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ABSTRACT

Context. Synthesis models predict the integrated properties dasigbpulations. Several problems exist in this field, mosglated to the fact
that integrated properties are distributed. To date, thieet has been either ignored (as in standard synthesidsnudich are inherently
deterministic) or interpreted phenomenologically (as iort&¢ Carlo simulations, which describe distributed propsrrather than explain
them).

Aims. This paper presents a method of population synthesis thatiats for the distributed nature of stellar properties.

Methods. We approach population synthesis as a problem in probaHiéory, in which stellar luminosities are random variabdatracted
from the stellar luminosity distribution function (sLDF).

Results. With standard distribution theory, we derive the populati®F (pLDF) for clusters of any size from the sLDF, obtainithg scale
relations that link the sLDF to the pLDF. We recover the peédins of standard synthesis models, which are shown to aterthe mean
of the luminosity function. We provide diagnostic diagraersl a simplified recipe for testing the statistical richnessbserved clusters,
thereby assessing whether standard synthesis models safeheused or a statistical treatment is mandatory. Weralsover the predictions
of Monte Carlo simulations, with the additional bonus ofrigeable to interpret them in mathematical and physical tekfesgive examples
of problems that can be addressed through our probabifstinalism: calibrating the SBF method, determining the ihwsity function
of globular clusters, comparing ftiérent isochrone sets, tracing the sLDF by means of resolaéal ahcluding fuzzy stellar properties in
population synthesis, among others. Additionally, theathmic nature of our method makes it suitable for deveigmnalysis tools for the
Virtual Observatory.

Conclusions. Though still under development, ours is a powerful appraacpopulation synthesis. In an era of resolved observatioms
pipelined analyses of large surveys, this papeffisred as a signpost in the field of stellar populations.

Key words. Clusters — Galaxies: star clusters — Galaxies: stellarecwnt Hertzsprung-Russell (HR) and C-M diagrams — Methodta d
analysis

1. Introduction and motivation ties of an observed population from the available obseegbl

) ] . In either case, to accomplish the task one needs feasilie the
The study of stellar populations is one of the most fecun®®p (g ical models that serve as reliable diagnostic tools.
in today’s astronomy. Understanding the properties ofastel . o ) .
populations is a key element in the solution of a host of funda A traditional approach to building such diagnostic tools ha

mental problems, such as the calibration of distances taex€€n the computation of synthesis models. Synthesis models
galactic objects, the age determination of clusters areigs allow one to_ pred_lct the features and the evqu_tlon of gstella
through color fitting, the characterization of the stamiation POPulations in a highly structured way, one that is apt far-ro
history of composite populations, the modeling of the cteaini tine analysis and quantitative assessments. For exanyple, s
evolution of galaxies, and several more. When tacklingahel1Sis models can be used, in combination with other methods
problems, the interaction between theory and observatjoes for the determination of stellar population propertiesare

both ways: one may want to predict the properties of a stelg@MPles of galaxies in a reasonable time; e.g. the analfsis o
population with given properties, or to recover the basiper- 50362 galaxies of_the Sloan Digital S_ky Survey based on their
integrated properties performediby Cid Fernandes et aD5(20

Send gprint requests to M. Cervifio, V. Luridiana; e-mail: However, in recent years there has been a growing aware-
mcs@iaa.es, vale@iaa.es ness that synthesis modeling alsdfets from severe limita-


http://arxiv.org/abs/astro-ph/0504483v2

2 M. Cervifio, V. Luridiana, and N. Cervifio-Luridiana: Babilistic synthesis models

tions. In some cases, we knaavpriori that standard mod- In the present paper we introduce a theoretical formal-
els cannot be applied to a given system, because the prigm for the probabilistic analysis of single stellar popigas
erties of the system fall outside the hypothesis space of #&5Ps). Our formalism yields results that are as accurate as
models; this is the case, for example, of undersampled poflusse of large Monte Carlo simulations, but it bypasses¢eein
lations [Chiosi et al. 1988; Cervifio & Valls-Gabaud 2008). to perform these simulations: that is, the method is botl-acc
other cases, we observe a mismatch between the propertiestd and economic. By means of our formalism, synthesis mod-
the system inferred from observations of their individuaine els can be applied to clusters of any size and the confidence
ponents and those derived from their integrated propeaties intervals of the results can be evaluated easily. This mikes
alyzed with synthesis models: e.g. the discrepancy betwgmssible to estimate the relative weights dfelient bands for

the age determined from the color-magnitude diagram and the realistic application of goodness-of-fit criteria littee y?
spectroscopic age in NGC 588 (Jamet et al. 2004), or the INESt. Finally, the algorithmic nature of our method makésat
slope inferred by Pellellin (2005) in undersampled giantrd-  sible for implementation in the VO environment.

gions. In these cases, we are facing a crisis in the explgnato This paper is the fourth in a series
power of synthesis models. (Cervifio, Luridiana, & Castandeér 2000; Cervifio et al. 250

Previous attempts to solve this crisis and to understand .lCI:%rvmo etal. 2001a) dealing with the statistical analysi

limitations of synthesis models have repeatedly pointatiet stellar populations. Although it only deals with SSPs, anfift

necessity of including statistical considerations in thalg paper, in preparation, will be devoted to the extension & th

sis. According to this view, the predictive power breaks dov’formallsm to any star formation history scenario. Finaily,

because the traditional synthesis model is essentialIyteardet(r:g\ﬁEgegr‘t;il;:i(i':fr;cgiznocf’h)e\'\gsi'l\gse ;nse;(:ﬁg:;\slemrs;'eel\g ?r:
ministic tool, whereas the nature of the problem is inhdyent 9 Y j

stochastic. The clearest example of stochasticity is thesm%?l?:r']%r\]/ : ;he(szzoa?%et;fslealsrg ;ﬁg?g}e&i t:oemvt\)/%rlg dby
spectrum of stellar populations, in which fluctuations gbly L ~>tatistical properti !

random, although not necessarily so) in the number of sfarsg"Ssion of a populanon of discrete Sources. astrophysica
|8‘|v5JI|cat|ons This paper, although not directly focused on

each type appear around the mean expected number. Until n nthesis models, suggests an alternative point of viewef t
the dforts to take stochasticity into account in the modeling 4 » Sugg P

stellar populations have moved in essentially two directio problem. In some aspects, it has inspired the present paper.

the use of Monte Carlo techniques (€.0. Santos & Frogel 1997; In th_is work we restate the _problem of stellar popu_latio_n
Cervifio, Luridiana, & Castander 20C‘0v; Bruzual 2002;iji'arSyntheS'S from a new perspective, the one of luminosity dis-

2002;| Cantiello et al. 2003, among others) and the reirﬁerpFibUtions’ Whic.h isa powerf‘%' and elegant way to underlsktgn
tation of traditional models in statistical terms (€.g. Bomi ;tellar pgpula‘uons. We provide seyergl examples_ of applic
1989 Cervino et AL 200Ph; Gonzalez tal. 2004). Botrhmet;'ons to illustrate such power and indicate potential amafas

ods have proved able to solve some of the problems, or Wture (je_v_elopment. The 5“?‘”".‘9 pqint of the er_f‘?rma"sm
least point toward possible solutions. However, thefesidrom the def|n|j[|on of the stellar_(|.e. |n(j|V|duaI) luminositystfibu-
practical dificulties. Monte Carlo simulations are expensive (iHOn fun§t|on (LDF) gnd of its relation to the Ce.””a' prah)i@f
terms of disk space, CPU time, and human time required to &)ﬁpulatlon syntheS|_s (Sedd 2). Sdgt. 3 descnbgs the tvio ma
alyze the results), while, to date, the statistical rejetation varlants_qf synthesis models by means of which the problem
of standard models has only served to establish limits taske has traditionally been tackled: Monte Carlo and standard-mo

of synthesis models for clusters with moderately underﬂaaﬂwplelsaNeth’ Welta_ke the rehadgr’or? ?jlcl)urney through(;[hehno r;:an’s
populationsi(Cervifio & Luridiana_2004; Cerviiio etlal. 2p0 and of population synthesis’ pitfalls (Sefl. 4), and shaw

i.e. clusters with total initial masses on the order of W,. Fhese are faced by existing.techniques (S8ct. 5). This ad:cop
is necessary to introduce, in Seldt. 6, our suggested solutio

This limitation brings about a serious impasse for the studyid show its comparative power. Finally, in SEtt. 7, we give a

of stellar populations by means of their integrated lightce  few examples of applications of our formalism to currentpro

the properties of clusters with lower masses cannot bebiglialems. Future developments of the present work are desdribed

obtained. This class includes, for example, all of the elssin - Sect[B, and our main conclusions are summarized in Bect. 9.

our Galaxy (including globular clusters), clusters in trerde

Magellanic Cloud (LMC), as well as many clusters in external

galaxies. For example, many of the clusters in the ‘Antehna@ Overview of the problem

studied byl Zhang & Falll (1999) have masses lower than tbfﬁis section starts by introducing a few basic definitions. A

limit: in Sect.[83 we will show that explicit consideratia exhaustive summary of the notation used and its rationale is

stochastic ffects could alter the conclusions that are draw&fered in Appendif

on the cluster luminosity function based on these clusters. . .
L . ) The general problem approached by synthesis models is the
Furthermore, these limitations will become even more dtama : Lo .
computation of the luminosityl; emitted by an ensemble of

with the development of Virtual Observatory (VO) technolog ot SOUrces — a stellar population. From a theoretical point of

gies, which will make the automatic analysis of large amsunt. . . . .
. . . view, this problem can be characterized in three basic ways.
of data possible. It is therefore mandatory to adapt evaruti

ary synthesis models to the present needs, so that they can berhroughout the paper, ‘luminosity’ will be a generic labet the
applied to observations. stellar emission in any given band.
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If the luminositiesl; of the individual sources are known,  Although Egs[l# anfll5 yield similar expressions, it is im-
the total luminosityl . is obtained trivially as the sum of all portant to distinguish between the two approaches. The his-

thel; values: torical origin of our SLDF lies in star counts, but it is a step
Nuo further from them, in the same sense that the frequentist and
L, = I @ the objectivist definitions of probability fier: the frequentist
tot — I R . . . .
— definition depends on the realization of trials, while the ob

his Ci . ¢ 'belj:tivist definition assumes that the probability propestare
This circumstance is not very frequent. Its most common exap)iit_in The implications of either approach will be dissed

plelzare l\_/lontzCarI(I) s;:jnthel'?c clustelrs_(SEgt. 3;1) In Lh_erﬂteo at length throughout the paper. For the time being, note that
cal domain and resolved stellar populations in the obsiea Eq.[ involves a discrete sum, while Efs. 4 &hd 5 involve an
one. Oié‘rtegral, whose numerical solution requires binning thaein

. d_lr}dth(el mbc_)re usual S|tut;':1t|on |n.f\_/vf(1j|ch the .Iu(rj‘r.npc;)snlles endent variable. In Se€I 4.2 we discuss the consequefices o
individual objects cannot be specified on an individual #as inning distribution functions for numerical applicatsn

a differ_ent _approach must be adopted: in this case a Iuminos-The main goal of synthesis models is to obtain the luminos-
ity distribution function (LDF)p_ (¢) is assumed that descrlbe§ty of a model stellar population, either by direct count (B

the distribution of luminosity values in a generic ensemblrsr by an integral including the SLDF (Eq8. 4 ddd 5). In the fol-

T][adétllonally,. tlhe LDF ?as be.en seen as the asymptotic l'%‘/ving, we will see how this can be carried out in practice, un

of a diferential count of stars: der the assumption that there has been a star-forming episod
: 1 . AN in which all the stars have formed simultaneously; this & th

)= lim (— lim —) 2 . ’

o) ! Niot ALO AL (2) scenario assumed by SSP models.

whereAN is the number of stars in a luminosity bin of width Because stellar luminosities evolve with time, the SLDF is

A¢, andN the total number of stars. The integral of the LDF function of the Stars_ age. Since the luminasity evolun_xbn
is normalized to 1: a star depends on its initial mass, we can express the time de-

. pendence of the sLDF explicitly by writing the sLDF as a func-
f eL(O)de = 1. (3) tionoftwo pther functions: the i.sochroﬂém; t) anq the initial
0 mass function (IMF}y (m). The isochroné(m; t) gives the lu-

The integrated luminosity of an ensemble is traditionalby o minosity of a star as a function of its initial massat a given

Niot— o0

tained by means of the expression: value of the agé. The IMF gives the probability distribution of
. initial stellar masses. The IMF has a status similar to thtie
Liot = Ntotf C oL (O)de. () sLDF, in that it can be either interpreted as the result ofa st
count:

The bottom line of the present work is that this approach is i 1 i AN 7
conceptually wrong and operationally sterile. The crup@ht o (m) = N‘me(m ArIanO En) Q)
where we part company with this approach is the definition and . I . .
interpretatlioon of th: LDyF' 0 Usg (ZI;F;S aprobability density or, in probabilistic terms, as the probability density fostar

' L of being born with massn: for reasons similar to those dis-

function (PDF) from which the luminosity of an actual SYS_ussed ahove, we support the second interpretation (whjch,

tem is drawn. If the system is an individual star, its PDF & tr}he way, implies that the IMF should better be called Initial

stellar L.DF (SLDF). Ifitis a stellar popul_at_lon_, Its PDF is theMass Probability DensityFunction). According to its defini-
populationLDF (pLDF). Hereafter, we will indicate the sLDF . ! R e
tion, om (M) fulfills the normalization condition:

with the symbolp (¢) and the pLDF with the symbad, (£).

