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Abstract

In this paper, we describe our vectorized and parallelized adaptive mesh refinement (AMR)N -body code
with shared time steps, and report its performance on a Fujitsu VPP5000 vector-parallel supercomputer.
Our AMR N -body code puts hierarchical meshes recursively where higher resolution is required and the
time step of all particles are the same. The parts which are the most difficult to vectorize are loops that
access the mesh data and particle data. We vectorized such parts by changing the loop structure, so that
the innermost loop steps through the cells instead of the particles in each cell, in other words, by changing
the loop order from the depth-first order to the breadth-first order. Mass assignment is also vectorizable
using this loop order exchange and splitting the loop into 2Ndim loops, if the cloud-in-cell scheme is adopted.
Here, Ndim is the number of dimension. These vectorization schemes which eliminate the unvectorized loops
are applicable to parallelization of loops for shared-memory multiprocessors. We also parallelized our code
for distributed memory machines. The important part of parallelization is data decomposition. We sorted
the hierarchical mesh data by the Morton order, or the recursive N-shaped order, level by level and split
and allocated the mesh data to the processors. Particles are allocated to the processor to which the finest
refined cells including the particles are also assigned. Our timing analysis using the Λ-dominated cold dark
matter simulations shows that our parallel code speeds up almost ideally up to 32 processors, the largest
number of processors in our test.
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1. Introduction

By introduction and invention of the high resolution cosmological N -body methods, such as the particle-particle–
particle-mesh (P3M) method (Efstathiou & Eastwood 1981; Hockney & Eastwood 1988), cosmological N -body sim-
ulations became fundamental and powerful tools to investigate the structure formation processes in the universe
(e.g. Davis et al. 1985). Besides, parallelization schemes for the P3M method were developed by some authors
(Ferell & Bertschinger 1994; Ferell & Bertschinger 1995; MacFarland et al. 1998). Since the P3M method is mem-
ory efficient, the number of particles in P3M simulations reached to 109 (Evrard et al. 2002). However, the P3M
method is not almighty. In the P3M method, forces from nearby particles are calculated by the direct sum method.
Hence, as the system gets clustered, direct sum part dominates the whole CPU time and the computational cost
grows rapidly. In order to resolve this defect of the P3M method, some methods are proposed, such as the adaptive
P3M method (Couchman 1991) which uses adaptive meshes in the dense regions, and the tree particle-mesh method
(Xu 1995; Bagla 2002; Bode & Ostriker 2003) which uses tree method (Barnes & Hut 1985) instead of the direct
summation. The adaptive mesh refinement (AMR) method which places hierarchical meshes where required, is also
one of those methods. Some groups place rectangular structured mesh (Villumsen 1989; Anninos et al. 1994; Suisalu
& Saar 1995; Gelato et al. 1997; Norman & Bryan 1999) while other groups place non-rectangular structured mesh
(Kravtsov et al. 1997; Knebe et al. 2001; Yahagi & Yoshii 2001; Teyssier 2002). A review of cosmological N -body
codes is found in Bertschinger (1998).
For the tree method, there are various vectorization schemes (Barnes 1990; Hernquist 1990; Makino 1990) and

parallelization schemes for distributed memory machines (Salmon 1990; Warren & Salmon 1993; Dubinski 1996; Yahagi
et al. 1999; Springel et al. 2001). Moreover, there is a parallel tree code (Makino 2004) accelerated by the special
purpose computer, GRAPE (Sugimoto et al. 1990; Kawai et al. 2000; Makino et al. 2003). On the other hand, Fryxell
et al. (2000) discussed the parallelization scheme of their AMR hydrodynamics code. However, parallelization of the
N -body part is not described extensively. Hence, we describe our vectorization and parallelization scheme in this
paper. Some may think that the vectorization is obsolete technique. However, the Earth Simulator which had been
the fastest computer in the world until November 2004, is a vector-parallel type computer, and the vectorized code is
easily parallelized for shared-memory multiprocessors.

http://arxiv.org/abs/astro-ph/0507339v1
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In §2, we review the data structures and algorithms of our AMR N -body code to define the terminologies used in
the following sections. In §3, we describe the vectorization scheme of the AMR N -body code. In §4, we describe the
parallelization scheme of the AMR N -body code, and the timing analysis of the parallelized code is described in §5.
Finally, we summarize this paper in §6.

