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ABSTRACT
Flexion is the significant third-order weak gravitational lensing effect responsible for
the weakly skewed and arc-like appearance of lensed galaxies. Here we demonstrate
how flexion measurements can be used to measure galaxy halo density profiles and
large-scale structure on non-linear scales, via galaxy-galaxy lensing, dark matter map-
ping and cosmic flexion correlation functions. We describe the origin of gravitational
flexion, and discuss its four components, two of which are first described here. We also
introduce an efficient complex formalism for all orders of lensing distortion. We pro-
ceed to examine the flexion predictions for galaxy-galaxy lensing, examining isothermal
sphere and Navarro, Frenk & White (NFW) profiles and both circularly symmetric
and elliptical cases. We show that in combination with shear we can precisely measure
galaxy masses and NFW halo concentrations. We also show how flexion measure-
ments can be used to reconstruct mass maps in 2-D projection on the sky, and in
3-D in combination with redshift data. Finally, we examine the predictions for cosmic
flexion, including convergence-flexion cross-correlations, and find that the signal is an
effective probe of structure on non-linear scales.

Key words: Gravitational lensing, cosmology: dark matter, large-scale structure of
Universe, galaxies: haloes.

1 INTRODUCTION

Weak gravitational lensing is a rapidly developing subject,
with great progress being made in many related observa-
tional areas. The mass and density profiles of galaxies have
been carefully explored using galaxy-galaxy shear studies
(e.g. Hoekstra et al 2004), while large-scale structure can be
traced using cosmic shear (see e.g. van Waerbeke & Mellier
2003, Refregier 2003 for reviews). This has led to significant
constraints on cosmological parameters, such as the fluctu-
ation of the matter distribution, the density of matter, and
the growth rate of matter fluctuations in the Universe.

Gravitational lensing has received so much interest par-
tially because it allows us to measure the mass of structures
with very few physical assumptions. The distortion of back-
ground galaxies depends only on the geometry of the lens
system, the mass, and the use of the weak-field limit of Gen-
eral Relativity. As such, lensing presents us with a method
for measuring mass which is free of dynamical uncertainties
associated with questions as to whether the system is re-
laxed. It is a direct measure of the mass present, whether in
visible or dark form.

Weak gravitational lensing is typically studied by ex-
amining the ellipticities of source galaxies, seeking a coher-
ent alignment of these ellipticities (or other combinations of
weighted second-order moments of galaxy light) induced by

mass along the line of sight (e.g. Kaiser, Squires & Broad-
hurst, 1995, Kaiser 2000, Bernstein & Jarvis 2002, Refregier
& Bacon 2003, Hirata & Seljak 2003). However, Goldberg
& Natarajan (2002) have shown that significant further in-
formation is available from the skewedness and arciness of
the light distribution for source galaxies; we have further
developed this approach in Goldberg & Bacon (2005) where
we have labelled this third order effect as the “flexion” of
these images. A related approach using ‘sextupole lensing’
has recently been explored by Irwin & Shmakova (2005).

In our previous paper (Goldberg & Bacon 2005), we
described the theory of flexion, and demonstrated how
this effect can be measured using the Shapelet formalism
(Bernstein & Jarvis 2002, Refregier 2003, Refregier & Ba-
con 2003). We also demonstrated that the flexion signal is
present in Deep Lens Survey data (Wittman et al 2002).

In this paper, we explore and describe what flexion is
able to teach us in the context of several cosmological ap-
plications: how flexion can contribute to our understanding
of galaxy mass and density profiles; its usefulness in creat-
ing maps of the dark matter distribution; and its value for
measuring large-scale structure in the non-linear regime.

In Section 2, we will give a brief introduction to the flex-
ion formalism, and will revise the process by which flexion
is measured using shapelets. Section 3 introduces two forms
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2 D. J. Bacon et al

of flexion, one of which was was not discussed in our previ-
ous work; we find that both forms of flexion are a high-pass
filter for projected density fluctuations, with one form of
flexion measuring local information about density, and the
other measuring non-local information. Here we also discuss
whether flexion as presented so far is an efficient description
of arced galaxy shapes.

Section 4 examines flexion predictions for galaxy-galaxy
lensing, concentrating on averaged circular profiles; we dis-
cuss how flexion can be used to provide more information
about galaxy profiles, and how combination of the flexion
with shear can break mass-sheet degeneracies. Section 5 ex-
tends this analysis to elliptical density profiles.

In Section 6 we show how flexion can be used for mass
reconstruction, and note the utility of flexion for measuring
substructure in clusters. Section 7 discusses the use of flexion
for measurements of large-scale structure; we find that the
cosmic flexion signal is measurable exclusively on non-linear
scales, which are nevertheless of great interest. We conclude
in Section 8.

2 FLEXION FORMALISM

We begin by briefly reviewing the flexion formalism as devel-
oped by Goldberg & Bacon (2005), examining how flexion
is defined and how it can be measured using shapelets.

2.1 Flexion

It is useful to start by noting the importance in lensing of the
dimensionless surface density of matter, the convergence κ.
This is defined for a set of source objects at angular diameter
distance Ds, which have been lensed by a mass at angular
diameter distance Dl. Then

κ(θ) ≡ DlsDl

Ds

4πGΣ(θ)

c2
, (1)

with θ the image coordinates for the observer, and Σ the
projected surface density of the lens.

The relationship between unlensed coordinates and
lensed, observed coordinates is given by

Aij(θ) ≡ ∂θ′i
∂θj

= (δij − ∂i∂jψ(θ)) , (2)

A =

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

where ∂i ≡ ∂/∂θi, and θ
′ are the unlensed coordinates; the

origins of the measured, lensed coordinates and the unlensed
source coordinates are taken to be the centres of light for the
lensed and unlensed images respectively. Here ψ is the lens-
ing potential, i.e. a projected gravitational potential along
the line of sight.

If convergence and shear are effectively constant within
a source galaxy image, the galaxy’s transformation can sim-
ply be described as:

θ′i = Aijθj . (3)

Flexion arises from the fact that the shear and convergence
are actually not constant within the image, and so we have
to expand to second order:

θ′i ≃ Aijθj +
1

2
Dijkθjθk, (4)

with

Dijk = ∂kAij . (5)

Using results from Kaiser (1995), we find that

Dij1 =

(

−2γ1,1 − γ2,2 −γ2,1
−γ2,1 −γ2,2

)

, (6)

Dij2 =

(

−γ2,1 −γ2,2
−γ2,2 2γ1,2 − γ2,1

)

.

By expanding the surface brightness as a Taylor series and
using the relations above, we find that we can approximate
the lensed surface brightness of a galaxy in the weak lensing
regime as

f(θ) ≃
{

1 +
[

(A− I)ijθj +
1

2
Dijkθjθk

]

∂i

}

f ′(θ) . (7)

This shows that the flexion lensing effects are in terms of
derivatives of the shear field. We define the flexion in terms
of these shear derivatives, using the combination which is
shown by Kaiser (1995) to give the gradient of the conver-
gence:

F ≡ (γ1,1 + γ2,2)i+ (γ2,1 − γ1,2)j

= ∇κ
= |F|eiφ. (8)

Since the flexion is in terms of derivatives of the shear field,
we therefore require a means of measuring these derivatives,
γi,j .

2.2 Shapelet Measurement

We have found (Goldberg & Bacon 2005) that we can mea-
sure derivatives of the shear, and hence obtain measure-
ments of the flexion, using the shapelet formalism of Re-
fregier (2003) and Bernstein & Jarvis (2002), as applied to
lensing by Refregier & Bacon (2003).

We decompose galaxy images into shapelet coefficients,
corresponding to prefactors for reduced Hermite polynomi-
als:

f(θ) =
∑

n,m

fnmBnm(θ) (9)

where

Bnm(θ;β) = β−1φn(β
−1θ1)φm(β−1θ2) . (10)

Here β is a scale factor chosen for the galaxy, and φn are
reduced Hermite polynomials.

