nc, centered at nc = 0.1 cm−3 (upper left panel), nc = 1.0 cm−3

(upper right panel), and nc = 10.0 cm−3 (lower left panel). The vertical lines denote the

thermal-equilibrium pressure Peq at nc. Lower right panel: most probable pressure P (Nmax)

for the histograms centered on nc = 0.1 cm−3 (plus signs) and nc = 1.0 cm−3 (asterisks). The

horizontal lines denote the values of Peq(nc = 0.1 cm−3) (solid line) and Peq(nc = 1 cm−3)

(dotted line).
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Fig. 6.— Total pressure (left) and density (right) histograms for simulations with M ∼ 1 and

kfor = 2 (solid line), kfor = 4 (dotted line), kfor = 8 (dashed line) and kfor = 16 (dashed-dotted

line). The histograms are time-averaged as in fig. 3.
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Fig. 7.— Thermal pressure-density relation for simulations with kfor = 2 andM ∼ 0.5 (upper

panel), M ∼ 1 (center panel) and M ∼ 1.25 (lower panel). The solid line in each panel shows

the thermal-equilibrium pressure.
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Fig. 8.— Thermal pressure-density relation for simulations with kfor = 16 and M ∼ 0.5

(upper panel), M ∼ 1 (center panel) and M ∼ 1.25 (lower panel). The solid line in each

panel shows the thermal-equilibrium pressure.
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Fig. 9.— Pressure histograms over specific density intervals as in fig. 5, but for simulations

with kfor = 2 and M ∼ 0.5 (solid line), M ∼ 1.0 (dotted line), and M ∼ 1.25 (dashed line).



– 33 –

Fig. 10.— Pressure histograms over specific density intervals as in fig. 5, but for simulations

with kfor = 16 and M ∼ 0.5 (solid line), M ∼ 1.0 (dotted line).
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Fig. 11.— Total time-averaged pressure (left) and density (right) histograms as in fig. 6 but

for simulations with kfor = 2 at M ∼ 0.5 (solid line), M ∼ 1.0 (dotted line), and M ∼ 1.25

(dashed line).
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Fig. 12.— Temporally-averaged pressure (left) and density (right) histograms as in fig. 6

but for simulations with kfor = 16 and M ∼ 0.5 (solid line), M ∼ 1.0 (dotted line), and

M ∼ 1.25 (dashed line).
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Fig. 13.— Left: Least squares slope of the distributions of points in figs. 4, 7 and 8. The solid

line shows the variation with the driving wavenumber kfor, indicated by the lower horizontal

axis, at fixed rms Mach numbers M = 1. The dotted and dashed lines show the variation

with M , indicated by the upper horizontal axis, at a given kfor, indicated by the label next

to each line. Right: Fraction of grid cells with P > 104 K cm−3 and for the n > 7.1 cm−3 in

figs. The line coding is as in the left panel.



– 37 –

Fig. 14.— Pressure (left) and density (right) histograms for simulations with kfor = 2 and

M = 0.90 in 2D (solid line), and M = 0.85 in 3D (dotted line). The histograms are

normalized to the total number of points and for the 2D simulations they are averaged over

the time interval 3.2 < t/t0 < 4.
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Fig. 15.— Thermal pressure-density relation for three-dimensional simulations with kfor = 2

and M = 0.90 in 2D (left panel) and M = 0.85 in 3D (right panel). The solid line in each

panel shows the thermal-equilibrium pressure.
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Fig. 16.— Total pressure (left) and density (right) histograms for 3D simulations with

M = 0.85 and kfor = 2 (solid line), M = 0.85 and kfor = 8 (dotted line), and M = 1.35 and

kfor = 2 (dashed line). The histograms are normalized to the total number of points.