To avoid confusion, note that the pLDF is not the same ag™
the cluster or galaxy luminosity function (LF) as commondyd J,
fined, because galaxy LFs include tHEeet of a spread in ages : . .
and number of stars (or, equivalently, ages and mass), Meraen dstlrjl;nir;]:)r::%tjopr’l;haessflz)ﬁgvfsn be rewritten in terms of the IMF
the pLDF defined in this paper represents the luminosityielist '

bution of ensembles of stars with the same physical paramete (dt’(m; t) )1

em(mdm= 1. (8)

(9)

(age and total number of stars). o) = em(m) x| — =

In this paper, we are concerned with the properties of the ,
SLDF and its relation to the pLDF. In particular, we will showd-[ can now be used to rewrite the mean value of the sLDF
that the total luminosity of a stellar populatiod, is a dis- " terms of the isochrone and the INF

tributed quantity, whosmeanvalueM; is given by:

i S\ -1 .
o0 ey ) de(m;t)\ ~ de(m;t)
M; = (L) = N f Lo (O)de. 5) “1“’—fW “m’WM(m)( am ) m dm=
0
m-P
The integral on the right-hand side of this equation is thame :f £(m; t) em(m)dm, (20)
miow

value of the sLDFy}, that is:
2 The isochrone is not monotonic, so that the integral limitSq[

M7 = Niot 14]. (6) do not correspond to those of Eql 10.
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where the integration variable in EGl 5 has been changed from Note that many codes do not usg(m) in Eq.[I0, but rather
£ to m, andm®, m"? are the lower and upper mass limits rea proportional functionpj, (M) = constyy (M) normalized in
spectively of the integration domain. such a way that:

Solving this integral is the main task of stellar population
synthesis modeling. In the following section we will deberi nf mep, (m)dm= 1. (11)
the main types of synthesis models and how they perform this

integral. Sincefooo mey (m)dmis the mean mass valyen) of the IMF,

usingey, (M) instead ofpy (M) in Eq.[T0 yields the mean lumi-
3. Basic strategies nosity of one star divided bym): in this case, the mean total

luminosity is found by multiplying by the total mass of the-en
Once the physical problem is framed, we must translateat "EembleMt);tinstead OBf;\ltot ping by

actual computations, a task carried out by evolutionary syn s for Monte Carlo models, their task is essentially the

thesis codes. These come m_two basic flavors, stgndard_@g putation of the sumin EQL 1. Each time a simulation is run,
Monte Carlo. Standard simulations are models in which the iy particular realization is drawn from the underlying dite

tial mass mixture is analytically described by the IMF, W& 0, The result of the simulation is the integrated lumitos.

in Monte Carlo simulations the ensemble of stars is selec hat particular realization. If many Monte Carlo simidas

bﬁ’ randolm _samplgghth:aMmFa_\ss of deachhstar t_o rt:? 'nSUde_da'Re available for a fixed set of input parameters, an estifoate
t he pofpu at'ﬁn’ an td? i IS useb as tde Wi'g ting d?’”g“oi(hi can be obtained as the mean of thevalues. This implies
Therefore, the mass distribution obtained with a standanel S 4,5, yhe results of Monte Carlo simulations depend not only o

ulation is univocally determined by the population’s paeamy, o underlying luminosity distribution, but also on the riaan

t(ra]rs, wh:jle ngonl:t)e Carlo S|mulaf1]t|onrs] It 'T] not; add'ct:'O'El of simulations used to sample such distribution. If the et o
Ee;tan ﬁrd 'S:]” ution is smoother t al;]_t eg/lonte ar® O gimulations is sfiiciently large, the Monte Carlo method has
oth methods, however, operate on a binned mass spectryjg, i, potential to provide the actual distribution fumtof

due to the limited resolution of numerical computation amd the luminosities of the ensemble. Hence, an important draw-

the discreteness of the available stellar models. ThisHast back of the method is that it is intrinsically expensive, dese
important consequences, which will be discussed in S&t. 44,5 accuracy of the results increases with the number of-simu
Using either of these two approaches, evolutionary Symhﬁfions

sis codes aim to characterize the integrated emission grepe In summary, the goal of determining the luminosity of stel-

of an ensemble of stars as a function of its physical parasiete, . populations reduces to the computation of a sumf[Eg. 1) or

such aés the age and number of the_ individual star_s of the %'ﬁ'integral (EGC0). However straightforward this may seem
semblé. Standard codes perform this task by carrying out this computation is hindered in the practice by severairisic
integration of EqLIO. As described in Sdgt. 2, the resultiean ¢o 4, res of the problem: these will be the topic of next secti
interpreted in two alternative ways: either a determinigtie —

7 is the sum of the luminosities of all the stars included in the _ .
ensemble modeled, normalized to one star —, or a probabifls-Pitfalls in the handling of the LDF

tic one ) is the mean value of the SLDF. Although the twg,,,, previous discussion has taken place on an abstract level
interpretations may seem close at first sight, they are fUnGg e practice of synthesis modeling it is necessary tcsteae
mentally diferent, both from a conceptual and from a practicgle concepts discussed above into specific prescriptiorisdo
perspective: this point will be furthered in Sedt. 6. We tadise |5 gjing of equations, and deal with the limitations imbisg

two alternative interpretations of standard synthesisefwithe input ingredients, which have a finite resolution in the p
deterministicand thestatisticalone. Note that these labels dq 1 ater space. In this section we will discuss a specificaispe
not identify diferent classes of models, but ratheffehient in- ¢ 15 task namely the fliculties inherent to the determina-
terpretations within the same class of models — standard mggy, of the mean value of the SLDF. As a first step, let us revisi

els. In practice, some codes do not explore this interpoetat , o\ well-known results in terms of the SLDF
while others acknowledge the distributed nature of lumiiyos

and compute, in addition to the mean luminosity, the vaganc o '
of the distribution. In either casg; can eventually be scaled4.1. Domain limits and average properties
to the size of the ensemble by multiplying by; this property

In synthesis modeling it is a well established fact that the i
will be formally demonstrated in Se€f 6.2. y J

tegrated luminosity of the ensemble is dominated by the most
3 Strictly speaking, not all the luminosity sources contiibg to massive stars in the cluster. In the following we will illeste

the integrated luminosity of a stellar population need lasstas this point by means of three simplified scenarios that arerep

they include, e.g., accretion disks or thermalization ofkic energy. sentative of real SLDFs. These are shown graphically inlEig.

Accordingly, one should in principle use the more generglres- |n each panel, the position of the mggnand the region corre-
sion ‘luminosity sources’ rather than ‘stars’ to avoid lagsgener- sponding tqs, + 1o are explicitly marked.

ality. This distinction, however, is not relevant for ourope here,

since in our treatment any luminosity source can be recdedun

a star. Therefore, in the following we will use ‘stars’ andrfiinosity Case 1: Main sequence luminosity function In the first case
sources’ as synonyms. let us assume that all the stars are in the main sequence (MS),
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oa=2.35; (=3
(. =10"% ¢, ;

‘min

(Salpetel 1955). If the IMF departs from a simple power law,
the conclusions are less straightforward. For example,eif w
consider the log-normal IMF by Miller & Scalo (1979) and ap-
proximate it as a power-law series, a valuexaf 4 is reached

] near 100 M (see Fig. 1 in Kroupa 2001). In this case, the dom-
7 inant stars will not be the most massive ones.

log ¢ (0)

— ! 1 Case 2: Luminosity function with a constant post main-

R B A1 e R B R 1| e e R Eat1| B 7 1 1®:1Hm‘ - ng sequence contribution Let us goa bit further and add a pOSt'
main sequence (PMS) contribution to the sLDF. The sLDF can
now be divided in two regimes, corresponding to the MS and to
the PMS respectively. As a first approximation, we will assum
that the PMS phase gives a constant contribution to the sLDF,
| implying that any point of the PMS portion of the isochrone

7 is equally probable. The sLDF can be described by the expres-

log ¢ (1)

sion:
T AL i€ € (bmins tr0).
T e = N (15)
ﬁ % if ¢ e (gTO, gmax),

wherefto is the turn-df luminosity. The absolute value of the

1 1 PMS contribution is chosen so as to yield the samefaent

' 1 Aforthe two regimes, while preserving the overall normaliza
=0 = 544.2 £, T

log ¢ (O

tion; that is, we are forcing the PMS to have a fixed weight

Ko with respect to the MS phase. This choice allows us to keep
o =65 £5 1 the complexity of the expressions to a minimum, but it has no
b ol - influence on the general conclusions, which would be reached
10 0.01 0.1 1 10 100 1000 10 10 10

even if we dropped this assumption.
Luminosity [£] Lif-a Lipa

. . ) If we further assume that.j >> ¢ , the mean value
Fig. 1. Schematic representation of the of the sLDF for threg ihe sL DF is:

different cases: main sequence only (top), main sequence plus

a constant post main sequence (middle), and main sequence A L A Lo Le

plus a bumpy post main sequence (bottom). The position gf~ 1—ng + ——(Cmax — {74 )(max + £10). (16)
the mean ;) and the region corresponding tq + 1o are +tf-a 2(1-a)

explicitly marked.

That is, the mean depends on bdtly and .. Note that,
dth > ) | ith ind since in the PMS phase the relation between the mass and the
and that/ o . Assuming a power-law IMF with indexa, luminosity is not simple anymore, the above result cannot be

the sLDF can be expressed as: easily expressed as a function of the initial mass. As aalrivi
I e example, if the ageis larger than the lifetime of a star of initial
pLoc P '3 7 = 3 . (12)  massmP, thenf(mP, t) = 0.