2. AMR N-body code

We vectorized and parallelized the shared time step version of the AMR N -body code described in Yahagi &
Yoshii (2001). We review the AMR N -body code briefly in the beginning of this section. Then, since adopted data
structure determines the algorithm suited to the problem, and vice versa, we review the data structures used in our
AMR N -body code to define terminologies used in the following sections, prior to discussing the vectorization and
parallelization schemes.

2.1. Structure of the code

The structure of the code is iteration of the following routines: velocity update stage of the leap-frog integration
by a half time step, position update by a full time step, reconnection of the linked list of particles, addition and
deletion of hierarchical meshes, mass assignment from particles to meshes, the Poisson solver, and velocity update
by a half time step. Force on particles at velocity update is calculated by interpolation of force on meshes onto
particles. Position update needs only position and velocity of particles, because the leap-frog integration is adopted.
After position update is carried out, some particles go across the cell boundaries. Hence, in order to make the linked
list consistent, the linked list of particles are reconnected by picking up particles which go across the boundaries and
inserting them to the linked list beginning from the finest cells which include them and will not be deleted at the
mesh modification stage. Mesh generation and deletion is basically operation using mesh data. However, when cells
are generated, particles in the parent cells are inherited to the newly generated cells, and at this stage, particle data
are also used. After this mesh modification, force on mesh is calculated, finally. First density on meshes are calculated
using the position of particles in the cells. Then, potential on meshes are calculated from density on meshes by the
Poisson solver. Force on meshes are calculated by taking difference of potential at neighboring cells.
We keep the particle linked list consistent as follows: First, particles are grouped into the stay particles and the

leaked particles. The stay particles do not move across the boundary of the cell during the time step, while the leaked
particle move across the boundary. The leaked particles are removed from the linked list, then added to a linked list
starting from the neighboring cell. However, the neighboring cell might be a buffer cell although the starting cell of
the particle linked lists is restricted to a refined cell. (See §3.3 for the definition of a buffer cell.) In that case, those
leaked particles are passed to the parent cell until they reach to a refined cell or the base mesh. On the other hand,
the neighboring cell which is to be connected by the leaked particles may have refined child cells. As mentioned above,
starting cell of the particle linked list must not have any child refined cells. In that case, those leaked particles are
passed to the refined child cell until they reach to the finest refined cell including them. At this stage, linked lists are
consistent with the distribution of particles and meshes, but cell classification and the refinement criteria could be
inconsistent. As the first step of the next stage, cells satisfying the refinement criteria are flagged, If starting cells of
particle linked lists are not flagged or the buffer child cells are flagged, again, particles in such cells are passed to the
parent cell or the child cell until they reach to the base mesh or the finest refined cell. Then, at each level from the
base level to the deepest level, unused cells are removed and new refined cells are added. At the same time, particles
connected from the parent cell of the newly refined cells are handed to the new child refined cells. Finally, hierarchical
meshes are sorted in the Morton order. Through these procedures, the linked lists are consistent with the distribution
of particles and meshes and meshes classification is also consistent with the refinement criteria.
We adopted the Cloud-in-cell (CIC) scheme (Hockney & Eastwood 1988) for force interpolation and mass assignment.

In the CIC scheme, mass of a particle is assigned to eight vertices of the cell including the particle, and force defined at
eight vertices of the cell is interpolated on the particle. Mass assigned to cells are restricted to the parent cells by the
CIC scheme from the finest mesh level to the base mesh level. For the Poisson solver, we use red-black Gauss-Seidel
relaxation. Further details of our serial AMR N -body code are described in Yahagi & Yoshii (2001).
As described in the next subsection, particles are connected to the finest refined cell. Density at cells which do no

have a child cell octet but include particles are calculated by the CIC scheme. On the other hand, density at cells
which have a child cell octet is calculated by the full weighting fine-to-coarse operator from the child cells and their
neighbor cells:

ρL−1
2l,2m,2n = F (ρL)2l,2m,2n

=
1

8
ρL2l,2m,2n +

1

16
(ρL2l−1,2m,2n + ρL2l+1,2m,2n+ ρL2l,2m−1,2n + ρL2l,2m+1,2n+ ρL2l,2m,2n−1+ ρL2l,2m,2n+1)+
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Table 1. Position of l-th child cell

l Position of cell
0 ( 2*i , 2*j , 2*k )
1 ( 2*i , 2*j , 2*k+1 )
2 ( 2*i , 2*j+1, 2*k )
3 ( 2*i , 2*j+1, 2*k+1 )
4 ( 2*i+1, 2*j , 2*k )
5 ( 2*i+1, 2*j , 2*k+1 )
6 ( 2*i+1, 2*j+1, 2*k )
7 ( 2*i+1, 2*j+1, 2*k+1 )