Since these functions are eigenfunctions for the quan-
tum harmonic oscillator, we can define ladder operators as
in quantum mechanics:

â1 |φn m〉 =
√
n |φn−1 m〉

â†1 |φn m〉 =
√
n+ 1 |φn+1 m〉 (11)

and describe lensing distortions in terms of these operators.
Explicitly, we find that the lensed image intensity is given
by:

f(θ) ≃ (1 + κK̂ + γiŜ
(1)
i + γi,j Ŝ

(2)
ij )f(θ′) (12)
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where each lensing operator, including the Sij second order
lensing effect, is given in terms of a and a†. The explicit
forms are somewhat complex, and are given in full in Gold-
berg & Bacon (2005). We also show in that paper that the
second-order lensing induces a shift in the centroid of an
object, and give explicit forms for this shift.

We measure γi,j by χ2 fitting to a version of equa-
tion (12), simplified by the lack of cross-talk between odd
and even shapelet coefficients (see Goldberg & Bacon 2005
for details). Then from the estimated shear derivatives, we
can calculate the flexion according to equation (8).

In addition, Goldberg & Bacon (2005) have measured
the shapelet coefficients and derive flexion and shear for 4833
pairs of galaxies in the Deep Lens Survey. We find that us-
ing flexion alone, the averaged lens galaxy may be fit by an
isothermal sphere with a characteristic velocity width of 220
km/s. Having established in that paper that the flexion sig-
nal is indeed measurable, we devote this work to developing
new flexion analysis techniques.

3 COMPLEX REPRESENTATION AND
SECOND FLEXION

In this section we develop a compact and straightforward
complex formalism for flexion, which is of much wider ap-
plicability to all weak gravitational lensing. In addition we
show that weakly lensed arcs can be uniquely decomposed
into the spin-1 first flexion of Section 2, and a new compo-
nent which has not previously been considered, the second
flexion which we show has spin-3 properties. We begin by
re-deriving the shear in complex notation.

We define a complex gradient operator:

∂ = ∂1 + i∂2, (13)

which we can think of as a derivative with an amplitude
and a direction down the slope of a surface at any point. It
transforms under rotations as a vector, ∂′ = ∂eiφ, where φ
is the angle of rotation. This operator can be compared with
the covariant derivative formalism of Castro et al (2005) for
weak lensing on the curved sky. Applying the operator to
the lensing scalar potential, ψ, we can generate the spin-1
(i.e. vector) lensing displacement field,

α = α1 + iα2 = ∂ψ. (14)

This correspondence allows us to interpret the complex gra-
dient, ∂, as a spin-raising operator, raising the function it
acts on by one spin value. Similarly the spin of a quantity
can be lowered by applying the complex conjugate gradient,
∂∗. Applying one after the other yields the spin-zero 2-D
Laplacian,

∂∂∗ = ∂∗∂, (15)

where we have noted that ∂ and ∂∗ commute. Applying the
complex conjugate derivative to the displacement field we
find the spin is lowered to the spin-0 convergence field

κ =
1

2
∂∗α =

1

2
∂∗∂ψ. (16)

Applying the spin-raising operation to the displacement field
raises us to a spin-2 field, the complex shear:

γ = γ1 + iγ2 =
1

2
∂∂ψ. (17)

Figure 1. Weak lensing distortions with increasing spin values.
Here an unlensed Gaussian galaxy with radius 1 arcsec has been
distorted with 10% convergence/shear, and 0.28 arcsec−1 flexion.
Convergence is a spin-0 quantity; first flexion is spin-1; shear is
spin-2; and second flexion is spin-3.

From these expressions it is easy to recover the general, com-
plex Kaiser-Squires (1993) relation between the shear and
convergence fields,

κ+ iB = ∂−2∂∗∂∗γ, (18)

where ∂−2 is the 2-dimensional inverse Laplacian, and the
non-lensing, curl/odd-parity B-field is automatically in-
cluded as the complex part of the recovered field. We can
also see from this relation that a B-field can be generated
from a convergence field by a π/4 rotation of the shear field,
equivalent to multiplying the complex shear by i. In equa-
tion (18) we have omitted an arbitrary constant, due to the
sheet-mass degeneracy.

The complex formalism provides a neat way to gener-
alize the analysis of distortions to higher orders. Taking the
third derivative of the lensing potential we have the unique
combinations

F = |F|eiφ =
1

2
∂∂∗∂ψ = ∂κ = ∂∗γ,

G = |G|ei3φ =
1

2
∂∂∂ψ = ∂γ, (19)

where the first flexion, F , is a spin-1 field and the new second
flexion, G, is seen to be a spin-3 field. Here φ represents the
position angle determining the direction of the vector or
spin-3 component. Expanding the flexions in terms of the
gradients of the shear field we find

F = (∂1γ1 + ∂2γ2) + i(∂1γ2 − ∂2γ1)

G = (∂1γ1 − ∂2γ2) + i(∂1γ2 + ∂2γ1), (20)

where the definition of the first flexion agrees with our previ-
ous results in Section 2. These two independent fields specify
the weak “arciness” of the lensed image.

The complex representation allows us to find a consis-
tency relation between the two flexion fields,

∂∗∂G = ∂∂F , (21)

which can be used as a check on measurements of F and G.
We are also able to obtain a direct description of the

third order lensing tensor Dijk. Defining F = F1 + iF2 and
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G = G1 + iG2 we can then re-express Dijk as the sum of two
terms Dijk = F ijk + Gijk, where the first (spin-1) term is

F ij1 = −1

2

(

3F1 F2

F2 F1

)

(22)

F ij2 = −1

2

(

F2 F1

F1 3F2

)

and the second (spin-3) term is

Gij1 = −1

2

(

G1 G2

G2 −G1

)

(23)

Gij2 = −1

2

(

G2 −G1

−G1 −G2

)

.

In order to obtain a visual understanding of the flexion quan-
tities, we have used these forms for the Dijk matrix in terms
of F and G in order to calculate how a Gaussian image is
transformed by the various operations of weak lensing, ac-
cording to equation (7). The results are shown in Figure 1,
which displays the lensing operations in order of their spin
properties. The Gaussian galaxy is given a radius (standard
deviation) of 1 arcsec; while the convergence and shear im-
posed on the galaxy are realistic (10% in each case), the flex-
ion is deliberately chosen to be extraordinarily large for visu-
alisation purposes (0.28 arcsec−1, c.f. 0.04 arcsec−1 intrinsic
rms flexion on galaxies). We immediately see the shapes in-
duced by flexion: the first flexion leads to a (vectorial, spin-
1) skewness, while the second flexion leads to a three-fold
(spin-3) shape.

While the first flexion probes the local density via the
gradient of the shear field, the spin-3 second flexion probes
the nonlocal part of the gradient of the shear field. For ex-
ample, consider a Schwarzschild lens: the first flexion is by
definition zero everywhere except at the origin, as the gra-
dient of the convergence is zero everywhere except at the
origin. However, there is certainly “arciness” generated by
such a lens; this is described by the second flexion. We will
provide explicit expressions for the first and second flexion
generated by simple mass distributions in Sections 4 and 5.

The series of lensing distortions can clearly be contin-
ued to arbitrary order by taking permutations of additional
spin-raising and lowering derivatives. For instance the next
order of distortion can be decomposed into three fields; a
spin-4 field, ∂∂∂∂ψ, a spin-2 field, ∂∗∂∂∂ψ, and a spin-0
field, ∂∗∂∗∂∂ψ. The nth order term can be decomposed into
Int(1+n/2) independent spin fields with spins s = n, n− 2,
n− 4, · · ·, 0 if n is even or · · · 1 if odd. Consistency relations
similar to those for F and G can be found for all the higher
spin fields, which can also be used to estimate the conver-
gence field via Kaiser-Squires like relations (see Section 7).

However, in this paper we restrict ourselves to exploring
the possibilities given by the first and second flexion. We will
now proceed to calculate analytic expressions for both of the
flexion terms for simple lens models.

4 GALAXY HALOS: CIRCULAR PROFILES

In this section we present flexion predictions for galaxy-
galaxy lensing under the assumption of a circularly symmet-
ric lens. This is valid for a galaxy-galaxy lensing approach

where we do not reorient lens galaxies, resulting in a cir-
cularly averaged mean lens; in the following section we will
consider the impact of having elliptical lenses. We consider
a variety of different lens models, and show how flexion can
be used to constrain them.