The constant factor can be determined by imposing the ner

mal . . .
ization condition: 8ase 3: sLDF with a bumpy post main-sequence contribu-

tion As a final example, let us assume that the sLDF has a

l-o 1 1o A 1ap narrow peak in addition to the MS contribution. This scemari
p=—m 7 =507 (13) i i i
B {% B 5% B describes the case in which PMS stars have all the same Iu-
max “min minosity, as in the horizontal branch or in the red giant gum

phase; this case can be modeled by adding a pulse function to

The mean value of the luminosity is then: . - ) a Py
the MS section of the sLDF. Since PMS luminosities are larger

;A [l e A bpe  lfa than MS luminosities, the pulse function is locatedak. The
= E Cri (-emae= l1+-a *|max — Linin (14)  sLDF is therefore:
_If 1 +_,8—q > O,_the mean Iuminosity.is driven u%ax_. Ina A g% ¢ € o 00)
typical situation with3 ~ 3, the most luminous stars willdom-, -} &% ~ min- €10 17
inate the luminosity ifr < 4: this is the case of Salpeter’s IMF A= 0 Y S(L — Lma) i € € (Cro, Lmas)-
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Again, we are forcing the PMS to have a fixed weight witthere have been sporadic attempts at expressing them in ana-
respect to the MS phase for simplicity reasons. In this casgjcal form (e.g.Tout et el. 1996). Second, even if analyti

assuming again thﬂ{izw os {,;I%’ relations existed, their integration would plausibly riequu-
merical methods. Third, the numerical precision of compute
, A Lo A = L is Iimitec_i. These circumstances_ force the actual caltmi_at'of
Hy = mfm + m(fmax_ lro) max (18) synthesis models to be numerical rather than analyticadt as
consequence, the mass variable must be binned. We will focus
So, again, the mean depends on bythand{max. here on the implications of mass binning for Eg]. 10.

These three examples illustrate the general fact that the Introducing binning, Eq_10 can be expressed as:
mean luminosity depends strongly on the value/,gfc. The
dependence ofinax(t) would be even stronger for higher-order, .., mupf ) dm =~ v 19
moments of the distribution. As_Gilfanov et al. (2004) poir#l(t) - f " (M D) gm(m) dm-~ ZW' O, (19)
out, the dependence of the results of synthesis models on the
high-luminosity end of the SLDF is so strong that, withoutlsu where the index identifies the mass bin arf(t) is the (time-

a limit, synthesis models could not even be computed! As-a flependent) luminosity of thieth bin; the approximation holds
ther example of the relevance of the upper limit of the sLD&, wonly if the luminosity¢;(t) is indeed representative of the whole
have shown in a previous paper that it also defines a lowetr limiass bin. The cdicientw; is computed by means of the ex-
for the luminosity of real clusters to be described by statidgpression:

synthesis models (Cervifio & Lurididha 2004).

These examples also illustrate the following interesting
facts:(i) The mean value does not necessarily give information —
on the distribution of luminosities, to the extreme thatréhe
can be situations in which the probability to find a source 'Wherem!OW and mi“p are the lower and upper limits of theh
the region around the mean value is zero (Big. 1, bottom panmlass bin (the specific way in which these limits are defined
. This is the opposite of a Gaussian distribution, in whioh thvaries from code to code). In the framework of deterministic
mean is also the most probable val(i@.Different distributions synthesis modelsy; is deterministically interpreted as the frac-
can have the same mean value bifedent variances. In fact, tion of the total number of stars enclosed in the given bin. In
this circumstance permits to use surface brightness fltiohsa the probabilistic approach, however, such number is notlfixe
(SBF: the ratio between the variance and the mean value of Eech star is either born within a given mass hiwith a prob-
luminosity function) to break the age-metallicity degeawsy, ability wi, or outside it. WherNy; stars are selected, the num-
which makes clusters with fierent ages and metallicities havéver of stars in each mass bin follows a binomial distribution
the samey. (iii) The value ofs} — o is negative in our three ex- Furthermore, since all the bins share the same numgeof
amples. This shows clearly that assuming, e.g.hatlo in-  stars, there is a finite covariance among bins: that is, the co
cludes~ 68% of the elements of the distribution can be grosslgction of the mutually covariating binomial distributi®eon-
mistaken in the case of non-gaussian distributions. As vile wstitutes a multinomial distribution. According to this appch,
see later, this can also be the case with the distributioctiom w; also represents the mean (as opposezkéx) contribution
of the integrated luminosity of an ensemble: this limitstise of each bin to the total number of stars. This interpretaion
of goodness-of-fit methods based on the comparison with tgared by statistical standard codes and Monte Carlo codes.
mean, such as th¢ test.

Summing up, our schematic but rgahsnc sLDFs show .thi.tz.l. Distribution of stars in each bin
knowledge of the mean and the variance does not provide &
handle on the problem if the shape of the distribution is n@he statistical strand of standard models was born with tiaé g
known. As|Gilfanov et &l.|(2004) argue, the use of the meafidevising statistical tools to be applied to synthesis eladn
value instead of the most probable one produces a systemtitis context, the binomial probability distribution of stan in-
bias in the determination of integrated properties. dividual bins had been approximated by a Poisson distohuti
to simplify its handling [(Cervifio et al. 2002b). As is known
the Poisson approximation is accurate only when the number
of eventsN is large and the probabilitg is vanishingly small,
Although EqID is expressed as an integral, synthesis codesuch a way thal p stays finite: we will show in the follow-
approach it through numerical approximations. There are séng that such approximation is not always accurate enough fo
eral reasons for this: first, the input data are availableai? t our problem.
ular format rather than as analytical relations; e.g., igithee A first point to consider is that speaking of a distribution of
enormous complexity of stellar evolution it is not possitile stars in bins only makes sense if a valueNgs; is considered.
derive stellar properties as analytical functions of, saigial In both cases considered, Poisson and binomial, the meaa val
mass and stellar age. Rather, stellar tracks are computed fof the number of stars in a bin ig(n;) = Nyt X W;. Let us now
discrete and finite set of mass values, and their propentées #lustrate the diference between the two distributions for the
conveniently interpolated posteriori Furthermore, calculated case ofNy; = 1. The probability for the source to fall in the
stellar tracks are generally expressed in tabular forrhpatyh i-th mass bin is, in the Poisson approximatipﬁ(l) =we",

ow

em(m) dm (20)

4.2. Implications of mass binning
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In the binomial case such probability p?(l) = w;, which is o , .
the correct value. The fierence is non-negligible for large I K e
values, which is typical for bins at small masses. oL

Furthermore, wherN,,; stars are considered, the Poisson
approximation predicts the ratid,/M] of the variance to the
mean to be unity, whereas in Monte Carlo simulations this rat® _
shows a trend toward smaller values for small bin masses (Fig' |
1 oflCervifio et all 2002b), revealing the underlying binalmi
distributions, in which:

Mz Niotwi(1—wi)
=— = T _1-w. 21
M; NiotW; ' (21)

Note that, as expected, the discrepancy with respect to 1
grows larger for largew; values — i.e., bins at lower masses.
Unfortunately, Cervifio et al. (2002b) failed to interpttas re-
sult in term of a binomial distribution, and proposed to golv
the discrepancy by reducing the size of the bins, while kegpi
the Poisson approximation. Of course, reducing the sizheof t
bin (or, equivalentlyy;) leads to a closer similarity between the
two distributions, but this solution is not always viableedo
the limited resolution of the inputingredients. A furtheiptis 2 ° [
that, becaussly is shared by all the bins, the numbers of stars
in different bins covariate: while thidfect is neglected when
the bin distributions are modeled by independent Poissen di ' |
tributions, it arises naturally when a multinomial distriton is
used.

The diference between the Poissonian approximationand ——— 4 5 1+ 15
the multinomial description is particularly clear if we cpuate .
the variance of the pLDF. Consider the expression for thie var_ ) _ ) )
ance obtained assuming that the number of stars in each bifiis 2- Top: isochrones in thé, vs. B-V color-magnitude dia-

described by a Poisson distribution, and that there is neeordram for three dferent age values computed by Girardi et al.
lation between bins (e.5. Cervino etlal. 2002b, among e)her(ZOOZZ) based on the evolutionary tracksLby Marigo & Girardi
- (2001). Bottom: same as above, far.

Mo = > o(i) €2 = Neot x )" wi €2, (22)
i i the Poisson approximation and the multinomial descripison
Now, consider the expression corresponding to a multinbm|POrtant in order to make sense of Monte Carlo simulations,
distribution, where, by definition, Co( n;) = — N Wi Wi it is fundamental in view of the discussion on our proposed
’ ' B o probabilistic formalism (Sedfl 6).

- )02 . n) = .
Mz = Z/“‘Z(n')fi + Z Z Gitj cov(ni,ny) = 4.3. Fast evolutionary phases
i i j#
N Z e Z(Wf')z ~ In writing Eq.[9, we hgve tacitly assumed that th_e Iumlnost_y
tot STV a well-behaved function of the mass so that the isochronle is a
: : ways defined. However, this condition is in fact often vietht
_Ntotx(z Z 6t Win). (23) since a typigal isoghrp_ne features shallow sections as_amell
~5a peaks and discontinuities in thé (n) plane. Shallow sections

correspond to quiescent phases of stellar evolution, wiere

Comparing EqCA2 to EQ_P3, it can be seen that the latition is slow (e.g. the MS); peaks correspond to faster @has
ter contains two additional terms: the teMig; x Y;(Wifi)> (e.g. the asymptotic giant branch, AGB); and discontiesiti
arises as a result of dropping the Poisson approximatiah, aorrespond to abrupt transitions between phases (e.gndet o
the termy;; 3 i, 6ifj cov(ni, nj) represents the mutual depenef central helium burning in intermediate mass stars) orgsm
dence of bins, and hence arisesa direct consequence of bin-in stellar behavior (the transition between WR and non-WR-
ning. type structures). In the following, peaks and discontiraitvill