1

32
(ρL2l−1,2m−1,2n + ρL2l+1,2m−1,2n+ ρL2l−1,2m+1,2n + ρL2l+1,2m+1,2n+

ρL2l−1,2m,2n−1+ ρL2l+1,2m,2n−1 + ρL2l−1,2m,2n+1+ ρL2l+1,2m,2n+1 +

ρL2l,2m−1,2n−1+ ρL2l,2m+1,2n−1 + ρL2l,2m−1,2n+1+ ρL2l,2m+1,2n+1)+

1

64
(ρL2l−1,2m−1,2n−1 + ρL2l+1,2m−1,2n−1+ ρL2l−1,2m+1,2n−1+ ρL2l+1,2m+1,2n−1 +

ρL2l−1,2m−1,2n+1 + ρL2l+1,2m−1,2n+1+ ρL2l−1,2m+1,2n+1+ ρL2l+1,2m+1,2n+1).

It is possible to prove the following equation:

ρLCIC = F (ρL+1
CIC )

= F (F (ρL+2
CIC ))

...

= FN (ρL+N
CIC )

...

where ρLCIC is the density field derived by the cloud-in-cell scheme directly.

2.2. Data structure used in the code

Next, we describe the data structure used in our code. First, we divide data into two categories: particle and mesh.
Data structure of particles is fairly simple. Particles are just stored in arrays. Data structure of meshes is much more
complicated. First, meshes are divided into two groups further: base mesh and hierarchical mesh. Data structure of
the base mesh is simple. The base mesh is stored in arrays. Accessing neighboring cells at the base mesh is trivial, if
they have a frame, or ghost points. For example, if the size of base mesh is N3, arrays of (N+2)3 are declared for the
base mesh, and inside N3 cells are used for calculation. Data structure of the hierarchical meshes is more complicated.
Eight cells refined from the same parent cell are bundled into a single data structure (Khokhlov 1998), we call it cell
octet. Cells and cell octets are also stored in arrays. Thus, a cell whose index is ic belongs to a cell octet whose
index is ic >> N_DIM, where N_DIM is the number of dimension and >> represents a right shift operator. For example,
when N_DIM=3, a cell ic belongs to a cell octet ic/8. Since cell octets have indices to the six neighboring cell octets,
it is easy to access the neighboring cell octets from a cell octet. However, it is not so simple to access six neighboring
cells from a cell. First, we numbered siblings in a cell octet in the Morton order (see §4.1). For example, consider a
cell octet placed at (x, y, z) = (2*i, 2*j, 2*k), where i, j, and k are arbitrary integers. At this time, l-th child
cell of the cell octet is placed at ((2*i | ((l & 4)>>2), 2*j | ((l & 2)>>1), 2*k | (l & 1)), as given in Table
1 (see also Fig. 1). Here, & and | represent a bitwise AND operator and a bitwise OR operator, respectively. Then,
six neighboring cells of the 0th child are given in Table 2. It is trivial to extend the above relation to the neighbors of
other seven child cells (see also Fig. 2).
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Table 2. Neighbor cells of 0th child cell

Neighbor’s position Position of cell octet index of cell
( 2*i-1, 2*j , 2*k ) ( 2*i-2, 2*j , 2*k ) 4
( 2*i+1, 2*j , 2*k ) ( 2*i , 2*j , 2*k ) 4

( 2*i , 2*j-1, 2*k ) ( 2*i , 2*j-2, 2*k ) 2
( 2*i , 2*j+1, 2*k ) ( 2*i , 2*j , 2*k ) 2

( 2*i , 2*j , 2*k-1 ) ( 2*i , 2*j , 2*k-2 ) 1
( 2*i , 2*j , 2*k+1 ) ( 2*i , 2*j , 2*k ) 1

Fig. 1. Position of eight cells in a cell octet. Eight sibling cells are numbered by the Morton order and their position value is given
in Table 1.