4.1 Flexion for the Singular Isothermal Sphere

The approximately flat rotation curves observed in galaxies
can be most simply reproduced by a model density profile
which scales as ρ ∝ r−2. Such a profile can be obtained by
assuming a constant velocity dispersion for the dark mat-
ter throughout the halo, and so is known as the singular
isothermal sphere (see e.g. Binney & Tremaine 1987). The
projected surface mass density of the singular isothermal
sphere (SIS) is

Σ(ξ) =
σ2
v

2Gξ
, (24)

where ξ is the distance from the centre of the lens in the
projected lens plane and where σv is the one-dimensional
velocity dispersion of ‘particles’ within the gravitational po-
tential of the mass distribution, such as stars. The dimen-
sionless surface mass density or convergence is defined as
κ = Σ/Σc, where Σc (or the critical density) is defined as

Σc =
c2

4πG

Ds

DlDls
, (25)

where Ds and Dl are the angular diameter distance to the
source and lens, respectively, andDls is the angular diameter
distance between lens and source. Thus for the case of the
simple isothermal sphere we have

κ(θ) =
θE
2θ
, (26)

where θ = ξ/Dl is the angular distance from lens centre in
the sky plane and where θE is the Einstein deflection angle,
defined as

θE = 4π
(

σv

c

)2 Dls

Ds
. (27)

The flexion, F , caused by the SIS at an angular vector dis-
placement, θ, from the lens centre on the sky plane is thus
simply

F = −
[

θE
2θ2

]

eiφ, (28)

where φ is the position angle around the lens, and in this case
also gives the direction of the flexion. The first flexion for this
profile is therefore circularly symmetric and (expressed as a
vector) directed radially inwards towards the lens centre, as
would be expected.

Similarly, the second flexion is:

G =
3θE
2θ2

e3iφ . (29)

This has a larger maximum amplitude than the first flexion
for this lens profile, fades off with the same power law index
away from the lens, and oscillates around the lens as a spin-3
quantity rather than a spin-1 quantity.

c© 2004 RAS, MNRAS 000, 1–17
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Figure 2. Second order lensing amplitudes as a function of shear
power law index. The solid line shows the amplitude of the flex-
ion coefficients, and the dashed line shows the amplitude of the
derivative coefficients.

4.2 Flexion and Shear Derivatives

Having considered the specific case of an isothermal sphere,
we can continue more generally with power law representa-
tions of the shear around a lens:

γ = −Aθ−n , (30)

where A is a constant, n = 1 corresponds to an isothermal
sphere, n = 2 corresponds to a point mass, and so on. In
particular, one can ask whether one can better describe the
arced nature of lensed objects by the flexion we have defined,
or the shear derivatives themselves.

In order to answer this question, for simplicity we rotate
the system such that the source lies along the +x axis from
the lens. We then consider what the second-order lensing
amplitudes would be in a “derivative-space,” composed of
the two non-zero shear derivatives:

ψD ≡
(

γ1,1
γ2,2

)

=

(

nAθ1−n

−2Aθ1−n

)

. (31)

In “flexion-space,” where the components are the first and
second flexions, the second-order lensing amplitudes are:

ψF ≡
(

F
G

)

=

(

(n− 2)Aθ1−n

(n+ 2)Aθ1−n

)

. (32)

We wish to find out which is the most compact basis space.
For any given distribution, this will be the one for which
only one eigenstate is non-zero.

Figure 2 shows the amplitudes in each of these two
spaces as a function of the shear power law index. We see
that, for point sources, flexion space is the most compact
approach; the signal is a pure second flexion state. For a
galaxy profile with n ≃ 1, both spaces are almost equally
efficient in describing the second order lensing. Addition-
ally, both the flexion and derivative notations can be shown
to produce 4 statistically independent terms, which, taken
over an ensemble of images will all have mean zero. More-

over, within a representation, the standard deviations of the
two terms due to both intrinsic variation and photon noise
will be identical.

We conclude that flexion is an efficient means of describ-
ing third order lensing. For point masses it is optimal; for SIS
galaxies it is as good as considering shear derivatives; and
in addition the division between local and non-local com-
ponents which it exclusively affords is very valuable. It also
describes correctly the spin properties of the lensing.

4.3 Flexion for the Softened Isothermal Sphere

The SIS mass distribution can be modified so as to remove
one feature which may not be a good physical description
of dark matter halos, the divergence of Σ for θ −→ 0. One
simple modification is to cut off the distribution at small
distances as follows:

κ(θ) =
θE

2
√
θ2 + θ2c

, (33)

where θc is a core radius within which the surface mass den-
sity flattens off to a value κ0 = θE/2θc; it can be seen
that the projected mass distribution behaves like the SIS
for θ ≫ θc. The flexion due to this distribution is

F = −
[

θE
2(θ2 + θ2c)3/2

]

θeiφ . (34)

For θ ≫ θc the flexion is approximately equal to that of the
SIS. However, at small separations the flexion goes to zero,
as should be expected as the convergence is tending to a
maximum.

The second flexion is more complicated:

G =
θE
2θ3

(

−8θc +
3θ4 + 12θ2θ2c + 8θ4c

(θ2 + θ2c )3/2

)

e3iφ , (35)

but may readily be fit to observed data, and can again be
seen to reduce to the SIS second flexion when θ ≫ θc and
goes to zero at the centre of the lens.

4.4 Flexion for the Navarro-Frenk-White (NFW)
Density Profile

Using N-body simulations, Navarro, Frenk & White (1995,
1996, 1997) have shown that the equilibrium density profiles
of cold dark matter (CDM) halos can be well fitted over two
orders of magnitude in radius by the formula

ρ(x)

ρcrit(z)
=

∆c

x(1 + x)2
, (36)

where the radial coordinate x is the radius in units of a
scaling radius rs such that x ≡ r/rs, ρcrit(z) is the crit-
ical density for closure at the epoch of the halo, and ∆c

is a dimensionless scaling density. This profile describes
the simulation halos accurately over a broad mass range
3 × 1011 < M200/M⊙ < 3 × 1015, M200 being the total
mass of the halo contained within the sphere encompassing
a mean overdensity of 200 times the critical density ρcrit(z).
The radius of this sphere, designated by r200, is used to de-
fine a second dimensionless scaling parameter for the NFW
profile, namely the concentration c = r200/rs. However, the
details of the NFW definitions have been implemented in

c© 2004 RAS, MNRAS 000, 1–17
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several ways in the literature; Appendix A presents further
discussion of the various definitions.

A procedure for finding values of ∆c and c which agree
with the numerical simulations is detailed by Navarro et
al. (Appendix, 1997): the parameters are somewhat compli-
cated functions of the halo redshift andM200, along with the
background cosmology. A routine (charden.f) which carries
out these calculations and outputs values for these scaling
parameters has been made available by Julio Navarro at
http://pinot.phys.uvic.ca/˜jfn/charden.

The NFW density profile implies the following form for
the dimensionless surface mass density (Bartelmann 1996):

κ(y) = 2κs
f(y)

y2 − 1
, (37)

where we define κs = ρcrit(z)∆crs/Σcrit and y ≡ ξ/rs, with
ξ defined as for equation (24). The function f(y) is given by

f(y) =







1− 2√
1−y2

arctanh
√

1−y
1+y

y < 1

1− 2√
y2−1

arctan
√

y−1
y+1

y > 1.
(38)

The flexion for the NFW density profile is then given by

F ≡ ∇θκ =
∂y

∂θ
∇yκ. (39)

Defining Fs ≡ κsDl/rs we then have

F = − 2Fs

(y2 − 1)2
[2yf(y)− h(y)] eiφ (40)

with y = θDl/rs = θ/θs, and where, from equation (38),

h(y) =







2y√
1−y2

arctanh
√

1−y
1+y

− 1
y

y < 1

2y√
y2−1

arctan
√

y−1
y+1

− 1
y

y > 1.
(41)

The analytical form of the second flexion can also be found,
using the fact that for axially symmetric projected mass
profiles the magnitude of the shear can be calculated from
|γ(θ)| = κ̄(θ) − κ(θ), where κ̄(θ) is the mean surface mass
density within a circle of radius θ from the lens centre
(see e.g. Bartelmann & Schneider 2001). Wright & Brain-
erd (2000) used this method to find an expression for the
magnitude of shear due to an NFW halo, and their result
can be used to find the derivatives of shear γ1,1, γ1,2 etc.
Combining these derivatives as directed by equation (20)
we see that the second flexion takes the form

G = 2Fs

[

8

y3
ln
y

2
+

(

3
y
(1− 2y2) + g(y)

)

(y2 − 1)2

]

e3iφ, (42)

where

g(y) =







(

8
y3 − 20

y
+ 15y

)

2√
1−y2

arctanh
√

1−y
1+y

y < 1
(

8
y3 − 20

y
+ 15y

)

2√
y2−1

arctan
√

y−1
y+1

y > 1.
(43)

To illustrate these results, we calculate the first and second
flexion signals we might expect to measure for a galaxy-
sized halo with an NFW profile. We choose a lens redshift
zl = 0.35 and the halo M200 = 1 × 1012h−1M⊙, this lens
redshift being the median of the lens galaxy sample used by
Hoekstra et al. (2004), and the mass having been found to be
roughly typical for galaxy halos in weak lensing analyses by

Figure 3. Top: Logarithmic surface plot of the magnitude of first
flexion due to an NFW halo of M200 = 1×1012h−1M⊙ at redshift
zlens = 0.35. Bottom: Logarithmic surface plot of the magnitude
of second flexion for the same halo.