These considerations show that the Poisson approximatigenerically be referred to dast evolutionary phaseSome of
motivated by simplicity of handling, may break down in outhese cases are illustrated by the comparison ofFig. 2 vigth F
problem (see also_Luay 2000). While the distinction betwe@h In Fig.[2 the isochrones computed lby Girardi etlal. (2002)
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based on the evolutionary tracks by Marigo & Giratdi (2d01fermined by the mass. A few examples are: the thermal pulse
are shown, at selected age values. Hig. 3 shows the relaionghase in AGB stars, which is poorly resolved by stellar evolu
tween the initial mass and the luminosity in the V and K bandi®nary models; supernova (SN) light curves, in which a efar
for the same isochrones, focusing on fast evolutionarygshasfixed mass spans a large range of luminosity almost instanta-
If the mean value of the sLDF is determined through the noeously; variable stars; rotating stars, in which the lursity
merical approximation of E@_19, fast evolutionary phases eemitted depends on both the rotation velocity and the iaelin
difficult to handle, because a smalffdirence in initial stellar tion angle. Partly because of thisffitulty, these phenomena
mass yields a large fierence in luminosity, so that the result ofire generally not included in synthesis models; whereas ap-
the numerical integration crucially depends on which lumsin proaching the problem from the point of view of distribution
ity is chosen to be representative of a given mass bin. Ircprinfunctions permits to account for them by including them i@ th
ple, this dfficulty can be dealt with by decreasing the width o$LDF - provided they can be modeled quantitatively. Thisipoi
the mass bin and choosing mass bins that do not go across @if-be developed further in SedfT.2. See also Gilfanoet a
continuities; however, the available resolution in masgag- (2004) for an example on the inclusion of variability.
erned by the evolutionary tracks used by the code, and is gen-Of course, in many cases of interest the modeling of the
erally too low to resolve adequately such phases in syrghegghenomenon may be afficulty in itself. For example, mod-
models. eling rotation is in itself problematic. Rotating stellaodels
This is a severe problem, since fast evolutionary phases are just beginning to appear on the market, and the disiibut
ubiquitous in post main-sequence evolution, and at ceftain Of velocities in a stellar population is largely unknownelgtr
quencies they bear a major weight in the luminosity baland@tation is not yet included in synthesis models primarigy b
Unfortunately, the way in which this problem is tackled is ofcause of these uncertainties, and not only because sysithesi
ten labeled a ‘technical detail’ of the computation and digaodels are not flexible enough. But if stellar rotation or any
missed as unimportant, and thus the papers describing-evéither distributed stellar behavior is properly understamcat
tionary synthesis models do not generally make any refered@ast satisfactorily modeled, our method will permit tolirde
to its solution — in spite of its diiculty and of the potentially it in synthesis modeling.
disastrous consequences of incorrect assumptions. Here ar
few examples_ of the ways in which this problem ha_s been Pz, Implementation of model atmospheres
proached: a) in the Starburst99 synthesis code (Leitheedr e
1999), for certain metallicity values, an undocumentetlaste Usually, the available model atmospheres form a coarse grid
track at 1.701 M is added to the tabulated track of 1.7Q kly in the (logg, log Ter) plane, whereas isochrones are gener-
Schaller et 8l.1(1992) arld Schaerer etlal. (1993a), to awaid @lly continuous in the plane. In order to assign a model atmo-
mass bins going across the discontinuity of the stellar isbdesphere to each isochrone location, one can either choose the
behavior at such mass (C. Leitherer, D. Schaerer, & G. Meynegarest atmosphere of the grid, or interpolate betweerbpear
private communication); b) to deal with the same problem, agtmospheres. Assigning the nearest atmosphere implies a fu
ditional evolutionary tracks around the same mass range #rer binning of data and may originate jumps in the results,
used in the computation of the isochrones by Castellani etalthough it is often assumed that these jumps cancel on aver-
(2003) and_Cariulo et all (2004) (S. Degl'lnnocenti, prevatage when a whole population is considered. This problem will
communication) and Brocato et al. (1999) (E. Brocato, peivanot be further discussed here; a more extensive discusaion ¢
communication); c) to avoid the intrinsic discontinuitytimee be found ir_ Cervifio & L uridiana (2005).
isochrones, the same mass is used twice in the isochrones byln the next section, we will review the ways in which the
Girardi et al. (2002), namely at the end of the red giant bnanbasic task of synthesis codes is accomplished, given thie di
and at the beginning of the horizontal branch (S. Bressan, gulties outlined here.
vate communication).
As a final point, consider that fast evolutionary phases age Computational algorithms
those stages in which the evolution is rapid in any of the-rele . . _ _ .
vant luminosity bands, and not only the bolometric lumitysi This section outlines the basic ways in which the task of com-
Therefore, an isochrone that is adequately sampled in am bRUtiNg the luminosity is specifically performed by standard
is not necessarily so in all the bands. codes. The first two pars.b.1 dndl5.2, describe techniques i
plemented in standard models. The third plril 5.3, desribe

how the Monte Carlo method is put into practice.
4.4. Transient phases and fuzzy stellar behavior

Traditional synthesis models rely on the possibility toregs 5.1. Isochrone synthesis

the luminosity as a function of mass (Hdq. 9), so that the intei1 hni he luminositv of stell
grals over luminosity are transformed into integrals ovasm The commonest technique to compute the luminosity of stefla
However, there are stellar phases in which this is impossib| populations is known as isochrone synthesis. Isochrone syn

do, because the luminosity at a given age is not univocaly c}QeS'S s the numencal mtegrat_lon of the _product_ betwéen t
IMF and the isochrone approximated as in the rightmost part

4 These models are available aof Eq.[I9:u (t) = Xiwi£i(t). The strongest assumption of
http://pleiadi.pd.astro.it/| this numerical approximation is that eaf(t) is representative
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Fig. 3. Details of fast evolutionary phases in the V (solid linet lexis) and K (dotted-line, right axis) bands. Bottom panel:
complete isochrones. Middle panels: blow-up of the mass akiowing details of fast evolutionary phases at thréferéint ages.
Top panels: same as middle panels, with a more extreme bloivhgiisochrone set is the same of . 2.

of all the stages included in it. Fast evolutionary phases ev Note that isochrone synthesis and the FCT can be coupled:
dently pose a problem in the integration, since a smallwader the computation of isochrones can be done so as to fulfill the
in mass can correspond to venffdrent luminosity values. In FCT requirements. We refer {o_Marigo & Girardi (2001) for
isochrone synthesis, the problem is solved increasinguh® n an extended discussion on the subject (seelalso Bressan et al
ber of mass bins that map fast evolutionary phases. Howe&394).
this strategy eventually requires assuming mass binswarro
than the precision of the published tracks and isochronés. |
interesting to note that one of the main advantages of ismehr
synthesis mentioned by Charlot & Bruzual (1991) is thatdt-pr 5.3. Monte Carlo methods
duces ‘smooth’ results; however, this advantage only hides
problem of fast evolutionary phases, but does not solve it.
The Monte Carlo method can be implemented iffedtent
ways, which take advantage of its potential to varying degyre
5.2. The fuel consumption theorem so they are not completely equivalent. To understand thig po
consider how a sample of stars selected through a Monte Carlo
As an alternative method, one can avoid using the expressinass assignment can be handled: first, the stars can be either
of Eq.[19, and perform instead the integration in the lumityos followed individually throughout their evolution, or grped in
domain, that is integraté¢, (¢): in this way, the fast evolu- mass bins characterized by average properties; second, in e
tion of luminosity is automatically taken care of. This isthther case an atmosphere, used to transform the bolometric lu
basis of the so-called fuel consumption theorem (FCT): to uminosity into observable quantities, can be assigned Ineeit
derstand fully the FCT and its assumptions, we refer theareadhoosing the nearest model in the available grid, or intetpo
to the original papel (Renzini & Buzzoni 1986; Buzzbni 1989ng between nearby atmospheres (SeE 4.5). Therefore thare i
see also Marasthn 1998). total of four ways in which a Monte Carlo-selected stellappo
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ulatior? can be treated. In the literature, there are examples of the interpolations techniques used both in the stellar evo-
at least three of these: lution and in the atmosphere assignment. Examples of ap-

. ) ) plications of this method can be foundlin_Cantiello et al.
(i) The stars_ obt_am.ed through_ the Monte Carlo sglchon are (2003): [Cervifio & Valls-Gabalid_(2003): Girardi_(2000),
grouped in bins; to each bin, the nearest available atmo- among others.

sphere model is assigned, which depends on the age con-
sidered. That is, the total luminosity is computed by means
of the expression 6. Old tools for a new approach: the probabilistic

formulation
£= "m0, (24) R .y _ _
i The conclusions arising from this brief overview of popidat

, ) synthesis can be summarized in the following points:
wheren; is the number of stars that have fallen into the

i—th mass bin, and; is the luminosity of the atmosphere _ peterministic standard models are based on a misunder-
assigned to the bin; EG.R4 is analogous to [Eq. 19, with standing of the computed quantities. While it is generally
the only diference that the; values vary from simulation  ¢laimed that they compute the integrated luminosity of a
to simulation. This strategy is followed by Bruzual (2002);  model cluster, they in fact compute the mean luminosity of
Bruzual & Charlat (2003) (G. Bruzual, private communi-  the sLDF.
cation). This implementation of the MC method is not_ statistical standard models (i.e., those that compute the
very time-consuming, so it is quiteffective in obtaining  mean and the variance of the luminosity distribution) give
an overview of the fect of sampling in dferent observ-  the correct interpretation, but they have a limited interpr
ables, which is in fact the goal of the quoted papers. It tative power. Knowledge of the mean and variance is not
has, however, two important disadvantages: the mass bin- enough to characterize a distribution, much less to explain
ning hinders a proper sampling of the discontinuities in jtg shape in physical terms.
the isochrones, and the assignation may either smooth _ gyitably-done Monte Carlo simulations have the potential
out or spuriously amplify transient spectral features (see to bypass most of the problems of population synthesis aris-
Sect[4b). ing as a consequence of the statistical nature of the problem

(i) The stars obtained through the Monte Carlo proceduee ar  However, they are extremely expensive in terms of CPU
followed |nd|V|dua"y throughout their eVOlution, but the time and disk Storage space, and require a considerable hu-
luminosities are aSSigned as in the preViOUS methOd, that man dfort to be ana'yzed_ Furthermore and most impor-
is choosing the nearest model in the grid. This approach, tantly, the analysis of a set of Monte Carlo simulations per-
although similar to isochrone synthesis, is fundamentally formed without a grasp of the underlying statistics would
different in that it avoids the additional rebinning implicit pe purely phenomenological, precluding the possibility to
in the isochrone synthesis method. Models of this kind generalize the results to further simulations or real elsst
have been presented, for example,_in Mas-Hesse & Kunth
(1991);.Cervifio & Mas-Hesse (1994); Kurth el al. (1999); In this section, we will describe a probabilistic formalism
Cerviio et al. [(2000). These models work better than tiieat automatically frames the problem in its most natural in
previous at mapping discontinuities in the isochrones, (i.eerpretation, and opens the way to a deep understanding of th
the value ofd¢/dmis better evaluated: see, e.g. Fig. 4 afinderlying physical problem. The first subsection is deytte
Mas-Hesse & Kunih 1991), but present the same disadvageall standard statistical concepts for those readetmwita
tages with respect to the assignment;of background in statistics and probability theory. Those at®

(i) Afurther possibility is to perform Monte Carlo simuians already expert in this field can skip this part.
over the luminosity function: the Monte Carlo-sampled A note on definitions is due here. Throughout this paper,
stars are followed individually, and each is assigned a taie adopt the conventional (though often overlooked) distin
lored atmosphere. Doing so requires performing interpolgen between probability theory and statisticssttistical for-
tions in the¢; grid, and permits reproducing the path in thenulationis one that seeks to intepret a sample of experimen-
HR diagram of individual stars. The individual luminostal data in terms of an underlying distribution. gkobabilis-
ity values obtained in this way are eventually summed t formulation is one that assumes an underlying distribution
yield the total luminosity. These models exploit the poterand uses it to predict the resulting distribution of expeital
tial of Monte Carlo method to its maximum and are th@ata. The traditional Monte Carlo method has followed a sta-
only ones able to map correctly the luminosity functiogistical approach: conclusions were drawn from the obgimva
without the necessity of binning. A fiiciently numerous of a spread in the results of simulations. The present pagsr |
set of Monte Carlo simulations of this kind provides dithe foundations for a probabilistic approach, in that itksete
rectly the distribution function of the ensemble luminosgive a formal description of the underlying distributioasid
ity. The bleeding edge of this method lies, of course, b make quantitative predictions based on them. Obviotrsdy,

5 A further degree of freedom in Monte Carlo simulations ist thdWO @pproaches complement each other and partially overlap
they can be performed by either fixing the number of starsetah concepts like the one of distribution function belong totbot
tal stellar mass. This aspect will not be discussed herewandill probability theory and statistics, thus we will refer to thes
consider only Monte Carlo simulations with a fixed numbertafs  probabilistic or statistical alike. When it comes to defing o
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method with respect to existing ones, however, we will sys- Let us also introduce the characteristic function of the
tematically draw a distinction and refer to it as a probabdi SLDF, ¢(p), that is its Fourier transform:
formalism.

o= [ & (33)
6.1. Basic statistical concepts 0

As we have seen in Sefl. 2, the luminosity of stars can be char-Th_e charac_teristic function h_as tt]e following propertiae:
acterized in terms of an underlying sLDF (EE}. 5). The exabitcodﬁme_nt; of |.ts Taqur expansion iip are the raw moments
tion of this approach permits finding affective solution to the O.f th? Q|str|put|on, Wh'le the cdgcients of the Taylor expan-
problem of computing the integrated properties of steltgw-p sion inip O.f |tsllogar|thm Ing. (p) are the so-calledumulants
ulations. The formalism presented here to this scope is&wt nOlc the distributiona:

in terms of theory of distributions and can be found in any ad- (ip)'
vanced textbook of statistics (elg. Kendall & Stilart 19Fgy.  In¢L(p) = Z Kr = (34)
completeness, we briefly review here the relevant concepts. r=0 ’

The properties of the sLDF as a distribution can be stud dfoIIows that moments and cumulants are related by the ex-

by computing its moments; the first moment is the mean, WhiB assion:
we already encountered in Hq. 5: ’
oo , (ip)" ( (ip)’)

’ — =€X K . 35
wi= [ eaton, (25) 2t = P2 (35)
The general definition of the n-th moment of the sLDF is tH8 Particular, the relations between the first four moments a
following: cumulants are the following:

,Lln(a) = j; (f - a)n (pL(Z) de¢. (26) K1 = /l;_v (36)
Ko = o =y — L, 37)

If a = 0, we call it ‘raw moment’, while ifa = u; we call it = a =il — 3l + 23 (38)
‘central moment’; in particular, the mean luminosity, whis 8T #32 ’u/l#z ,#/1’ 2 o, ,4
the main output of synthesis models, is the raw moment of ¥4t = £4 ~ 3uy = = Az = 3uy +12uy, — 6uy. (39)
order.

