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Detecting the stochastic gravitational wave background using

pulsar timing

Fredrick A. Jenet1, George B. Hobbs2, K.J. Lee3, Richard N. Manchester2

ABSTRACT

The direct detection of gravitational waves is a major goal of current astro-

physics. We provide details of a new method for detecting a stochastic back-

ground of gravitational waves using pulsar timing data. Our results show that

regular timing observations of 40 pulsars each with a timing accuracy of 100 ns

will be able to make a direct detection of the predicted stochastic background

from coalescing black holes within five years. With an improved pre-whitening

algorithm, or if the background is at the upper end of the predicted range, a

significant detection should be possible with only 20 pulsars.

Subject headings: pulsars:general — gravitational waves

1. Introduction

Analysis of pulsar pulse time-of-arrival (TOA) data shows that pulsars, especially mil-

lisecond pulsars (MSPs), are very stable clocks. Measurement of timing residuals, that

is, the differences between observed and predicted TOAs, enables the direct detection of

gravitational waves (GWs) (Estabrook & Wahlquist 1975; Sazhin 1978; Detweiler 1979).

The fluctuating TOAs induced by a GW will be correlated between widely-spaced pulsars.

Hellings & Downs (1983) attempted to detect this correlation by cross-correlating the time

derivative of the timing residuals for multiple pulsars. In our work, we have developed a

similar cross-correlation technique and have, for the first time, a fully analyzed method for

combining multiple pulsar observations in order to make an unambiguous detection of a GW

background. We emphasize that, in contrast to Hellings & Downs (1983), our method is

based entirely on the measured residuals.
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Only the effects of a stochastic background of GWs are considered. Astrophysical sources

of such a background include cosmological processes (e.g. Maggiore 2000) and coalescing

massive black hole binary systems (Jaffe & Backer 2003; Wyithe & Loeb 2003; Enoki et

al. 2004). We show that a direct detection of a stochastic GW background is possible

using pulsar timing observations and that the significance of the detection depends upon the

number of pulsars observed, the root-mean-square (RMS) timing noise achieved, the number

of observations, and the power spectrum of the measured timing residuals. The results are

applied to the case of the Parkes pulsar timing array (PPTA1).

In the next section, the analysis technique is described. In §3 the significance of detecting
a given stochastic background using this method is estimated. The effects of pre-filtering

the residual time series are also discussed. The results are summarized in §4.

2. Detection Technique

As a first step, the power spectra of the pulsar timing residuals are analyzed. If they all

show a very red power-law spectrum, the residuals may be dominated by a GW background.

However, such red spectra can also be due to period noise intrinsic to the pulsar, uncorrected

interstellar delays, inaccuracies in the Solar-System ephemeris, or variations in terrestrial

time standards (e.g. Foster & Backer 1990). A GW background produces a unique signature

in the timing residuals which can only be confirmed by observing correlated signals between

multiple pulsars widely distributed on the sky.

The presence of a stochastic GW background will cause the pulse TOAs to fluctuate

randomly, but these fluctuations will be correlated between different pulsars. In order to de-

tect the presence of a GW background, one needs to first calculate the correlation coefficient

between the observed timing residuals of each pair of observed pulsars:

r(θ) =
1

N

N−1
∑

i=0

R(ti, k̂1)R(ti, k̂2) (1)

where R(ti, k̂) is the time series of N pulsar residuals sampled regularly in time, k̂1 and k̂2
are the directions to the two pulsars, and cos(θ) = k̂1 · k̂2. It will be assumed that R has zero

mean and that each pulsar pair has a unique angular separation. r(θ) is written only as a

function of the angular separation since the GW background is expected to be isotropic. In

the presence of an isotropic GW background, the ensemble-averaged value of r(θ) is given

1http://www.atnf.csiro.au/research/pulsar/psrtime
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by2:

〈r(θ)〉 = σ2
gζ(θ) (2)

ζ(θ) =
3

2
x log(x)− x

4
+

1

2
+

1

2
δ(x) (3)

where x = (1 − cos(θ))/2, σg is the RMS of the timing residuals induced by the stochastic

GW background, and δ(x) equals 1 for x = 0 and 0 otherwise. The detection technique

proposed here simply looks for the presence of the function ζ(θ) in the measured correlation

coefficients r(θ).