Brainerd et al. (1996) and Hoekstra et al. (2004). We also
choose Dls/Ds = 0.5 (corresponding to a source redshift
of zs ≈ 0.8) and model the lensing within a standard, flat
ΛCDM cosmology, setting the present-day matter density
parameter Ωm,0 = 0.3, ΩΛ = 0.7, the Hubble parameter
h = 0.72 and σ8 = 0.8.

Using these values and Navarro’s charden.f we find
a concentration of c = 7.20 and a corresponding dimen-
sionless characteristic density ∆c = 2.03 × 104. These val-
ues for the NFW parameters are again in good agreement
with those found by Hoekstra et al. (2004) who measured
∆c = 2.4+1.4

−0.8 × 104 as the best fit to their sample of ∼ 105

lenses. The resulting flexion profiles are shown in Figure 3;
both flexion signals reaches a 1% effect on a ∼ 4′′ scale. We
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will now compare these flexion profiles with those result-
ing from the SIS density profile, and will then discuss the
measurability of this signal with realistic survey models.

4.5 A Comparison of the NFW and SIS Flexion
Results

Here we use the results from Sections 4.3 and 4.4 to compare
the flexion we would expect to measure for typical galaxy-
galaxy lensing observations, for the SIS and NFW cases.

The SIS scaling is very straightforward in comparison
to that of the NFW halo; the Einstein radius for the SIS
lens is given in terms of M200 and the halo redshift zl as

θE =
2πG

c2
Dls

Ds

(

800πρcrit(zl)

3

)1/3

M
2/3
200 . (44)

For this comparison we use the same values for zl, M200

and the cosmological parameters as were used in Section
4.4, giving an Einstein radius for the SIS halo of θE = 0.215
arcsec.

The predicted magnitudes of FNFW, GNFW, FSIS and
GSIS, as a function of angular separation from the lensing
halo on the sky, are shown in Figure 4. As could be ex-
pected the profiles show a good deal of similarity, but it is
apparent that both the first and second flexions due to the
SIS profile are stronger than those due to the NFW at very
small separations. Since one of the important features of the
NFW profile is that the density in the extreme interior of
the halo varies as ∝ r−1 compared to the steeper ∝ r−2 for
the SIS, this is not a surprising result.

It can be seen by comparing the lower plot of Figure 4,
for which the θ axis is doubled in scale, with the upper plot,
that GNFW is both stronger and longer range than FNFW.
Interestingly, we also note that the angular separation at
which the SIS halo flexion exceeds that for the NFW halo
is larger by about 5 arcsec for second flexion in relation to
the first flexion. These two effects are a consequence of the
non-locality of G as a lensing measurement when compared
to the directly local ∇κ measurement given by F ; for the
NFW profile, G tends to be less steep than F at small θ and
to die away less rapidly at larger separations.

The middle plot of Figure 4 shows another feature of
the comparison between the two profiles: an SIS halo of
M200 = 1.8 × 1012h−1M⊙ is practically indistinguishable
from an NFW halo with M200 = 1 × 1012h−1M⊙ for first
flexion measurements over galaxy-galaxy separations greater
than about 5 arcsec. This is a very similar property to one
found by Wright & Brainerd (2000) in a comparison of the
shear profiles of SIS and NFW halos. They found that the
assumption of an SIS halo profile produced systematic over-
estimations (by factors of up to 1.5) of the mass of NFW
halos. Further work will be required to determine the de-
pendence of this effect upon c for flexion measurements as
Wright & Brainerd usefully did for the case of shear.

4.6 Combined Shear and Flexion - Improving
NFW Halo Parameter Constraints

Previous studies of galaxy-galaxy lensing which have aimed
to constrain values of halo parameters such as M200 or c
for the NFW profile (see for example Brainerd et al. 1996;

Figure 4. Top: Comparison of the magnitude of first flexion due
to an NFW and an SIS halo of M200 = 1×1012h−1M⊙ at redshift
zlens = 0.35. Middle: A similar F comparison but this time the
SIS halo has M200 = 1.8× 1012h−1M⊙. Bottom: The magnitude
of G for an NFW and an SIS halo of M200 = 1 × 1012h−1M⊙,
where the doubling in scale of the angular separation axis high-
lights the larger range and amplitude of the second flexion.

Hoekstra et al. 2004, hereafter HYG04 in this section; Klein-
heinrich et al. 2005) have used measurements of shear exclu-
sively. Recently Goldberg & Bacon (2005) have shown that
in many lensing scenarios the signal-to-noise ratio will be
larger for the flexion than for the shear at small (but still
easily measurable) angular separations between source and
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lens. It is therefore worthwhile considering whether combin-
ing measurements of shear and flexion might improve con-
straints for the halo parameters such as c or M200 derived
from measurements of shear alone.

In order to do this we construct a simplified but illustra-
tive model. We can generate mock data for a sample of lens
and source galaxies such as might be available using current
or forthcoming galaxy imaging surveys. We model lens ha-
los as NFW profiles, and (as in HYG04) we assume we can
scale each lensing measurement in the sample to a fiducial
mass M200 or corresponding rest-frame B-band luminosity
LB using an observationally motivated scaling relation be-
tween the two, such as that proposed by Guzil & Seljak
(2002).

In order to estimate the confidence limits we might rea-
sonably expect from weak lensing measurements, we must
consider the effect of intrinsic ellipticity and flexion of un-
lensed galaxies. We use values of γint = 0.2 and F int = 0.04
for the intrinsic shear and flexion in this model (c.f. the in-
trinsic flexion measured by Goldberg & Bacon 2005). Red-
shift errors must also be considered; we assume for this sim-
ulation that we have access to photometric redshifts for each
galaxy, with an uncertainty of ∆z on each individual redshift
measurement (with values assigned below for broad-band
and medium-band photometric redshift surveys).

We note (e.g. Wright & Brainerd 2000) that the
strength of the shear signal due to an NFW halo varies as
γNFW ∝ DlDls/Ds, whereas we found in Section 4.4 that
the strength of the flexion varies as FNFW ∝ D2

lDls/Ds.
We thus model the error on measurements of the shear and
flexion due to redshift uncertainties by calculating errors on
DlDls/Ds and D2

lDls/Ds by numerical integration of terms
such as
〈

(

DlDls

Ds

)2
〉

=

∫ ∞

0

dz′sP (z′s|zs)
∫ ∞

0

dz′lP (z′l|zl)
D2

l′D
2
l′s′

D2
s′

(45)

where P (z′l|zl) and P (z′s|zs) are the probability of measuring
a redshift z′l or z′s for a lens or source galaxy respectively,
given that its true redshift is zl or zs. We model these prob-
ability distributions as Gaussians with standard deviation
∆z, and assume a standard ΛCDM cosmology (as in Section
4.4). We therefore estimate the fractional error in a single
measurement of shear and flexion due to redshift uncertain-
ties (given an underlying zl and zs). While the size of these
fractional errors depends upon each specific lens and source
redshift, for the purpose of this example we set them equal
to the median lens and source redshifts for each mock sample
we consider. Note that while, if we had no redshift informa-
tion, there would be a large scatter in the signal caused by
not knowing the geometry of the lensing, this is drastically
reduced with accurate photometric redshifts and is assumed
to be subdominant here.