In the following, we will adopt the notation, to indicate
central moments and the notatipfto indicate raw moments.

An important property of cumulants is that they are inde-
pendent of the assumed origin of the distribution, except fo

Let us write down explicitly the expressions for the secoad-c k1: they are also cgl!eq sometimes “semi-invariants". du_e im. th
tral moment (or variance) and the second raw moment of Epperty. If the origin is taken at the mean of the distribati

sLDF, and their mutual relation: k=" : )
Finally, the skewnessy;, and the kurtosisy,, of the dis-

tribution are defined through ratios of the third and the flour

©0 central moments respectively to appropriate powers of e v
i = [ cana @) e, peclvely o appropriaiep
2
pe = [P ad- v . 0
= sy~ 8 W
_ M4, _ ke
and, analogously, for the third and fourth moments: Y2 = #_% T K_g (41)
- (Note that the definition of skewness and kurtosis may vary
Uy = f 3o (0) de, (29) from author to author; alternative definitions can be found
0 athttp://mathworld.wolfram.con.) These two quantities
s = fm(f — WP eL(O)dl = enclose information on the shape of the distribution: themsk
0 ness gives an idea of how asymmetric the distribution isjtand
=y — By + 2u’d, (30) can be related to the ffierence between the value of the mean
o0 and the mode (the most probable value). The kurtosis is a mea-
My = f o (0) de, (31) sure of peakedness, i.e. of the symmetric deformation of the
- distribution with respect to a Gaussian. In particular, &gan
Ua = f (- ) oL (6)de = distributions have; = 0 andy, = 0; flatter distributions have
0 negative kurtosis values, while peaked distributions hpma-

Wy — Ay + 6P, — 3uf. (32) tive kurtosis values.
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6.2. From stellar to population luminosity functions

In the previous section we have characterized the propetie » (p) = ¢ (p)Ne, (44)
the luminosity function of individual stars. Let’s see noawh (ip)'

the luminosity function of an ensemble Wf,; sources can be IN ¢, (P) = Niot X IN gL (P) = Niot X Z ke = (45)
computed. r=0 '

Hence, the cumulants of the luminosity distribution of an
6.2.1. Obtaining the pLDF: exact solution ensemble ol sourcesKp, can be easily obtained from the

. ~cumulants of the sLDky,, through the simple scale relation:
As a general rule, the PDF of an ensemble of variables is ob-

tained as the convolution of the PDFs of the individual vark,, = Nyt X &p. (46)
ables. For example, lei(x) be the PDF of a variabl& and

¢y(y) the PDF of a variablg independent ok. The probability Sincexs = u}, this also implies that:

density of a variablel = x + y is given by the product of the
probabilities ofix(x) andey(y) summed over all the combina-
tions ofx andy such that = x + y:

M7 = Niot X p, (47)

whereM] is the mean value of the distribution that describes
o the luminosity of an ensemble bk sources: in other words,
¢u(u) = f ox(2) py(U—2) dz= x(X) ® @y(Y), (42) the mean luminosity obtained by synthesis models is saalabl
I to a cluster of any size — including one with only 1 source!

which is the definition of convolution. In our case, we are as- Thus, probabilistic reasoning confirms the intuitive expec
suming that all the stars have luminosities distributetbfoing tation that the properties of an ensembleNgj: stars can be -
the same distribution functiog, (¢), and that the stars are in-obtained by direct scaling of the properties of the sLDFsThi

dependent on each other. Therefore, the PDF of an ensemblegtilt is fundamental for the interpretation of the outgisym-
Niot Stars is obtained by convolving (£) with itself Ny times:  thesis models in terms of real clusters. However, it is diesm

the above derivation th#ttis simple scaling rule only appliesto
Niot cumulants, not to momenisis cumulants that hold the scale
WL (L) =) ®eL(O)® ... ® g (£). (43) relations between the properties of the sLDF and the distrib
tion of the total luminosity of an ensemble. But, by virtue of
Hence, if the SLDF is known, the pLDF of an ensemblEgs 36439, cumulants can be related to momertss equal
of Niot Stars can be computed by means of a convolution. Tteethe first raw moment, and the following are equal to the
convolution is conceptually straightforward, but it posesere central moments of the same order, which can in turn be ex-
numerical problems. The reason is the following. The camvolpressed in terms of the raw moments: therefore, to chaiaeter
tion must be performed linearly in luminosity and, in the gera distribution we can refer either to the moments or to the cu-
eral case, the dynamic range in luminosities spans eiglersrdmulants.
of magnitude, from 1 L, to 1¢° L. On the other hand, most It is immediately seen from EqE.}40 aid 41 that the shape
programs that perform convolutions are based on Fouriestraof the distribution of the ensemble, when expressed in nor-
form routines that require a set of points ordered regulanly mal form (through a transformation of the distribution fenc
the x-axis; each time a convolution is performed the number tibn to one with zero mean and unit variancé: - x =
points on thex-axis is doubled. So, for a resolution of, say, 0.0{£ — M})/ VM), can be easily related to the shape of the
Lo (necessary to resolve the low end of the luminosity fungtiosLDF:
10° points would be needed to define the luminosity function,
and this number would be doubled each time a convolutionlis =
performed. Therefore, the points necessary to computeaven tot
very undersampled population (a moderate number of convolyh 4
tions) diverge rapidly, making it numerically unfeasiilée do
not know any computational routine powerful enough to per, = — y,, (49)
form this task, and any feedback from the community about tot
this subject is highly welcome. wherel'; andl'; are the skewness and the kurtosis of the distri-
An alternative solution is making the convolution logabution of the ensemble. Note that, in agreement with therabnt
rithmically in the Fourier space (see next section). Howevédimit theoremI'; — 0 andl’, — O for large enougiN values,
the numerical computation of the Fourier transform of a funge. the distribution tends to a Gaussian.
tion with an irregular sampling is alsofficult and, again, we Although the previous relations are useful to unveil the
haven't find any routine to perform it satisfactorily. scale properties of LDFs, knowledge of the moments of a dis-
tribution is useful but not gticient to analyze it if its shape is
unknown. For most application, one needs to know whether the
distribution can be approximated by a Gaussian, and in case
Convolutions in the normal space are equivalent to prodactst is not, which its shape is. The following section will deal
the Fourier space, so that: with the problem of characterizing a distribution by meahs o

Y1, (48)

6.2.2. Scaling properties of the LDF
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its cumulants. The technique suggested can be used to s
two different kind of problems: on one hand, it can be used
generate a theoretical pLDF from a sSLDF when the convoluti
is not feasible. On the other, it can be used to infer the pLDF
an observed population.

Choose relevant range
[=x, X]

!

Choose maximum deviation

g

from gaussianity &

6.2.3. Obtaining the pLDF: approximate solution

Alternative solutions go through obtaining an approxineate L
pression for the pLDF. A quantitative characterization loé t
pLDF by means of its cumulants can be obtained by meg
of approximate expressions. To this aim, we suggest usiag
Edgeworth’s series, which can be written schematically as: ‘

Choose maximum error
in the approximatione

Compute Edgeworth’s

expression with n terms

() = Z(x) , (50)

1+Zti

0
i=1

wherex is the normalized luminosity defined abow&x) is
the Gaussian distribution function, and the tertnsre ob-
tained by the Chebyshev-Hermite polynomials multiplied by

powers of the cumulants_(Blinnikov & Moessrier 1998). This

series is a true asymptotic series, i.e. the error is cdattol Yes
when the series is truncated to a finite number of terms

As|Blinnikov & Moessner|(1998) demonstrate, the error is on No
the same order of the last term of the sum,When the er- LDF is non—gaussian
ror is small, i.e. the approximation is satisfactory, thame
T, = Y, t measures the deviation of the LDF from gaus-
sianity.

These properties can be used to obtain an explicit desci
tion of the distribution and to estimate its degree of garssy. LDF is quasi—gaussian |
The algorithm to be followed is described here and represken
in Fig.[A:

No
n=n+1

Yes l

Edgeworth’s expression
approximates LDF

Fig. 4. Algorithm to obtain an approximate expression for a

(i) The range qf interes_t in x (i.e. the normalized lumingkit pLDF based on the Edgeworth’s series.
must be defined. This is necessary because convergence is

first reached at small x, and propagates outward as more
terms are included in the truncated series.
(i) The maximum deviatiord from gaussianity must be cho-

sen, in order to discriminate between non-Gaussian aﬁlgDF of unknown shape but known cumulants.
quasi-Gaussian behavior.

(i) The maximum discrepancy admissible between the trun'Edgeworth’s series truncated to include terms up £02:
cated series and the LDF must be chosen.

(iv) A truncated expression is computed with the first n terms

(v) Atthis point,|t,| provides an estimate of the errorjtH/|1+ 1 _1e
31> € the erroris too large, i.e. the truncated series is 8t (¥ = \/_Ze 27 x
a good approximation to the LDF: a further term must be

added and the process resumed at step (iv). This step might 1+ 1 I (¢ -3%) + 1 I (¢ — 652 +3) +
require computing further cumulants, as higher-order $erm 6 24
of the series include progressively higher-order cumslant 1 506 2

(vi) As the number of terms retained increaskg, becomes 72 F{(¢ - 15¢ + 45¢ - 15)) ®1)

smaller thare and the expression progressively approaches

The algorithm is summarized in the flux diagram of HIjy. 4,
which permits to find an explicit analytical expression for a

As an example, we give here the explicit expression of the

the LDF, until it eventually becomes an acceptable apr the top panel of Fidll5 we represent the region wheré Hg. 51
proximation. At this point, ifi£,| < ¢ the pLDF is quasi- satisfies the first test of Fifl 4, that is the rangEpandI’, val-
Gaussian; otherwise, it is strongly non-Gaussian, a fatt thues in which Eq_H1 approximates the pLDF with an accuracy
must be taken into account when the distribution is anaf 10% or better in a given interval of normalized luminosity
lyzed. In either case, the approximated expression canddex. The dependence onis represented in Fi§l 5 by ftierent
used. shades of gray.