Since one cannot perform the ensemble average in practice, the measured statistic, r(θ),

will be of the form r(θ) = 〈r(θ)〉 + ∆r(θ), where ∆r(θ) is a “noise term”. Since r(θ) is

calculated by summing over a large (≥ 20) number of data points, ∆r(θ) will be a Gaussian

random variable for practical purposes. The optimal way to detect the presence of a known

functional form within random data is to calculate the correlation between the data and the

known function. Hence, to detect the presence of the GW background one needs to calculate

ρ =

1
Np

∑Np−1
i=0 (r(θi)− r̄)(ζ(θi)− ζ̄)

σrσζ
(4)

where θi is the angle between the ith pair of pulsars and Np is the number of distinct pairs

of pulsars. r̄ and ζ̄ indicate the mean values over all pairs of pulsars and σ2
r and σ2

ζ are the

variances of r and ζ respectively. For M pulsars, Np = M(M − 1)/2.

From the definition of r(θ) and Eqn. 4, one can show that the expected value of ρ is

approximately:

ρ ≈
σ2
gσζ

√

σ4
gσ

2
ζ + σ2

∆r

(5)

σ2
∆r =

1

Np

Np−1
∑

i=0

〈(r(θi)− 〈r(θi)〉)2〉. (6)

For the case where there is no correlation in the data, the statistics of ρ will be Gaussian

with zero mean and variance given by σ2
ρ = 1/Np = 2/(M2−M). Hence, the significance of a

measured value of ρ may be defined as S = ρ/σρ. The probability of measuring a correlation

greater than or equal to ρ when no actual correlation is present is given by erf(S/
√
2)/2.

2For an outline of the calculation of ζ see Hellings & Downs (1983).
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3. Estimating the Detection Significance

In order to estimate the expected detection significance, S, one needs to estimate σg

and σ∆r. It is assumed that the timing residuals, R(t, k̂), are stationary Gaussian random

variables that are sampled at regular intervals denoted by ∆t. It is also assumed that terms

proportional to t and t2 (i.e., the period and period-derivative terms) have been subtracted

from R(t, k̂).

The space-time fluctuations induced by a stochastic GW background are described by

a quantity known as the characteristic strain spectrum denoted by hc (e.g. Maggiore 2000).

Models of the GW background propose a power-law dependence between hc and the GW

frequency, f : hc(f) = Afα (Jaffe & Backer 2003; Wyithe & Loeb 2003; Maggiore 2000; Enoki

et al. 2004). Using this form of the characteristic strain spectrum, the power spectrum of

the induced residuals is given by PR(f) = 〈|R̃(f)|2〉 = A2

4π2 f
2α−3, where R̃(f) is the Fourier

transform of R(t). Given PR(f), the total RMS fluctuation induced by the stochastic GW

background is given by

σ2
g =

∫ fh

fl

PR(f)df (7)

=
A2

2π2(2− 2α)

(

f 2α−2
l − f 2α−2

h

)

(8)

where fl is the lowest detectable frequency given by 1/T and fh is the highest detectable

frequency typically given by 1/2∆t. T is the total time span of the data set. Since α < 0

for backgrounds of interest (Maggiore 2000), the term containing fh is negligible.

Estimating σ∆r is slightly more complicated. To take into account the effects of subtract-

ing linear and quadratic terms from the residuals, a semi-analytic approach was adopted. As

outlined below, an estimate for σ∆r is made analytically but with one free parameter β. For

a given value of β, S is calculated as a function of A for a given set of pulsars and timing

parameters. S(A) is compared to Monte-Carlo simulations in order to determine the correct

value of β. This showed that the value of β is insensitive to the values α, N, M, σg and the

RMS residual noise level.

Using Equation 1 together with the assumption that R(t, k̂) is a Gaussian random

variable, one can show that

σ2
∆r ≈ 1

N2

N−1
∑

i=0

N−1
∑

j=0

cij(k̂1)cij(k̂2), (9)

where cij(k̂) = 〈R(t+ i∆t, k̂)R(t+ j∆t, k̂)〉. The bar above Equation 9 represents an average

over all pairs of pulsars. As the autocorrelation function and the power spectrum are Fourier
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transforms of one another, one can estimate σ2
∆r from the expected power spectrum of the

residuals. The statistics of the residuals are assumed to be stationary so that cij(k̂) depends

only on i− j. The expected discrete power spectrum of R(t, k̂), which includes both a GW

component and a white noise component, is given by

Pd(i, k̂) =

{

Pg(i) +
2σn(k̂)2

N
for i > 0

0 for i = 0
. (10)