For the fiducial virial halo mass we choose M200 =
1 × 1012h−1M⊙ (corresponding to a rest-frame L-band lu-
minosity of LB ≈ 1.2 × 1010h−2LB,⊙ according to the re-
sults of HYG04). We choose to model confidence limits for
two ground-based surveys; one similar in size to that used
by HYG04, and one covering a substantially larger area of
1700 square degrees. We also consider a deeper space-based
imaging survey with far smaller area of 0.5 square degrees.

The sample of galaxies used by HYG04 was taken from
Rc band imaging of the the Red-Sequence Cluster Survey

Figure 5. Estimated confidence limits on NFW halo parameters
available using (dotted line) shear measurements alone, (dashed
line) flexion measurements alone and (solid line) combined mea-
surements of shear and flexion. Top: a 42 sq deg ground-based
survey such as that used by Hoekstra et al. (2004). Middle: a
1700 sq deg ground-based survey. Bottom: a 0.5 sq deg space
based survey.
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(Yee & Gladders 2002) and contained Nl ∼ 1.2 × 105 lens
galaxies and Ns ∼ 1.5× 106 source galaxies over a sky area
of 42 sq deg. This corresponds to sky number densities of
nl ≈ 0.8 arcmin−2 for the lenses and ns ≈ 10 arcmin−2 for
the source galaxies. For the larger ground-based survey we
assume the same depth, but increase the survey area to 1700
sq deg. We assume a redshift uncertainty of ∆z = 0.1 for
each galaxy in either sample, and use the median lens and
source redshifts found by HYG04 of zl = 0.35 and zs = 0.53
for both ground-based mock datasets. We set the underlying
NFW lens halo concentration to c = 7.20 as in Section 4.4.

For the mock space-based dataset we set the survey area
to 0.5 sq deg, with number densities of nl = 10 arcmin−2 and
ns = 30 arcmin−2 due to the increased depth and quality
of imaging expected for space-based results. For the redshift
uncertainties we use a value of ∆z = 0.05 (c.f. Bacon et
al. 2004 for the COMBO-17 photometric redshift survey in
relation to weak lensing; Wolf et al 2001), and set zl = 0.5
and zs = 1.0. Following the predictions of Navarro et al.
(1997) we model each lens halo as having a slightly smaller
concentration of c = 7.02 at this deeper redshift.

We then generate a set of mock results for the tangential
shear and radial flexion, averaged over annuli around the
lensing galaxies (at increasing angular separations between
lens and source) for the whole ensemble of galaxies in any
given survey. These mock results are made by taking the
theoretical (NFW) prediction for the average shear or flexion
over each annulus of angular separation and offsetting it by
a Gaussian random deviate scaled to the estimated overall
error for that bin.

We combine the error due to redshift errors and the
intrinsic signal for a single measurement, multiplied by a
factor of 1/

√
Nbin where Nbin is the number of lens-source

pairs within the annulus over which we are averaging our
lensing measurements.

All that remains is to choose at what angular separa-
tions to impose the divides between annuli for averaging
shear and flexion measurements. Since flexion is at its most
useful on small scales, while shear signals remain strong at
scales large enough for the flexion to become noise domi-
nated, we divide up the angular scales for measurement ac-
cording to a geometric binning scheme. We choose 10 annuli
such that the centre of the ith annulus lies at an angular
radius

ri = af (i−1) (46)

where a = 2 arcsec and the geometric factor f = 1.5. In
this way we describe annuli which usefully cover both small
(down to 2 arcsec) and larger (up to 77 arcsec) scales of
angular separation.

The resulting 68%, 90% and 95%, 2-parameter confi-
dence intervals for NFW parameters from a maximum like-
lihood analysis of the three mock datasets generated using
this simple model can be seen in Figure 5; it is immediately
apparent that measurements of flexion may have a lot to of-
fer galaxy-galaxy lensing studies. It is especially interesting
to note that the confidence-contours derived from measure-
ments of shear and flexion appear to be oriented at different
angles in the plane, allowing the two measurables to sig-
nificantly complement each other. This should perhaps not
come as a surprise; whereas shear is a measure related to the
projected mass density κ, the first flexion directly probes the

local gradient of κ, or in this case the slope of the halo profile.
We should expect therefore that flexion has the potential to
significantly improve constraints on the halo concentration
c.

It is reassuring to note from Figure 5 that the size of
the 68% confidence interval we derive on the fiducial M200

for the HYG04-like survey is in good agreement with the
mass constraints found by those authors for galaxies scaled
to a (slightly smaller) fiducial LB = 1010h−2LB,⊙, namely
M200 = (8.4 ± 0.7 ± 0.4) × 1011h−1M⊙. The second error
estimate corresponds to a systematic uncertainty due to the
fact that HYG04 had no actual measured redshift informa-
tion from the Red-Sequence Cluster Survey (see HYG04 for
details); we note that even despite this fact, their errors due
to intrinsic galaxy ellipticity dominate over redshift uncer-
tainties in their investigation of galaxy-galaxy shear, and will
therefore be even less dominant for surveys with measured
redshifts.

5 GALAXY HALOS: ELLIPTICAL PROFILES

We now discuss the more general prospect of using flexion to
measure the ellipticity of lenses. When describing elliptically
flattened halo mass distributions, it is often simplest to work
with elliptical lens potentials, ψ(θ). Unfortunately these de-
scriptions have some severe limitations, most notably that
they produce dumbbell-shaped isodensity contours for large
ellipticities and can even produce negative surface-mass den-
sities (see Kassiola & Kovner 1993).

It is thus best to consider models where the isodensity
contours of the mass distribution are elliptical, despite the
increased complexity of the lens potential. The simplest gen-
eralisation of the softened isothermal sphere to an elliptical
density profile can be written

κ(θ1, θ2) =
θE

2

√

θ2c +
θ21

(1 + ǫ)2
+

θ22
(1− ǫ)2

, (47)

where the major axis of the elliptical isodensity contours
lie along the θ1 axis in the sky plane, and the ellipticity
ǫ is defined by the ratio of minor-to-major axes (b and a
respectively):

b

a
=

1− ǫ

1 + ǫ
. (48)

The flexion vector at (θ1, θ2) in the sky plane is then

F = − θE

2

[

θ2c +
θ21

(1 + ǫ)2
+

θ22
(1− ǫ)2

]3/2

×
(

θ1
(1 + ǫ)2

+
iθ2

(1− ǫ)2

)

. (49)

We note that interestingly, F is no longer directed towards
the centre of the lens for all (θ1, θ2); it will in fact be centrally
directed only when either θ1 or θ2 are equal to zero.

It is simple to show that the flexion vector at a point
(θ1, θ2) will be directed towards a point on the major axis
of the ellipse with coordinates (aint, 0) where

c© 2004 RAS, MNRAS 000, 1–17



10 D. J. Bacon et al

Figure 6. Flexion vector field for an elliptical isothermal density
distribution with minor-to-major axis ratio of 0.67. Points in the
extreme interior of the diagram have been omitted for clarity and
the elliptical contours follow the logarithm of |F|.

aint =

[

1−
(

1− ǫ

1 + ǫ

)2
]

θ1 =

[

1−
(

b

a

)2
]

θ1. (50)

Due to the (b/a)2 term, even relatively modest ellipticities
in the density distribution cause aint to represent a signifi-
cant fraction of θ1. This tendency for the flexion vector to
be aimed at a point significantly off lens-centre can also be
seen in Figure 6, drawn for an axis ratio of 0.67 which may
be typical of galaxy halos (see e.g. Hoekstra et al. 2004).
This implies that measurements of the direction of flexion
in galaxy-galaxy lensing may be able to give good further
constraints on the ellipticity of dark-matter halos.