14 M. Cervifio, V. Luridiana, and N. Cervifio-Luridiana:dPabilistic synthesis models

[ \ \ \ \ ]
N — —
BT ]
. 1 o |
| [ NG )
O — —
L I o i
T C \ L \ P \ L]

— —0.5 O 0.5 1 1.5
FW

o | i
O |- -
] |
2T to ]
| I 0.
o B -,
[ L i
| | | | | ]
—-0.4 —-0.2 O 0.2 0.4 O.¢

FW angle=180

PR, — —— — B w— " . 2 s 8 a1 B 1w - . o 2 . A~ - . 2 b g p— e . o~



M. Cervifio, V. Luridiana, and N. Cervifio-Luridiana: Padfilistic synthesis models 15

assumptions on the distribution of stars in bins, exceptits
Computer,, T, domnes&
As an example, let's use our probabilistic formalism to
l compute the variance of the distribution. To do so, we neé¢d no

make any assumption on the distribution of the number o star
in bins: we just need to take into account the scale relatibns

_ _ luminosity functions (Eq—46) and the properties of cumtdan
simulation needed (Eqs[SB-BH):

M2 = Ko = Niot X k2 = Not X p2. (52)

No Convolution or Monte Carlo

000 =Z() 1+ 3) If we apply the approximation of EE1L9, we obtain:

(non—Gaussianity)

00 00 2
1 M2 = Nax( [ Ea@ae-( [ eaoa) |
0 0
2
<P§x) = Z(x? _ L, LDF c_an bg expressed = Nigt X ( Z W Ziz _ ( Z W 5i) ):
(quasi—Gaussianity) analytically in [-37, 8 ] i 7

i R

= NtotX(ZWigiz - Z(\NIZI)Z — Z Zflf] Wi WJ), (53)

Fig. 6. Characterization of a pLDF based on Edgeworth’s ap-

proximation to the second order and a Gaussianity tolerance ) o
interval of+ 10%. which is the same as the expression of[Eq. 23. This simple ex-

ample shows the power and, at the same time, the simplicity
of our probabilistic formalism. Note, however, that thisuk
does not imply that the multinomial description is wrong: on
the contrary, it is implicit in the probabilistic treatme@ur

Similarly, the bottom panel of Figl 5 describes the regidppint here is that the probabilistic treatment is simplat arore
satisfying the second test, i.e. the region where the pLDF ddowerful than an analysis explicitly based on the multiraimi
be approximated by a Gaussian within a 10%. As expected, tfligtribution.
region is centered around the poifit [= 0,T, = 0], where a Finally, note that the value of the variance of the pLDF cus-
true Gaussian would lie. Again, this depends on the rangetefmarily assumed in the literature (Hql 22) is biased, with t

x considered: the wider this range, the narrower the rangeVé?Tk by Cantiello et &1.1(2003) as the only exception we are
acceptabl&; andr, values. aware of. Note that in fact, the variance obtained from[Ed. 22

is the second raw moment of the pLDF, and not its second cen-

The extension of the dark-gray region can be used to defkneI
ral moment.

a simplified diagnostic test for luminosity functions (Fi).

This test is based on the algorithm of Hij. 4, but only the first

four moments are used, and conventional figures of 10% &. Technical problems in the computation of the

used to define whether Edgeworth’s approximation is accept- pLDF

able and the LDF is quasi-Gaussian. SihigendI", are relat- .

able to the skewness and kurtosis of the sLDFNiia(Eqs [ZB pnfqrtunately, the determlngtlon of the LDF of an ensemble
and[4®), this test can also be used to determine the minimlﬁ’rh'ndered by a few technical problems. The first one con-
number of stars necessary to ensure Gaussianity in a gi\t;_g ns the stellar LDF: although some aspects of stellarlpopu

: ; : - ; tions (like variability or transient events) would be moesity
band. An example of this technique will be given in SECHl 7.1;
P a g treated via the luminosity function as compared to the steahd

method, the modeling of the luminosity evolution duringtfas
6.2.4. Computation of the variance of the pLDF evolutionary phases poses the same problems as in standard
codes.
We have seen in Se€i_%.2 that the Poisson distribution is onl A second issue is the contribution of dead stars to the lu-
an approximation to the distribution of the number of stars minosity function. Those stars have no influence on the com-
a bin, and that it is not a safe one. The correct alternativepgtation of the moments of the distribution, except for arno
to use the multinomial distribution, which has the additibnmalization factor” that depends on the age of the population
advantage of keeping track of covariandeeets across bins. In terms of the shape of the luminosity distribution, deadst
However, the multinomial distribution by itself does noli te "6 15 is by itself, of course, a strong physical assumptiérfor

the whole story. Additionally, its handling isficult. We will  gxample, mass segregatiafests star formation, then this assumption
show here that the adoption of the probabilistic formulatiqyould be false. In that case, the whole problem should beteskt
permits bypassing this problem, because it provides this togince the mechanism of star formation should be incorpdrat¢he

to compute the relevant quantities without the need of ntakiStar Formation History.
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show up as a pulse function located at zero luminosity. Témis ¢~ pixels in SBF studies, or the whole slit in integrated data)
be easily understood in the following terms: let us assume an to ensure quasi-gaussianity. Non-gaussianity is a problem
ensemble witiNi; initial stars. At a given age there is a non- when one wants to obtain confidence intervals in terms of
zero probability that all stars are dead; the pLDF, marggedl o: when the distribution is non-Gaussian, it cannot be as-
to such a condition, is a delta centered on zero. There isaalso sumed that + 1o~ contains~ 68% of the distribution. This
non-zero probability that all but 1 stars are dead: the pL®Fc  is not necessarily a problem for goodness-of-fit tests like
responding to this case is the sum of a pulse function and the y?, since the test also works for non-Gaussian distributions
stellar luminosity function, the pulse function having st provided the deviation from gaussianity is not severe. For
case a strength smaller than the delta. Similarly, all buagss example'; should be used to have an approximate idea of
can be dead, and the corresponding pLDF is a pulse function which test would be the best to compare the observations
plus the convolution of two stellar luminosity functionas.tb- with the models.

tal, there aré\y,; + 1 marginalized cases, correspondingjtg,
Niot—1, Niot—2, ..., 2 and 1 dead stars. The LDF of the ensemb§e2
should include all these cases, each with a weight givensby it
relative probability, so that it will have a pulse contrilmrtcen- The input ingredients used in population synthesis arergene
tered on zero. Although this result seems to contradictéme c ally assumed to be fully known but are in fadieacted by uncer-
tral limit theorem, which states that the asymptotic shdtke tainties (Cervifio & L uridiana 2005). These uncertaintiesy
LDF of the ensemble is a Gaussian, this is not the case, sirier reflectincomplete knowledge or an intrinsic spreate

the relative pulse contribution becomes smaller and smadle features of the quantities considered. In either case chepe

Niot iNncreases. included in the sLDF provided they can be modeled quantita-
tively.

As an example, let's suppose that the mass distribution
function depends on a paramefighat is itself distributed, that
7.1. Characterization of a SLDF by means of its is let's replgce the_univocally determined functign(m) with

cumulants a parametric functiog(m; 6). The paramete# can be charac-
terized by a probability distribution function such that:
In Sect[Z1l we showed that knowledge of the mean and the
variance is not enough to characterize a LDF. As a rule o p(6) do = 1, (54)
thumb, at least the first four cumulants should be taken in
consideration, which describe the mean, the dispersian, th

asymmetry and the peakedness of the distribution. As a first here the integra_tion interval is the_ range wherie definet_j.
ample of application of the probabilistic treatment, wel wé- To apply EqLD, it is necessary to eliminate the parametric de

rive a few properties of stellar population from the anadyci pendence. This is done by integratingm; ¢) over all possible

its cumulants. Fig7 shows the first four cumulants of thesLD Values, weighting it by(6):

for different bands and ages, obtained from the isochrones by

Marigo & Girardi (2001). We have assumed a Salpeter (1955n(m) = fw(m: 6)p(6) de, (55)

IMF in the mass range 0.15 - 120JVvhormalized by the to-

tal number of stars. For a normalization in mass rather thanThe resulting distribution, which is technically callecnixture

number of stars, these results must be multiplied by the mesinp(6) and y(m; ¢) (Kendall & Stuait. 1977), can be used in

mass{m) = 0.52 Mo. The figure illustrates several interestingeq.[9.

facts: Let’s consider two hypothetical examples. In the first, as-
sume thaty(#; m) « m? and that the power-law indexhas a

— The value ofio/uy? = po/u is in general larger than 10, rectangular distribution centered on Salpeter’s index2.35:
with the exception of blue bands. As has been pointed out

in Sect[6.Z}1, most synthesis models compute the second { 1if _5<0-235< 45

. Inclusion of uncertainties in the input parameters

7. Applications of the probabilistic treatment

raw momeniu, instead of the variangg. The diference P(0) =1 §’ (56)

i ) - = 0 otherwise
between the two momentsis a terrmq%, but sinceu, is in
2 7 H
general much larger thaurf”, 1z, is numerically close 2. yith 5 > 0. If we mixy(6; m) with p(6) and integrate, we find:
Although the variance computed by most synthesis codes
is systematically biased, in humerical terms the value is
nearly correct. However, it is safer to compute the variance

em(m) = f w(6; m) p(6) do o

properly.
— As pointed out in previous works, the Gaussian regime is (M —mo) e
not as common in stellar populations as often assumed.  * “S5nm m = (57)

This is particularly the case of infrared wavelengths, vehos

values ofy; andvy, imply, given the criterion of Figll6, Whens — 0, the expressiomf — m=?)/(25Inm) — 1 and
that at least 10stars are needed (roughdy5 x 10° My in ~ Salpeter’s law is recovered. Whéis non-negligible, the SLDF
initial mass) in the analysis building block (i.e. indivialu is distorted with respect to the simple Salpeter’s case fig
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Fig. 7. Main parameters of the luminosity function in several phottric bands, obtained from the isochrones
Marigo & Girardi (2001) and adopting the IMF by Salpeter (9B the mass range 0.15 - 120,M

As a further example, let's assume thgt; m) « m* as

above, but that now(6) is gaussian:

_ (0-235P

e 2<r3
(o} V271'

p(d) =

In this case, thef-weighted IMF is given bygm(m) o

spect to the limiting case given by Salpeter’s law (Elg. 8).

(58)

17

by

of the pLDF. In particular, the method outlined above can be
used to include transient phases and fuzzy stellar behawvior
the modeling (Secf—4.4). For this to be done, it is just neces
sary that the phenomenon considered can be described is term

of a parameter of known distribution function. Other unaert

ties that can be incorporated in the modeling are those éhat r
flect our imperfect knowledge of the problem: for example, th
m23%exp(c2In?m)/2 and, again, the IMF is distorted with resLDF could be mixed with a Gaussian distribution to mimic
observational errors.

Following this example, any spread in the input ingredients
can be included in the modeling and contribute to the shape
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1 forthe pLDF at dfferentNy,'s to show how its shape is related
gy =Am P ] to the generating sLDF and how it dependsNg. Second,

BN 1 we want to show that, through our method, we are able to re-

(mP—m™%) 235

produce the main features of Monte Carlo simulations for any
value ofNigt.

Let us assume a stellar luminosity function made up of
three Gaussians, representing the dead stars, the MS, @nd th
PMS respectively. The parameters of the three Gaussians are
chosen so that the broad features of a set of Monte Carlo sim-
ulations for one star are reproduced (upper panels of[FFig. 9;
the vertical scale is logarithmic in the left panel and linea
the right panel). In particular, the mean and the variandbef
triple-Gaussian LDF are constrained to be the same as those
of the Monte Carlo simulations. We also confirmegosteri-
ori thaty; andy, are very close, which is expected for similar
distributions.