There is yet another data structure: the linked list of particles. Particles in the same cell are connected by a linked
list. If a refined cell whose parent cell satisfies the refinement criteria does not have any child refined cells, such refined
cell has the index of the head particle of the linked list consisting of particles in the cell.

3. Vectorization

With pipeline processing, vector processors calculate loops in codes much faster than usual scalar processors on
personal computers and work stations. Moreover, there are many vector processors in Japan, including the super-
computer system of the National Astronomical Observatory of Japan which is exclusively served to the astronomical
community, and the Earth Simulator. Thus, we decided to vectorize our AMR N -body code. In order to bring out the
performance of those vector processors, we must eliminate as many unvectorizable loops in the code as possible. Most
often the loops that are unvectorizable are recursive loops, in which store operation to a certain address precedes load
operation from the same address during the loop. We describe the vectorization schemes of our AMR code in this
section. Hereafter, C-notation is used for code description unless otherwise mentioned, and some codes are rewritten
for this paper to make clear the argument.
Incidentally, some may think that vectorization is an obsolete technique. However the scheme described in this

section to eliminate the unvectorized loops is in common with the parallelization scheme for shared-memory multipro-
cessors.

3.1. Loop types

Before discussing the vectorization scheme, we classify loops in our code into three categories from the data structure
point of view. The first category consists of those loops which treat particle data only. Loops in the integration of
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Fig. 2. Position of neighboring cells in y-direction and z-direction of cells in a cell octet placed at (2*i, 2*j, 2*k). Position of cells
and cell octets is defined at their lower left corner. For example, four of six neighboring cells of the 0-th child cell in the cell octet
placed at the center in this figure are shown (see also Table 2).

particle trajectory are classified into this group. We call loops categorized into this group particle loops. These loops
are vectorized easily, and usually compilers vectorize them automatically. The second category includes those loops
which treat mesh data only. We call those loops mesh loops. Loops in the multigrid Poisson solver are grouped here.
Loops treating only the base mesh are vectorized automatically. Loops treating the hierarchical meshes need some
tricks to be vectorized. However schemes for those loops are not as elaborate as schemes for loops categorized into the
third group, that treat particles and mesh simultaneously in the same loop. Mass assignment and force interpolation
belong to this category. We call this group particle-mesh loops. In the rest of this section, we discuss the vectorization
schemes for each type of loops.

3.2. Particle loops

There is only one function which has a particle loop. That is the position step of the leap-frog time integration of
particles. Usually, this part is vectorized automatically by a compiler.

3.3. Mesh loops

Vectorization of loops for the base mesh is trivial. The mesh loops for the hierarchical meshes is more complicated
than that for the base mesh. This complexity is partly due to the data structure mentioned in §2. Another source
of complexity is the difference of the boundary condition. The boundary of the base mesh is periodic, while the
boundary of hierarchical meshes is arbitrarily shaped and non-periodic. There are two types of hierarchical meshes.
The first type is refined cells whose parent cells satisfy the refinement criteria, and the second type is buffer cells
which are placed to wrap the refined cells to provide boundary conditions for refined cells. Since refined cells are
always surrounded by other refined or buffer cells, all potential values assigned to the refined cells are updated at
each iteration of the red-black Gauss-Seidel iteration, for example. On the other hand, potential is updated only in a
fraction of buffer cells. Why is the potential updated in some buffer cells and not others? Because potential is defined
at cell-corners. Each refined cell octet has potential of only 8 points, while each cell octet has 27 cell-corners. If eight
neighboring cell octets of a refined cell octet are also refined cell octets, potential at remained 19 points are updated
by those cell octets. However, if there are neighboring buffer cell octets, it is not so simple. For clarity, consider a one
dimensional case and potential is defined at left boundary of cells. In this case, when the right neighboring cell of a
refined cell is also refined cell, there is no problem. However, if the right neighboring cell is a buffer cell, potential of
that buffer cell must be updated during the iteration of the Poisson solver. On the other hand, for a buffer cell whose
right neighboring cell is a refined cell, potential at that buffer cell need not be updated. Thus, potential at buffer
cells whose left neighboring cell is a refined cell must be updated, while potential at other buffer cells need not. Since
potential at some buffer cells are updated while potential at other buffer cells are not, we need flags to indicate which
buffer cells must be updated. These flags are stored as an integer at each cell as given in Table 3. Using these flags,
the code of the Poisson solver for the hierarchical meshes is written as in Appendix 1.1.
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Table 3. Meanings of the nine least significant bits of the index which is used by the Poisson solver for the hierarchical meshes (See
Appendix 1.1).