In order to find the second flexion, we can rewrite this
elliptical isothermal profile (without softening) as follows.
We begin by defining a radial term:

ρ ≡
√

θ21 + f2θ22 , (51)

where

f2 = (a/b)2, (52)

with a the semi-major axis and b the semi-minor axis. The
density profile can then be defined as:

κ =
A

ρ
. (53)

For this distribution, the shear can be shown to have a very
simple form:

γ1 = −A cos(2φ)
ρ

= −Aθ
2
1 − θ22
ρθ2

,

γ2 = −A sin(2φ)
ρ

= −A2θ1θ2
ρθ2

. (54)

We may compute the derivatives of these terms in a straight-
forward way, and hence find the corresponding complex first
and second flexion:

F =

(

−Aθ1
ρ3

)

+ i

(

−Af
2θ2
ρ3

)

(55)

and

G = A

(

3θ51 − θ1θ
4
2 − 6θ31θ

2
2 − 8f2θ1θ

4
2

ρ3θ4

)

+

iA

(

8θ41θ2 + 6θ21f
2θ32 + f2θ41t− 3f2θ52
ρ3θ4

)

. (56)

The analysis becomes simpler if we only examine the angle-
averaged radial terms:

FN = 〈− exp(−iφ)F〉 = − A

ρθ

GN = 〈− exp(−3iφ)G〉 = 3A

ρθ
. (57)

A means of measuring the ellipticity of the lens is to follow
Bartelmann & Schneider (2001) and measure the quadrupole
moment of the flexion field over some aperture. That is:

Q{F,G} =

∫ 2π

0

dφ{F ,G} exp(2iφ) . (58)

Despite the other advantages in simplicity of our mass
model, the evaluation of the the quadrupole moment here
involves an elliptic integral. However, for relatively small el-
lipticities, we can expand this out as a series:

QF = − Ae

8θ2
≃ e

8
FN

QG =
3Ae

8θ2
≃ e

8
GN , (59)

where e is the lens ellipticity. Thus the lens ellipticity mea-
surement from flexion incurs an e/8 “penalty” compared to
the simple measurement of the flexion itself. Taking a typi-
cal ellipticity of 0.2, the quadrupole estimate is 0.025 times
the S/N of the flexion, and thus we need approximately 1600
times as many pairs in order to measure the lens ellipticity
effectively than to measure the convergence field. Neverthe-
less, flexion can clearly contribute to the question of the
shape of dark matter halos around galaxies.

This concludes our examination of galaxy-galaxy flexion
prospects. We will now turn to another area in which flexion
can contribute significantly to studies of the dark matter
distribution: that of mapping the dark matter density.

6 MASS RECONSTRUCTION AND
SUBSTRUCTURE

In this section, we discuss how flexion can be used to recon-
struct the density field of matter in order to obtain a spatial
map of the matter distribution. This is clearly a valuable as-
pect of lensing, and is already routinely achieved using weak
shear. In addition, we can obtain matter maps from flexion,
which as we will see can significantly improve the signal-to-
noise of the density map. We will first examine how to use
flexion to obtain 2-D surface density maps of matter; we will
then examine how flexion can also be used for 3-D mapping
of density.

6.1 2-D Mapping

For 2-D mapping, we are able to generate maps of the pro-
jected matter density (i.e. the convergence) from both F
and G, following the ideology of Kaiser and Squires (1993).
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Starting with F , we take the Fourier transform of the rela-
tion F i = ∂iκ to obtain

F̃1 = −ik1κ̃(k)
F̃2 = −ik2κ̃(k). (60)

We can invert both of these terms to obtain an estimate
for κ̃. We add these two estimates in an optimal fashion,
parameterised by the variable a:

κ̃ =
iaF̃1

k1
+
i(1− a)F̃2

k2
. (61)

In order to optimise the estimate, we take the mean square of
this equation, which in the absence of a lensing signal will
have a value determined by constant noise from intrinsic
flexion. We then minimise with respect to a, in order to find
a measurement of the κ field with minimal noise. As a result
we find the following inversion:

κ̃ =
ik1

k21 + k22
F̃1 +

ik2
k21 + k22

F̃2. (62)

This gives us a prescription for finding the surface density
of matter: we measure the flexion field, take the Fourier
transform, calculate κ̃ according to this equation, and then
take the inverse Fourier transform to find κ.

We can perform the same calculation for the inversion
from G to κ. We note that the components of G can be
written in terms of the lensing potential, ψ (c.f. equation
20) as

G1 = (∂3
1 − 3∂1∂

2
2)ψ

G2 = (3∂2
1∂2 − ∂3

2)ψ. (63)

Hence the Fourier transform

G̃1 = i(k31 − 3k1k
2
2)ψ̃

G̃2 = i(3k21k2 − k32)ψ̃. (64)

Again, we add these estimates of ψ̃ in some optimal fashion
parameterised by a:

ψ̃ = − iaG̃1

k31 − 3k1k22
− i(1− a)G̃2

3k21k2 − k32
. (65)

Calculating the mean square of this field and minimising
with respect to a, we find that the optimal estimate of κ is
given by:

κ̃ = i
k31 − 3k1k

2
2

(k21 + k22)
2
G̃1 + i

k32 − 3k21k2
(k21 + k22)

2
G̃2. (66)

This provides us with the mass-mapping equations we have
been seeking. We can now obtain mass maps with indepen-
dent noise for γ, F and G, and combine these with minimum
variance weighting (with respect to noise) in order to obtain
a best mass map.

These mapping relations can be efficiently expressed
and trivially derived in the complex notation of Section 3
using equation (19):

(κ+ iB)F = ∂−2∂∗F ,
(κ+ iB)G = ∂−4∂∗∂∗∂∗G (67)

Figure 7. Shear (upper), flexion (middle) and second flexion
(lower) for simulated cluster; the cluster’s convergence map is
shown underlying the other weak lensing fields. Note that shear
does not respond well to substructure, while the flexions respond
very significantly to these regions.
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Figure 8. Recovered convergence maps from the shear alone (up-
per), the two flexion fields (middle) and shear and flexion com-
bined (lower) for simulated cluster, with noise properties appro-
priate for a deep space-based set of observations.

where the complex part is again seen to give us the B-field
component which can be used as a test of systematics. Com-
paring these two derivations of the mapping equations, we
see that (67) gives the solution in the case of no noise, while
(62) and (66) show that this is still optimal in the presence
of noise due to intrinsic flexion.

The mapping process is illustrated in Figures 7 and 8.
Here we have simulated a projected surface density for a toy
cluster of galaxies, using a Gaussian cluster gravitational
potential profile with width σ = 3′ and mean κ within this
radius of κ = 0.06. We have laid down three substructure
Gaussians containing 10% of the mass, with width σ = 1′

(one at the centre of the cluster). The associated shear and
flexion fields shown in Figure 7 were calculated directly from
equations (17) and (20). Note from this figure that the shear
does not respond significantly to the small-scale structure,
while flexion is most affected at these scales; this is in line
with our results for galaxy-galaxy flexion, and will be ex-
plored more in the following section. We also note from the
figure that the first flexion responds locally to the density
gradient, whereas the second flexion responds non-locally
while still giving large signals near substructure.

Shot noise is added to these fields with σγ = 0.2,
σF = σG = 0.04 and projected number density n = 60
as appropriate for a space-based survey such as GEMS (e.g.
Rix et al 2004).

We have then used our inversion procedure (equations
62 and 66) together with the Kaiser-Squires inversion for
shear, to obtain maps of κ from these fields, which are dis-
played in Figure 8 together with a combined convergence
map from all fields added with minimum variance weighting.
The shear field has been smoothed with a Gaussian of ra-
dius 0.5’ as it suffers from large fluctuations on small scales,
while the flexion is smoothed with radius 0.1’ as does not
suffer from this problem. We note that the surface density
is reconstructed well from all three fields, with maximum
signal-to-noise of 3.6 for the shear reconstruction and 3.5
for the two flexion reconstructions combined. It is gratifying
that the signal-to-noise for the two approaches are so simi-
lar, and strongly emphasises the value of measuring flexion
as well as shear. We also note that flexion does indeed mea-
sure the substructure concentrations at the 1.4-2.6σ level,
whereas shear is not able to detect these subhalos. Future
lensing maps of density will therefore benefit significantly
from the inclusion of the flexion signal, especially for the
purpose of charting the substructure.