With a numerical routine, we convolved this sSLDF with it-
self Niot times. The resulting pLDFs for selected valuedNgf
are shown in Figl19 (solid line). The features of these pLDFs
can be understood qualitatively as follows: the charastieri
function of this sLDF is:

0.1

Pu

—4

BL(P) = Agee™ 2aP 1P 4 Ayge 37hsP -ilhsP
+ApMSe_%‘T%MSp2_”PM5p, (59)

whereAgs, Aus, andApys are the weights of the Gaussians cor-
responding to dead stars, the MS, and the PMS respectively;
\ L ‘ L lds, tms, and{pys their locations on the luminosity axis; and
T2 5 10 20 50 100 ggs oms, andopys the respective dispersions. The exponent
m of the Nioi-th power of this characteristic function is a sum of

Fig. 8.Salpeter’s IMF (solid line) compared to two examples JFaI expongnts .i'pz (ie. Gagssian distributions) anq imagin_ary
distributed IMFs: rectangular (dashed= 0.5) and Gaussian exponents irp (i.e. translations of the corresponding distribu-

(dot-dashedy = 0.5). tions). Hence the fin_a_l function will be a sum of Gaussians lo-
cated at dierent positions.
The vertical sequence of panels shows how, incredsing
the pLDF progressively becomes smoother and more sym-
metric, approaching a Gaussian shape. In the same figure,
Monte Carlo simulations with correspondimg,: values are

¢ h icular. | b blished v also shownl(Cervifio & Valls-Gabaud 2003), and these coin-
ects the SLDF. In particular, it cannot be establishe ®t cide remarkably with the analytical pLDF. This is a conse-

the |nclu§|or_1 of distributed mgre_dlent_SWlII render corgence quence of having chosen a sLDF similar to the Monte Carlo
to gaussianity more or less rapid. It is to be expected that, Wistribution function forNe = 1 (which, in turn, maps the

further is the sLDF from gaussignit_y, the slower will the ?Orhnderlying SLDF), and shows the power of the method: large

vergence of the pLDF to gaussianity be. For example, if th¢, e 'carlo simulations become redundant, in the sense-of be

distribution of the input ingredient is bimodal, bimodghill ing predictable, if one can characterize the SLDF and suicee

persist in the pLDF of smal\,, and a larger number of star%n convolving it

will be required for the pLDF to converge to a Gaussian. Fig.[T0 compares the pLDFs obtained through convolution
of the sLDF to their Edgeworth’s approximation to the second

7.3. Comparison between Monte Carlo simulations, order (Eq[BL). Each panel corresponds toféedént number

numerical convolutions and the Edgeworth’s of stars; the cluster in the upper panel, witl; = 1000, is the
approximation same one of the lower panel of Hid. 9. The Edgeworth’s approx-

imation improves visibly across the rangef; considered:
We have shown in Sedf_6.2.1 that obtaining the pLDF througtis is expected, because the closer is the pLDF to a Gayssian
a convolution of the sLDF is not simple; however, in simpléhe better is it approximated by Edgeworth’s expression.
scenarios it is possible to solve it. In the following, welwn- Finally, in Fig.[T1 we show a blow-up of Fifll 5 that com-
sider a simple case to illustrate this point. Our aim in this epares thd's of the pLDF obtained through the thredfeient
periment is twofold: first, we will derive an explicit expgsn methods (Monte Carlo simulations, numerical convolutang

It is important to note that theffect on the pLDF of a
spread in the input ingredients cannot be determaedori,
as it depends on how the distribution of the input ingrediént
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the Edgeworth’s approximation). Several points desernigeto based on PHOENIX (Hauschildt and Baron 11999; Allar et al.
emphasized here: 2001), the ATLAS 9 odfnew library| (Castelli and Kurlicz
20038) computed with SPECTRUM . (Gray and Corbially 1994),
— As noted above, th&; andI'; values of the Monte Carlo the ATLAS 9 library [(Kurucz | 1991) computed with
simulations nearly coincide with those of the convoluteBYNTSPEC I(Hubeny, Lanz, andfery|1995), and TLUSTY
pLDF. This is a remarkable proof of the power of descrilfLanz and Hubeny 2003) at [A4] = 0.0 dex.
ing stellar populations in terms of luminosity distributi The figure shows the region around.H\s expected from
— The dots corresponding to clusters of Hars fall within previous plots at these ages (Fily. 7), the valudg @ndI', are
the shaded region in the top plot (approximation test) bguite low. However, not all the wavelengths have the same sta
not in the bottom one (Gaussianity test), implying that thigstical significance. In particular, thesHine shows the largest
pLDF can be approximated by the Edgeworth’s functiomalues ofl’; andI'z, so in undersampled clusters its profile will
but is still far from Gaussianity. This is also apparent frorbe dificult to fit. On the other hand, the profile of @&l + He
the bottom panel of Fidl9, which shows that the shape isfa quite robust result, with a low relative dispersion Epdnd
the pLDF (described both as a convolution and by Monig values close to the continuum level. Finally, theiQgline,
Carlo simulations) is markedly multimodal and asymmetvith T'; andT'; values similar to those of the continuum, has
ric, hence far from Gaussian. a high relative dispersion. Summarizing, fitting the théioed
— Finally, in this example Gaussianity is marginally reache@lodels of Cau lines, including their profiles, to observed data
only aboveN, = 6-10° stars, and even a cluster as large agould yield more realistic results than fitting either théeim-
Niot = 2-10%is Gaussian only within the-2c, 20 interval.  sity, the equivalent width or the profile ofsHOf course, these
conclusions depend on the age and metallicity.

7.4. Criteria for assessing the significance of fits o o
) _ ) 8. Future applications of the probabilistic
As has been pointed out several times, the main result ofi.o5iment

synthesis models is the mean value of the stellar luminos-
ity function, which can be scaled to clusters of any size. Wa this section we will briefly discuss several potentialesxt
have also shown that the relative dispersion of the model fons of the formalism that could have a strong impact in the
sults (the ratiar(£)/M; = VMz/M}) decreases whely, in- ~ analysis of stellar populations. Details on a a few examplts
creases. Howeverr(£) increases in absolute terms, since RIso be given.
is proportional toy/Nyy, a fact that should be taken into ac-
count in the comparison of theoretical data_ to opserye_d clués.l_ Forthcoming extensions of the formalism
ters. Furthermore, since each monochromatic luminosiytha
own o(£), they should be weighted fiiérently in fits. Finally, Since in this paper we have only considered the case of SSPs,
although some regions of the spectrum may have a quaslybe the most important pending issue is the extension to
Gaussian distribution, this will not happen in general with other scenarios of star formation. This topic will be covkre
the regions. Hence, not all the frequencies (either in stith in a forthcoming paper.
or in observed spectra) are equivalent, or even suitablegto A current limitation of the formalism is that it only deals
tain the properties of the observed cluster. with integrated properties that scale linearly with the temof

As an example, Fid_12 shows the first four cumulants &tars in the cluster. In the future, the formalism will bessxded
a region of the visual electromagnetic spectrum for the pLDO# include the case of luminosity ratios. To solve this peoi)
of a 1 Ga cluster with solar metallicity, obtained from th@sy in addition to the cumulants of the distribution functiontioé
thesis code sedf@using al Salpeter (1955) IMF in the masg&nsemble, it is also necessary to obtain the correlatioctifum
range 0.1-12M,. The results are normalized to mass. Thef the corresponding quantities.
isochrones used are fram Girardi et al. (2002) covering ssmas A further assumption of the formalismin its present stage is
range from 0.15 to 100 Mand based on the solar modelghat the stellar population has a fixed number of skigs It is
(Z2=0.019) byl Girardi et al.| (2000) and_Bertelli ef al. (1994%ur intention to extend the formalism by including the cake o
that include overshooting and a simple synthetic treatmehgollection of populations with varying number of starsisTh
of the thermal pulses AGB phase (Girardi and Beltelli 1998)xtended formalism could be applied to several problentsy su
The atmosphere models are taken from the high resolutionds the analysis of stellar populations in pixels, which nesgu
brary byl Martins et al. (2005); Gonzalez Delgado etlal. £)00computing the global distribution resulting from the distr
tion of stars in each pixel and the distribution of humbers of
stars across pixels; the distribution of luminosities ialgllar
clusters; the estimation of theffirence between luminosity

Public License and, currently, is managed by M. Cerviiie ofsthe profiles in galaxies inferred b_y means of a comparison wigh th
code and its results must be referred to solely by its doctatien mode and the mean respectively; the comparison of theatetic

(Sed@ Reference Manyih preparation), its WWW address and the>BF With observed ones; and the comparison amoﬁgrdnt
citations in the headers of the output VO Tables. The coderiently Monte Carlo simulations performed with a total fixed mass. A
accessible on-line éittp://ov.inaocep.mx/} Its inclusion in the few of these prospective applications will be discussethéirr
VO service grid is under way. in the remainder of this section.

7 sed@ is a synthesis code included in tBpanish Virtual
Observatoryand theViolent Star Formation Legacy Tool projeby
means of thd*Gos3tool. The code is written in ANSI C under GNU
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Finally, the formalism developed here for the treatment ekption of the assumption on the validity of a SSP, which in a
luminosity functions can also be applied to stellar yield. galactic halo is probably verified.
the statistical considerations that we have made abouhlsiti To pursue the goals sketched above, it is imperative to know
ties can be easily translated into equivalent issues ineliedf  the initial distribution of cluster masses. In the follogijrwe
chemical evolution, although in that case the star formmdtie-  will show qualitatively that our method can also contribtde
tory would have a fundamental role, and théefiential equa- ward this goal, by disclosing a potential source of bias & th
tions that describe (deterministically) the chemical atioh use of synthesis models for the determination of the mass dis
would become stochasticfiirential equations, whose meanribution of globular clusters. Note, however, that a gitative
would coincide with the results obtained deterministicalls  conclusion cannot yet be reached.
in the present case, comparing the mean against obserwation | Fig.[I3 we show the pLDFs ity for clusters with the
can produce a bias that depends strongly on the shape ofthec metallicity obtained from the isochroneshy Girardi Et a

distribution. _ o . (2002) using the Edgeworth’s approximation. We have plot-
The following sections will give more details on a few exted the distributions that correspond to the extremes oé¢jee
amples among these. ranges used by Zhang & Fall (1999). The pLDFs correspond to

cluster masses of $M,, (solid line), 13> M,, (dashed line),
and 16 M,, (dotted line). The mean values of the correspond-
ing pLDFs are marked as vertical lines.
SBF observations from galaxies and globular clusters have The figure shows that, given the asymmetry of the stellar
been proposed as a test of evolutionary tracks and isochirolueninosity function, most observed clusters will have deval
(e.g.L.Cantiello et al. 2003, among others). This test is dhadaminosities than the mean, i.e. smaller luminosities ttharse
on the comparison between the observed variance acrods pigeedicted by a standard code. The straightforward implica-
in the image of a galaxy and the variance expected on statisittn is that the mass of observed clusters inferred by means
cal grounds. However, there are several inconsistenciggsn of a comparison with standard models is, in most cases, un-
method as is applied at present: derestimated, with a bias larger for smaller clusters ($&® a
Gilfanov et all 2004) and younger ages.

— Observational SBF are the result of an average over an This dfect is highly relevant for young and undersampled
additional distribution, the one that defines the number olusters. In particular, assuming that the age estimation o
stars falling in a given pixel. The theoretical SBF formaiis tained by Zhang & Falll.(1999) is not biased, the figure clearly
doesn’t take this second distribution in consideration.  shows that there can be a systematic underestimation of the

— Each of the building-blocks of the distribution (the piYelsmass of younger clusters, an hence, an overestimation of the
is representative of the integrated luminosity of an ensemdmber of low-mass clusters. In the cluster mass rangeaonsi
ble. Although the formalism, in terms of moments, can bered, this &ect is more relevant in the 1@ 10*° M, interval.
scaled to pixels containing any number of stars, the numiéris fact could change the shape of the distribution of tit&in
of stars in a given pixel and the number of pixels with theluster masses obtainedlby Zhang & |Rall (1999), particyiarl
same number of stars should be known, in order to evathe low mass range, making it shallower or even inverting the
ate the error in the estimation of the SBF due to the finisdope. However, this result is only a qualitative applicatof
sampling of the underlying distribution. the new formalism, and the example above should not be taken

— The theoretical SBF used to date are computed under titerally. To establish a firm conclusion it is necessarypplg
implicit assumption of a SSP, whereas the mode of star fdlie probabilistic treatment also to the determination efsag
mation of a real galaxy can be much more complex.