macro variable value meaning
UPDATE ALL 000000001 Refined cell. (All must be updated.)
UPDATE0 000000010 0th child must be updated.
UPDATE1 000000100 1st child must be updated.
UPDATE2 000001000 2nd child must be updated.
UPDATE3 000010000 3rd child must be updated.
UPDATE4 000100000 4th child must be updated.
UPDATE5 001000000 5th child must be updated.
UPDATE6 010000000 6th child must be updated.
UPDATE7 100000000 7th child must be updated.
UPDATE RED 011010010 Updated in the red iteration.
UPDATE BLACK 100101100 Updated in the black iteration.

Fig. 3. Schematic illustration of the depth-first order sweep and the breadth-first order sweep. Particles (circles) in the same
cell (rectangle) are connected by a linked list (downward arrows). Vertical solid zigzag arrow represents the access pattern of the
depth-first order sweep which is unvectorizable. Horizontal dashed zigzag arrow represents the access pattern of the breadth-first
order sweep which is vectorizable.

3.4. Particle-mesh loops

It is particle-mesh loops that is most difficult to vectorize among three types of loops described in the beginning
of this section. In the scalar code, particles in a same cell are accessed by rolling up the linked list (Fig. 3). The
code containing such loops are given in Appendix 1.2. These loops are not vectorizable, because neither the length
of the loops nor which particles are to be accessed are not known beforehand. This access pattern of particles is
called depth-first order and blocks vectorization frequently. For example, tree code had also confronted with this
difficulty. Hernquist (1990) and Makino (1990) overcame this problem by exchanging the depth-first order loops by
the breadth-first order ones. We followed this strategy. The code of the exchanged loops are shown in Appendix 1.3.
Most of particle-mesh loops are vectorized by this order exchange. The vectorization schemes of three main functions
which contain particle-mesh loops are discussed below.

3.4.1. Force interpolation

If each particle has an index of the cell including it, force interpolation is vectorizable even without the order
exchange, because only particle velocity is updated and it is not overlapped in the memory during a sweep. However,
if each particle does not have an index of the parent to save the memory usage, the loop order of force interpolation
must be exchanged to be vectorized.

3.4.2. Mass assignment

In plasma physics, the particle-in-cell (PIC) method is widely used and the PIC method includes charge assignment
which is almost identical to mass assignment in the PM method. There is a vectorization scheme for charge assignment
named the Abe-Nishihara method (Nishihara et al. 2000). In the Abe-Nishihara method, particles assign their charge
assuming that particles reside in different cells, and at the same time, for each cell, the number of particles which
assign their charge to the cell is counted. If the number of particles in cells is zero or one, the loop is not recursive.
However, if the number of particles in a cell exceeds one, recursive memory access has occurred. In that case, it is
necessary to correct the result and the charge is assigned by a scalar loop. If the loop length of charge assignment is
well short compared with the number of particles, this correction occurs scarcely.
However, we developed another vectorization scheme for mass assignment which does not have neither the scalar

parts, nor the correction part, using the data structure of particles and meshes. First, if the nearest grid point scheme
is adopted for mass assignment, it is vectorized by the order exchange, because mass of each particle is assigned to
only one cell, and the cells do not overlap during a sweep. However, the higher order assignment schemes, such as
the cloud-in-cell scheme or the triangular shaped cloud scheme, cannot be vectorized because those schemes update
more than one cells data per particle during a sweep of the loop. Such data accesses are prohibited for vectorization.
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Fig. 4. Schematic illustration of the loop splitting for vectorization of the mass assignment. Adopted the cloud-in-cell mass
assignment scheme, the loop is recursive, if black and white particles assign their mass simultaneously during breadth-first ordered
loops. This is because the density at a node could be updated more than once during a sweep. This recursion is avoidable if black
particles assign their mass (solid wavy arrow) after white particles have done (dashed wavy arrow).