Pg(i) is the discrete power spectrum of the GW-induced timing residuals, i is the discrete

frequency bin number corresponding to frequency i/T , σn(k̂) is the RMS value of the residual

fluctuations caused by all non-GW sources for the pulsar in the k̂ direction. It is assumed that

all noise sources have a flat spectrum. This assumption is consistent with most observations

of MSPs. Pg(i) is given by

Pg(i) =
A2T 2−2α

(2π)2(2− 2α)
m(i) (11)

where
m = 0 for i = 0

m = β2α−2 − (1.5)2α−2 for i = 1

m = (i− 0.5)2α−2 − (i+ 0.5)2α−2 for i > 1.

Effectively, β is the lowest frequency used to calculate the correlation function cij. Monte-

Carlo simulations show that β = 0.97.

For the case where all pulsars have the same noise level, the detection significance

becomes

S =

√

√

√

√

M(M − 1)/2

1 + χ+2(σn/σg)2+(σn/σg)4

Nσ2

ζ

(12)

where χ = 1
σ4
gN

∑N−1
i=0

∑N−1
j=0 c2gij , and cgij is the correlation function for the GW-induced

component of the timing residuals. χ is a measure of the “whiteness” of the residuals.

The solid curve in Figure 1 panel A) plots the detection significance versus power-law

amplitude for α = −2/3, the expected value for a background generated by an ensemble of

super-massive black hole binaries (Jaffe & Backer 2003). This spectral index together with

the removal of the linear and quadratic terms from R effectively makes χ = 0.6N . The

parameters are set as follows: N = 250, M = 20, σn = 100 ns and T = 5 years. These values

are the target values for the PPTA (Hobbs 2004). Note that the significance saturates for

high values of A. This effect can easily be seen in Equation 12 since all terms of the form

σn/σg go to zero as σg gets very large. This saturation is due to the “self-noise” associated
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with the stochastic nature of the background and its asymptotic value is independent of σn.

The roll-off at low values of A occurs at σg = σn.

Since the power spectrum of the GW-induced timing residuals will be dominated by

low frequencies, one can apply a low-pass filter to each of the residual time series before

correlating. This is similar to fitting a low-order polynomial to the data and then correlating

the resulting fits. To estimate the significance for this technique, one evaluates σ2
g and

σ2
∆r using Equations 8 and 10 but with a high frequency cut-off fhc. For purposes of this

discussion, fhc was set to 4/T . The dashed line in Figure 1 panel A) shows the effect of using

a low-pass filter on the residuals. All the other parameters are the same as those used to

generate the solid line. Low-pass filtering effectively reduces σn while keeping σg relatively

unchanged. It also has the effect of increasing χ/N when Pg is a red power-law spectrum.

Hence, low-pass filtering will not increase the maximum attainable significance, but it will

lower the value of σg where the roll-off starts to occur.

We next try to increase the maximum achievable significance. This method involves

both low-pass filtering and a technique called “whitening”. When correlating two time series

that each have a steep power-law spectrum, an optimal signal-noise ratio is obtained if filters

are applied to give each time series a flat spectrum before correlation. This will act to reduce

χ in Equation 12. In practice, starting from the lowest non-zero frequency bin, we give each

Fourier component with significant power equal amplitude and set higher components to

zero. In this way, we are correlating only that part of the signal which has a high signal-to-

noise ratio and adjusting the power spectrum to optimize the measurement of the correlation

function.

Pd and σg need to be calculated in order to estimate S using the whitening method.

After whitening Pd(i, k̂) = 2σd(k̂)
2/N , where σd(k̂) is the RMS of the residual data from

the k̂th pulsar. The whitening also affects σg. In the general case where the pulsars have

different noise levels, σg will depend on the pulsar. The expression for ρ then becomes:

ρ ≈

(

σ2
gζ

2 − σ2
gζ ζ

)

/σζ

√

(

σ4
gζ

2 −
(

σ2
gζ
)2
)

+ σ2
∆r

(13)

with σg(θ)
2 given by

σg(θ)
2 =

2

N
σd(k̂1)σd(k̂2)

√

√

√

√

(

Nmax
∑

i=0

Pg(i)/Pd(i, k̂1)

)(

Nmax
∑

i=0

Pg(i)/Pd(i, k̂1)

)

(14)

where Nmax is the largest frequency bin used based on the criterion discussed above. The
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solid line in Figure 1 panel B) plots the significance using the whitening versus A. The same

parameters were used for this case as in the previous cases.