8.2. Surface Brightness Fluctuations

. . . . .8.4. Tracing the sLDF with resolved stellar populations
This inconsistencies could be overcome by extending the

formalism so as to include the LDF of populations with vagyinThe individual stars in a resolved population can be used to

number of sources. This subject will be discussed at lengthtiace the sLDF. This can be done by comparing the first four

a forthcoming paper. cumulants computed by means of current synthesis models to
the corresponding observed quantities. Resolved popuokti

. . have several advantages:
8.3. Putting constraints on the globular clusters’ g

distribution ) o .
— Nt is @ known quantity (i.eNi=1, except in the case of

In a similar way, the luminosity distributions of globuldus- crowding problems, which would be treated separately).
ters in galactic halos could be compared to the correspgndin- The number of stars used to map the luminosity function
distributions obtained theoretically, either in terms afments and the possible luminosity bias are known, and can be in-
or in terms of the explicit shape of the distribution. Thegios  corporated theoretically (e.g. by changing the valuépf

bility of obtaining higher-order moments, such as the skesgn in the computation of the moments).

helps constraining the distribution, which is necessariest — The assumption of a SSP can be directly tested. Moments,
evolutionary tracks and isochrones. However, there are-dra  and their associated sampling errors, can be estimated from
backs similar to those of the previous case, with the only ex- simple star counts using the standard formulations for-unbi
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ased estimations of the mean, variance, skewness and kuterms of generality and reliability. Unlike Monte Carlionsi-

tosis.

lations, it is not &ected by sampling errors in the estimation of

— It is possible to perform a tailored analysis consistenbhwithe moments. Unfortunately, its exact application recpi@m-
the used isochrones without outsiders; e.g. Blue Straggleuting repeated convolutions, and we do not know any compu-
can be excluded from the estimation of the moments if thégtional tool that can perform this tasKieiently. Although the

are notincluded in the theoretical luminosity function.

formalism is complete for luminosities, it must still be entled

— Finally, the covariancefiects between élierent evolution- to the case of ratios. A summary of our conclusions follows:

ary phases are included in a natural way in the probabilistic

treatment, both theoretically and observationally.

8.5. Testing the isochrones

In the first part, we revise the current standard formalism
and discuss the phenomena it fails to address and the coin-
cidences and dtierences with our method. The mairffdr-

ence between the standard approach and ours is that the for-

The method proposed in Selc18.4 can also be used to comparéner interprets the results of synthesis models deterrinist

the predictions of dierent sets of isochrones, since it is also
sensitive to the number of stars expected in each regioreof th
isochrone (which is almost IMF-independent for PMS staks).
similar method has been proposed by Wilson & Hurley (2003).
To illustrate the point, we show in FigI14 the first four cu-
mulants of the sLDF for dierent bands and ages using the

isochrones by Marigo & Girardi (2001), computed following —

FCT requirements explicitly, and hy Girardi ef al. (2000dan

Bertelli et al. (1994). We have assumed_a Salpeter (1955) IMF

in the mass range 0.15 - 120.Mhormalized by the total num-
ber of stars, and the results have been obtained by a diteet in

gration of the isochrones. Note that, although the mearegalu —
and the)ug/y’l2 ratios are similar across the isochrone sets, there

are large dierences il; andI'; at some ages. This tells us,
without even knowing the luminosity distribution functighat

there are strong fferences between both sets of isochrones,

which can be directly related with fierences in the treatment
of stellar evolution, e.g. dlierences in the lifetimes of fierent
phases.

8.6. Application to the Virtual Observatory

The method described in this work can be implemented in the
VO as an automatized tool for the analysis of observed data,

since synthetic models can be given in terms of probabilgy d
tributions suitable to be used in data mining algorithmsror i
Bayesian analysis. To achieve this goal, an appropriate the

cally, whereas our formalism accounts for their statistica
distribution. We show how the resulting distribution func-
tions can be characterized in terms of their moments and
cumulants, and how the shape of such distributions can be
obtained from data, information that is necessary to com-
pute the confidence intervals of the models’ predictions.
Standard synthesis models work by handling the sLDF and
not the pLDF. Nonetheless, we show that pLDFs are the
convolution of sLDFs, so that synthesis models can be used
to study stellar populations, either integrated or restlve
once the correct probabilistic formalism is included.

The cumulants of the distribution scale with the size of the
stellar populations. We explain these scale relations and
show how the cumulants can be obtained in terms of the
distribution moments. The variance as computed by syn-
thesis models (generally in the context of SBF) is biased,
as it actually corresponds to the second raw moment of the
distribution, which is not a scalable quantity. Forturgtel
given the high asymmetry and the power-law nature of the
luminosity distribution, the numerical dierence between
the second raw and central moments is almost negligible. It
is advisable, however, to use the right formula.

The standard deviatioor cannot be used as the unit of
confidence intervals unless the distribution is known to be
quasi-Gaussian. A nearly Gaussian regime is reached only
when the sample contains more thariC® stars, with the
precise limit depending on the spectral region among other

retical data model is necessary; the definition of such model factors. It is therefore mandatory to perform safety checks

is a task that is currently being carried out by the Theory in-
terest group of the International Virtual Observatory &tice
(http://www.ivoa.net). In addition, the extension of this
probabilistic formalism to distributions of luminosity tias,

before using tests that assume normality, such aghest.

In particular, clusters with large skewness should bedrkat
with extreme caution, since in those cases the bulk of the
distribution is severabrs away from the mean value. We

which are used in diagnostic diagrams, would be an asset for refer to Gilfanov et 21.1(2004) for a more detailed analysis

the development of more robust VO analysis tools.

of this issue.

— The customary assumption of a Poisson distribution in bins

9. Conclusions

is, in fact, not accurate enough. A realistic solution,yfull
consistent with the underlying distributions, is the multi

This paper considers a series of problems in population syn- nomial distribution. The multinomial distribution dedueis

thesis that arise as a consequence of the distributed nafture
stellar populations, and develops a new probabilistic fdism
that takes them into account. With this formalism it is pblgsi

in a natural way the covariancéfects introduced by the
binning, i.e. the correlations betweertfdrent bins.

— We give a few guidelines for assessing the robustness of

to reproduce and explain the features of Monte Carlo simula- fits and show that not all the features of the electromag-
tions without the need of performing them. The new formalism netic spectrum are equally suitable for using in the fitting
has several advantages with respect to Monte Carlo simakati  of theoretical to observational data. Although the retativ
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dispersionr-(£)/M; tends to O for increasinior, (L) in-  anonymous referee. Joli Adams, our A&A language editopldiged
creases. infinite patience in helping us find just the right word. NClkaowl-
— For practical applications, we show how the results of syAdges Carlos, Dario, and Eva for providing experimentaifabow-
thesis models can be directly applied to the study of rifg that the application of mean values to individual datsatistical
solved stellar populations in quite simple terms, i.e. obta fa”aczz ) 4 by the Soanifo onal d
ing the distribution moments from the observed stars. Thjs This work was supported by the SpanBfograma Nacional de

formulation allows reliable comparisons of observed dataStronomla y Astrofisicthrough the project AYA2004-02703. MC is

. . supported by &amon y Cajafellowship. VL is supported by &SIC-
with theoretical stellar models to be made. pp Y yLa P PP 4

> . 13P fellowship.
— Current synthesis models cannot be used for comparison

with observed SBF, since an additional distribution func- ) .
tion must be included in the treatment, describing the digPPendix A: Notation
tribution of number of stars across pixels. Our formalismihis section contains an exhaustive summary of the notation
provides a natural way to do it. used and its rationale.
— We give a preliminary example of how the probabilistic for-
malism can be applied to the distribution of globular clus- .
ters and to chemical evolution models. The latter would ré-1- Quantities related to stars

quire the inclusion of stochasticférential equations. l; is the luminosity of an individual object in a discrete sum
— Finally, we derived implications of this study for the devel ~ (gq 7).

opment of analysis tools in the VO. For example, we ar& js 3 continuous variable representing the possible luminos
implementing synthesis models that include the probabilis ity vajues of individual objects.

tic formalismin a new‘VO tool calle®Gos3 under devel- ,, =, (¢:1) is the probability density function (PDF) of the
opmentahttp://ov.inaoep.mx. The presentformalism * yariaples, i.e. the stellar luminosity distribution function
will be also used for the development of data mining and in (5| DF) (Eq.2). It depends on the assumed agevhich
Bayesian algorithms. is explicited here as a parameter), but also on the metallic-

As our understanding of stellar populations shifts, popula ity, the evolutionary tracks adopted, and the star fornmatio

- : g . history.

tion synthesis tools evolve. The problem of predicting the i _ - . i .
tegrated properties of stellar populations was initiatignfied fL = ¢L(.p; ) is the characteristic function ¢4, defined as its

as a deterministic one and solved by standard codes. A grow- Fou/ner. transform (Ed.33).

ing awareness of the spread in the input parameters hasbooft ~ Hn(D) |s.the n-th raw moment of the SLDF (EGS}HETd).

the interest in Monte Carlo simulations, whose phenomepold™ ~ #n(t) is the n-th central moment .Of the SI.‘DF (Eas.
ical exploration has brought about important insights it 28-52). Th_e second central _moment is the varlance of the
statistical aspect of the problem. The time is ripe now for a SLDF, and .|t_s square r(_)om,-, Is the stapdard qlewaﬂon of
further forward step, one that advances the problem frora-a st the probqb|llty distribution. Note that in the I|teratwfu_at .
tistical to a probabilistic formulation. As this evolutiagakes symbole is often used to represent the st.and.ard dev!at.|on
place, however, it is important to keep in mind that the new of the_ sample_, or mean square error, _vvthh IS a_stgtlstlcal
formalism reinterprets previous conceptions, rather thaar- ?nue?r::;yg.] In this paper, we do not usewith this statistical
throwing them, and that it does not supersede the old toots, b e

instead aims to specify how and when they can be applied. THe ™ () is the n-th cumulant of the sLDF (E@]SS).
probabilistic formalism is best seen as a unifying modet tha" ~ n() are the skewnesy{) and the kurtosis)e) of the

includes the old tools and empowers them, in a directionishat SLDF (Eqs[PET).

becoming imperative for understanding the new observation

data. A.2. Quantities related to the integrated properties of a
stellar population
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M; = M/ (t) is the n-th raw moment of the pLDF. Cerviflo, M., Luridiana, V., & Castander, F. J. 2000, A&AB6
Mn = Mpy(t) is the n-th central moment of the pLDF.fif= 2, L5
its square root is the variance of the pLDF, denote@@ Cervifio, M., Gomez-Flechoso, M. A., Castander, F. J.,
in this paper. Schaerer, D., Molla, M., Knddlseder, J., & Luridiana, V.
Kn = Kp(t) is the n-th cumulant of the pLDF. Under suitable 2001a, A&A, 376, 422
assumptions, simple scale relations hold betw€grand Cervifio, M., Knodlseder, J., Schaerer, D., von Ballm#bs&
«n (Eq.[48). Meynet, G. 2000, A&A, 363, 970
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[mov, m®] (Eqs [Z22H). Its mean valuedsi) = N x wi.  Girardi, L., Bertelli, G., Bressan, A., Chiosi, C., Groeregen,
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Fig.9. Monte Carlo simulations of clusters at solar metal-
licity and 5.5 Ma in the K band for ¢lierent values 0N
(Cerviiio & Valls-Gabaud 2003, shaded histograms), coegpar

to analytical pLDFs obtained convolving,, times a sLDF
made up of three Gaussians (solid line). The vertical scle i
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analytical sLDF has the same mean and variance of the Monte
Carlo simulations; the position of the mean is shown by a ver-
tical dashed vertical line.


http://arxiv.org/abs/astro-ph/0510686
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Fig. 10. Comparison between the pLDFs obtained through
sLDF convolutions (dashed line) and the Edgeworth’s approx
imation (solid line) for clusters with fierentN; values.
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Fig. 12. Cumulants of the monochromatic spectral energy digig. 14. Main parameters of the luminosity function for sev-
tribution for a 1 Ga luminosity function assuming a_Salpeteira| photometric bands obtained from the isochrones by
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