6.2 3-D Mapping

We will now briefly note how to extend this method in or-
der to map the density of matter in three dimensions with
flexion, following the concepts of Taylor (2001) and Bacon
& Taylor (2003). For this, we need to know what gravita-
tional flexion we would measure upon a galaxy at any 3-D
point in the Universe. We will see in the next section that
the effective flexion along a line of sight over cosmological
distances is given by

F =
3H2

0Ω
2
m

2c2

∫ w

0

dw′w
′2(w −w′)

a(w′)w

∂δ

∂x
(68)

where H0 is the Hubble constant, Ωm is the matter density
at the present epoch, c is the speed of light, w is comoving
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distance, a is the expansion factor, δ is the overdensity of
matter and x is the transverse physical distance.

Now for a function A(w) that can be written as the
integral of a function B(w′, w),

A(w) ≡
∫ w

0

dw′B(w′, w), (69)

we can write the rate of change of A with respect to w as

∂A(w)

∂w
=

∫ w

0

dw′ ∂B(w,w′)

∂w
+B(w,w). (70)

Now F is in a suitable form for A, with B given in equa-
tion (68). We can therefore use equation (70) to invert the
integral for F , and find that the transverse gradient of the
matter overdensity, δ′ can be calculated in terms of the mea-
sured 3-D flexion:

δ′(w) =
2c2

3H2
0Ωm

a(w)

w2

∂2

∂w2
(wF). (71)

Thus we can obtain estimates of the density gradient along a
line of sight, if we have measurements of F(w) along that line
of sight, improving signal-to-noise from 3-D maps measured
using weak shear alone (Taylor et al 2004).

7 COSMIC FLEXION

We now turn our attention from dark matter mapping to
the overall matter distribution in the Universe. Can we use
flexion to probe the distribution of large-scale structure? In
order to answer this question, we carry out an analysis which
is analogical to the theory of cosmic shear; here, we are try-
ing to calculate the ‘cosmic flexion’, the flexion correlation
function whose signal originates from the large-scale struc-
ture. In this section we will closely follow the analysis of
Bartelmann & Schneider (2001).

7.1 Flexion Power Spectrum

If we are to find the flexion correlation function from large-
scale structure, then from the definition of flexion as the
gradient of the convergence, it is valuable to begin with the
cosmological effective convergence, given by Bartelmann &
Schneider (2001) as:

κ(θ, w) =
1

c2

∫ w

0

dw′ (w − w′)w′

w

∂2

∂xi∂xi
Φ[w′θ, w′] (72)

where θ is the position on the sky, w represents comov-
ing distances, x represents physical distances, and Φ is the
gravitational potential. For simplicity, we are restricting our-
selves throughout this section to a flat Universe and a flat
sky approximation; for a curved sky the calculation can be
extended using the formalism of Castro et al (2005). The
equation above for convergence can be put into terms of the
overdensity of matter using the Poisson equation

∂2

∂xi∂xi
Φ ≃ 3H2

0Ωmδ

2a
(73)

which gives:

κ(θ, w) =
3H2

0Ωm

2c2

∫ w

0

dw′ (w − w′)w′

w

δ[w′θ, w′]

a(w′)
. (74)

Now we wish to differentiate this to obtain a form for the
effective cosmological flexion. In order to do this, we note
the relationship between the required gradient with respect
to angle on the sky, and the gradient of physical distances:

∂i = w
∂

∂xi
. (75)

Using this, we obtain for the first flexion

F = ∂iκ =
3H2

0Ωm

2c2

∫ w

0

dw′ (w − w′)w′2

a(w′)w

∂

∂xi
δ[w′θ, w′]

=
3H2

0Ωm

2c2

∫ wH

0

dw
W̄w2

a(w)
δ′[wθ, w]. (76)

Here, δ′ is the transverse gradient of the overdensity, and we
have defined

W̄ =

∫ wH

w

dw′G(w′)
(w′ − w)

w′
(77)

where G is the distribution of galaxies as a function of radial
distance.

In order to find the power spectrum of cosmic flexion,
we will use a form of Limber’s equation, which states that
if one can find two quantities g1 and g2 written in terms of
some other quantities qi as

gi =

∫

dw′qi(w
′)G(w′)δ′[w′θ, w′] (78)

then the cross-power spectrum of g1 and g2 is

P12(ℓ) =

∫

dw′ q1(w
′)q2(w

′)

w′2
Pδ′(k,w

′), (79)

where ℓ is the angular wavenumber and Pδ′ is the power
spectrum of the transverse gradient of the density fluctua-
tions. We note that we can write the flexion in equation (76)
in this way, with q given by

q =
3H2

0Ωm

2c2
W̄ (w)w2

a(w)
. (80)

Therefore we can write the flexion power spectrum as

PF (ℓ) =
9H4

0Ω
2
m

4c4

∫

dw
W̄ 2(w)w2

a2(w)
Pδ′

(

ℓ

w
,w

)

. (81)

Because flexion is the derivative of convergence, this power
spectrum is in terms of the derivative of the overdensity. In
order to describe the flexion power spectrum in terms of the
more familiar overdensity itself, we note that

|δ′k|2 = |δk|2k21 . (82)

This implies that

Pδ′

(

ℓ

w
,w

)

= Pδ

(

ℓ

w
,w

)

ℓ2

w2
. (83)

Finally, then, we can describe the flexion power spectrum as

PF (ℓ) =
9H4

0Ω
2
m

4c4
ℓ2
∫

dw
W̄ 2(w)

a2(w)
Pδ

(

ℓ

w
, w

)

. (84)

We note that this has a very similar form to the convergence
power spectrum, differing only by a factor of ℓ2. Thus flexion
power will be dominated by high ℓ components; again we
see that flexion takes the form of a high-bandpass filter for
density fluctuations.
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Figure 9. The cosmic flexion power spectrum. Top: power spec-
trum as a function of angular wavenumber l; bottom: power spec-
trum per log interval in angular scale. Solid line: (Ωm = 0.3,ΩΛ =
0.7, σ8 = 0.7); dotted line: (Ωm = 0.3,ΩΛ = 0.7, σ8 = 0.9);
dashed line: (Ωm = 0.2,ΩΛ = 0.8, σ8 = 0.7); dash-dotted line:
(Ωm = 0.2,ΩΛ = 0.8, σ8 = 0.9).

One can easily show that the two-point statistics of F
and G are identical; hence the first flexion power spectrum
which we have calculated here is identical to the second flex-
ion power spectrum.

From this power spectrum, we can find the flexion cor-
relation function, as these are related by:

ξF (θ) =

∫ ∞

0

d2ℓ

(2π)2
PF (ℓ)e−iℓ.θ

=

∫ ∞

0

ℓdℓ

2π
PF (ℓ)J0(ℓθ). (85)

Thus

ξF (θ) =
9H4

0Ω
2
m

4c4

∫ wH

0

dw
W̄ 2(w)w4

a2(w)

Figure 10. Cosmic flexion correlation function for the cosmolog-
ical models shown in Figure 9. Also plotted is the error on cosmic
flexion for a 100 square degree ground-based survey.

×
∫ ∞

0

kdk

2π
Pδ(k,w)k

2J0(kwθ). (86)

We can now examine what these predictions provide in prac-
tice. We numerically calculate the flexion power spectrum
from equation (84) using the matter power spectrum pre-
scription used in Bacon et al. (2004). This uses an initial
Harrison-Zel’dovich power spectrum with non-linear evolu-
tion following Smith et al. (2003).

Figure 9 shows the flexion power spectrum in two forms.
In the top panel, we present the power spectrum as a func-
tion of angular wavenumber l, for median redshift z = 1. It is
clear that the flexion power predictions are significantly de-
pendent on the cosmological model; we will discuss whether
this affords measurement of cosmological parameters in the
context of correlation functions below. We note that the
flexion power peaks at smaller angular scales than the shear
power spectrum, i.e. ∼ 1 arcmin as opposed to a few 100
arc min (c.f. Bartelmann & Schneider 2001, Figure 16). We
also note that the flexion power spectrum has a very famil-
iar shape; since the shear power spectrum is often shown
premultiplied by ℓ2, the flexion power spectrum (without
premultiplication by ℓ2) is identical in shape to the premul-
tiplied shear power spectrum.

The bottom panel shows the flexion power per logarith-
mic interval in angular wavenumber. This shows that, for
reasonable cosmological models, the power per log interval
increases without limit for Smith et al (2003) density spec-
tra. This is in contrast to the shear power spectrum, where
one finds a broad maximum in power per log interval below
≃ 1′ (c.f. Bartelmann & Schneider Figure 16). This again il-
lustrates that cosmic flexion is increasingly sensitive to dark
matter concentrations on small scales.