The above discussion assumes that the noise levels were the same for all pulsars. Next,

the case where the pulsars have different noise levels will be considered. All curves in Figure 1

panel B) were generated using the whitening technique. Unless specified, 250 observations

were taken on each pulsar over 5 years. The dashed line corresponds to 20 pulsars, 10

with σn = 100 ns and 10 with σn = 500 ns. The dashed-dot line has 10 pulsars each with

σn = 100 ns and 500 observations. The dashed-triple-dot line has 20 pulsars with σn = 100 ns

and 500 observations over ten years.

When given a choice between observing a large sample of pulsars with different noise

levels and observing only those pulsars with the lowest noise levels but for a longer time,

the above curves demonstrate that one should actually observe the larger sample of pulsars.

This is not a general statement, but rather it depends on the level of the GW background

and the noise level. However, the levels chosen above are relevant to the PPTA (Jaffe &

Backer 2003; Wyithe & Loeb 2003; Hobbs 2004). Note that for large M , the significance

scales as M . Hence, doubling the number of pulsars will double the expected significance.

4. Summary

The main goal of this work is to determine the effectiveness of an array of pulsars, such

as the PPTA, for detecting a stochastic background of GWs. Using a simple correlation

technique, the detection significance was calculated given the number of pulsars, the location

of each pulsar, the TOA precision, the number of observations, the total time span of the

data, and the amplitude and power-law index of the GW background. For the case where

all pulsars have the same white-noise spectrum, Equation 12, may be used to calculate the

detection significance. For the case of the PPTA, it was found that the maximum achievable

significance will be about 3 for a background with spectral index α = −2/3 and A ∼ 10−15

which is the expected level of the GW background from an ensemble of super-massive binary

black holes in galaxies (Jaffe & Backer 2003; Wyithe & Loeb 2003; Enoki et al. 2004). Note

that lowering the RMS noise level will only decrease the minimum detectable value of A and

not increase the maximum attainable significance.

Low-pass filtering the timing residuals, or equivalently, fitting low-order polynomials

(i.e. cubic terms) to the residuals and correlating the coefficients, does not increase the

maximum attainable significance. The significance level is increased by pre-whitening of the

timing residuals. Using whitening, it is estimated that the PPTA could obtain a detection
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significance greater then 4 for A ≥ 3 × 10−15yr−2/3 provided that efficient whitening filters

can be designed and implemented. This is an area of further study and will be addressed in a

later paper. With the same qualifiers, increasing the total time span of the PPTA to 10 years

would yield a significance greater then 4 for A ≥ 10−15yr−2/3. Since the significance scales as

the number of pulsars, doubling that number will double the expected significance. Hence,

using the simple correlation technique described here without any pre-filtering, a stochastic

background with A ≥ 10−15yr−2/3 will be detectable at a significance of about 5.5 using 40

pulsars observed 250 times over 5 years and each having 100 ns timing precision.

Part of this research was carried out at the Jet Propulsion Laboratory, California Insti-

tute of Technology, under a contract with the National Aeronautics and Space Administra-

tion and funded through the internal Research and Technology Development program. The

authors wish to thank Russell Edwards for useful discussions.
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Fig. 1.— The detection significance, S, versus the logarithm of the amplitude A of the

characteristic strain amplitude hc(f). The strain spectral index α = −2/3, corresponding

to an astrophysical background of GWs generated by super-massive binary black holes.

The vertical lines bound the values of A expected by models of the GW background (Jaffe

& Backer 2003; Wyithe & Loeb 2003; Enoki et al. 2004). In panel A), the curves were

calculated with 20 pulsars each with RMS residual noise fluctuations of 100 ns. The solid

line corresponds to the simple correlation technique. The dashed line includes the effect of

low-pass filtering. Panel B) shows the effects of the whitening technique. The solid line was

calculated with the same parameters as in A). The remaining curves were generated using

different noise levels and number of pulsars. See text for further details.