Figure 10 shows predictions for the cosmic flexion cor-
relation function for median redshift z = 1, where we plot
flexion in units rad−1. Note again the significantly differ-
ent predictions for different cosmologies. However, we also
plot errors in measuring the cosmic flexion, for a 100 square
degree ground-based survey with galaxy number density of
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20 arcmin−2. Note that these error bars will have signifi-
cant covariance between angular scales. We see that, while
on small scales we can obtain a clear measurement of the
small-scale structure, we cannot obtain measurements of the
flexion in the linear density regime. This makes cosmological
parameter prediction unfeasible, as it is difficult to predict
amplitudes for structure on very nonlinear scales from cos-
mological models. Nevertheless, cosmic flexion is useful in
probing these scales in order to understand them on their
own terms, describing substructure and the cuspiness of ha-
los; cosmic flexion is also complementary to cosmic shear,
probing small scales in an isolated fashion, whereas cosmic
shear has a broad window function for power. The cosmic
flexion signal will be a useful means of testing theories of
stable clustering or stable merging (c.f. Smith et al 2003).

It should be noted that in this analysis we have ne-
glected the power that might exist from intrinsic, physical
flexion correlations between galaxies. The analogous intrin-
sic ellipticity correlation between galaxies has been shown
(e.g. Heymans et al 2004) to be small; however, further work
will be necessary to measure the level of contamination of
cosmic flexion due to intrinsic flexion alignments.

7.2 Convergence-Flexion Cross Power Spectrum

In addition to the flexion power spectrum, we are also able
to calculate the convergence-flexion cross power spectrum,
which can easily be related to the shear-flexion cross power
spectrum. We note that to do this we can again use Limber’s
equation (79), but this time using Pδ from the outset rather
than Pδ′ . In this case, from our final power spectrum for
flexion (equation 84) we see that the relevant choice of q for
flexion in Limber’s equation is

qF =
3H2

0ΩmW̄ (w)wℓ

2c2a(w)
. (87)

In addition, from equation (74), we see that the choice of q
suitable for convergence is

qκ =
3H2

0ΩmW̄ (w)w

2c2a(w)
. (88)

Hence the cross-power spectrum between convergence and
flexion can be written as

PFκ(ℓ) =
9H4

0Ω
2
m

4c4

∫

dw
W̄ 2(w)

a2(w)
Pδ

(

ℓ

w
,w

)

ℓ. (89)

This is shown in Figure 11, together with the associated
convergence-flexion cross-correlation function in Figure 12
with appropriate errors for a 100 square degree survey. We
see that this quantity has a measurement limit on an in-
termediate scale to shear and flexion limits (≃ 2′). It is a
valuable quantity to measure, as it gives a stronger signal-
to-noise than cosmic flexion, and offers a stringent check
on systematic errors between the shear or convergence and
flexion signals.

8 CONCLUSIONS

In this paper, we have examined how flexion can be applied
to obtain both astrophysical and cosmological information.

Figure 11. The cosmic convergence-flexion cross-power spec-
trum. Top: power spectrum as a function of angular wavenumber
l; bottom: power spectrum per log interval in angular scale. The
lines represent the same cosmological models as in Figure 9.

We have explored the use of galaxy-galaxy flexion to mea-
sure the mass and profile of galaxy dark matter halos; we
have shown how flexion can generate maps of dark matter;
and we have calculated the cosmic flexion correlation signal.

We have presented a flexion formalism, showing how
the effect arises from the variation of the shear field over an
object, and giving a brief discussion of how the effect can be
measured using shapelets. A second flexion which was not
considered in previous work has also been presented; this
second flexion contains non-local information which gener-
ates arcs from point mass lenses, while the first flexion con-
tains local information about the gradient of the density.

We have examined the efficiency of flexion as a descrip-
tion of second-order lensing information, in comparison with
simply describing this in terms of gradients of shear. Flexion
is found to be an optimal description for point mass lens-
ing, and is about as efficient as shear gradients for singular
isothermal spheres.

We have calculated flexion predictions for galaxy-galaxy
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Figure 12. Cosmic convergence-flexion cross-correlation function
for the cosmological models shown in Figure 9. Also plotted is the
error on cosmic flexion-convergence cross-correlation for a 100
square degree ground-based survey.

lensing, for a variety of galaxy halo profiles including the
singular isothermal sphere, with or without softening, the
elliptical isothermal, and the NFW profile. It is found that
galaxy mass can be measured well with flexion, as the mass-
sheet degeneracy which plagues shear does not exist for
flexion. Also, we find that by combining shear and flexion
galaxy-galaxy lensing, we are able to produce powerful con-
straints on the halo profile.

Flexion can be used to reconstruct mass profiles di-
rectly, using a similar process to the Kaiser-Squires (1993)
and Taylor (2001) inversions in 2 and 3 dimensions respec-
tively. We have noted how flexion can act as an excellent
tool for measuring substructure.

We have also calculated predictions for cosmic flexion,
the flexion arising from large-scale structure. It is found that
this signal is only measurable on small scales; it is useful
for measuring small-scale structure and halo profiles, but
will not yield independent cosmological parameters, as pre-
dictions for structure amplitudes are difficult in this highly
non-linear regime.

We have seen from these applications of flexion that this
quantity is a highly useful tool for a variety of methods of
measuring mass fluctuations in the Universe. Flexion con-
stitutes a valuable complement to shear, as it is sensitive
where shear is not, and vice versa. With upcoming surveys
from ground and space, flexion will provide a useful addition
to the armoury of those who seek to understand mass in the
Universe.
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APPENDIX A: NFW HALO PARAMETER
CONVENTIONS

We will follow the lead of Kleinheinrich et al. (2005) and
briefly discuss the differing conventions used to describe
NFW halos in the literature. In this comparison, and in
the section above, we have adopted the convention used by
Navarro et al. (1996, 1997) and by Hoekstra et al. (2004) of
defining a radius r200 from the centre of a CDM halo within
which the mean density is 200 times the critical density for
closure of the universe in that epoch. The mass of the halo
can then be quantified via M200, the mass contained within
r200 such that
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M200 =
800π

3
ρcrit(z)r

3
200. (A1)

The scaling radius rs of equation (36) is then expressed by
Navarro et al. (1997) in terms of r200 and another dimension-
less scaling parameter, the concentration c, as rs = r200/c.
From the definition of M200, the parameters c and ∆c are
linked by the relation

∆c =
200

3

c3

[ln(1 + c)− c/(1 + c)]
. (A2)

The convention outlined above is not used by all authors,
with Kleinheinrich et al. (2005) choosing to define r200 as the
radius from the halo centre within which the mean density is
200 times the overall mean matter density of the universe at
that epoch. This convention, which we will hereafter denote
via the use of primes, thus relates M ′

200 to r′200 through

M ′
200 =

800π

3
Ωm(z)ρcrit(z)r

′3
200 (A3)

where Ωm(z) is the matter density parameter at the epoch
of the halo in question. For any given halo at a redshift z we
can hence define a concentration c′ such that rs = r′200/c

′

and a characteristic density related to the concentration as
follows:

∆′
c =

200Ωm(z)

3

c′3

[ln(1 + c′)− c′/(1 + c′)]
. (A4)

We note that while M ′
200, r

′
200 and c′ take different values

to their unprimed counterparts, rs must not change and we
must have ∆c = ∆′

c, as both these parameters describe the
real physical density profile of the halo.

Given the potential for confusion of having two differ-
ing NFW conventions in the literature, it is worthwhile to
describe the conversion between the two. If we have a halo
of concentration c, defined as by Navarro et al. (1997), at a
redshift z, then it can be quickly seen that the corresponding
concentration for the primed convention is found by solving

Ωm(z) c′3

[ln(1 + c′)− c′/(1 + c′)]
=

c3

[ln(1 + c) − c/(1 + c)]
. (A5)

Once c′ is determined, the conversion relations for r′200 and
M ′

200 follow trivially:

r′200
r200

=
c′

c
,

M ′
200

M200
= Ωm(z)

(

c′

c

)3

. (A6)

Finally we note that in practice the primed values of c′,M ′
200

and r′200 are somewhat larger than their unprimed counter-
parts.
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