Table 4. CPU time of functions including a particle-mesh loop

Part CPU time [s]
vectorized mass assignment (a) 0.48
particle sieve (b) . . . . . . . . . . . . . . 0.32
(a) + (b) . . . . . . . . . . . . . . . . . . . . . 0.80
scalar mass assignment . . . . . . . 29.04

However, this difficulty is removed by splitting the loop into 2Ndim loops, where Ndim is the number of dimension if
the cloud-in-cell scheme is adopted. Figure 4 shows a one dimensional case. White particles and black particles assign
their mass to cells in the breadth-first order, separately. Such loops are vectorizable, because density at a node is
updated once per sweep at most.
We classify particles into white and black as follows. First we classify cells into black and white. This is possible

because cells having the same parent cell are bundled together and those cells’ data are aligned closely. Thus we can
classify the first child cell is white and the second child cell is black. Then, particles which are linked from white cells
or black cells are classified as white particles or black particles, respectively.

3.4.3. Particle sieve
We introduced vectorization schemes for particle-mesh loops so far assuming particles in the same cell are linked

listed. However, we must construct the linked list consistently on our own. Particle sieve is the function to construct
the linked list. First, particle sieve is divided into two parts: stay particle sieve and leaked particle sieve. Stay particle
sieve checks whether particles remain in the same cell from the previous step, or leaked into the neighboring cells.
Those particles which remain are added to the linked list of the cell. This process is vectorizable if the consistent
linked list is prepared at the previous step. Although, the very first construction of the linked list is unvectorizable,
it is called only once in a run. Leaked particle sieve, which added the leaked particle to the neighboring cells, is
unvectorizable, either. However, time steps of simulation must be controlled so that the ratio of the number of leaked
particles kept small, and the CPU time for leaked particle sieve is negligible.

3.4.4. Effect of vectorization
How fast is the vectorized code compared with the the scalar code, especially the particle-mesh loop parts? For

example, as an extreme case, consider that nothing is done in a particle-mesh loop. In this case, because of the
overhead due to vectorization, the vectorized code is slower than the scalar code. On the other hand, when a lot
of work is done in a particle-mesh loop, the vectorized code is advantageous. In order to quantify the advantage of
the vectorized code, we measured the CPU time consumed by the vectorized mass assignment, particle sieve, and the
scalar mass assignment in the case that there is only a base mesh whose size is 2563 and 2563 particles are scattered
randomly and homogeneously. The main parts of the code are given in Appendix 2. The measured CPU times using
the VPP5000 are given in Table 4. Even including the particle sieve part, the vectorized mass assignment is 36.3 times
faster than the scalar mass assignment. Hence, it is beneficial to vectorize the particle-mesh loops using the loop order
exchange.

4. Parallelization

The fastest computers in the world adopted distributed memory architecture and have thousands of processors.
Thus, in order to carry out large scale simulations, simulation codes must be parallelized for distributed memory
machine. In this section, we describe parallelization scheme of our AMR N -body code. The scheme consists of data
decomposition and communication among processors. Our parallelized code described in this section uses Message
Passing Interface for a communication library to transfer data among processors.
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Fig. 5. Data decomposition of the base mesh. Here, Nproc is the number of processors, and Lproc = log2Nproc. The shape of
the decomposed region depends on the remainder of Lproc divided by Ndim. In the three dimensional case as the above, when the
remainders are zero, one and two, the decomposed regions are cubes, square slabs and square pillars, respectively.

4.1. Data decomposition

Data decomposition is the most important part of parallelization. We must divide data among processors so that
computational load is distributed equally, memory is used uniformly, and communication among processors is kept
minimum. Adequate data decomposition realizes these three conditions. We describe data decomposition of the three
types of data structure in this subsection.

4.1.1. Base mesh data
Data decomposition of the base mesh is trivial, because the number and position of cells are fixed and do not change

during a simulation. Let Lproc be the logarithm of the number of processors, Nproc, to the base 2, that is

Lproc = log2Nproc.

Our code assumes that Lproc is integer. Thus, number of processors is restricted to powers of two. The shape of
the decomposed region depends on the remainder of Lproc divided by Ndim. In the three dimensional case as shown
in Figure 5, when the remainders are zero, one and two, the decomposed regions are cubes, square slabs and square
pillars, respectively. Hence, decomposed regions could be elongated. The order of priority for the elongation is z-
direction, y-direction and x-direction, because we implemented our code in C whose right most indices are contiguous
on the memory. If Lproc is multiple of Ndim, the cubic base mesh whose level is LB is decomposed into Nproc cubic

base meshes which have 2Ndim×(LB−Lproc) cells.

4.1.2. Hierarchical mesh data

Among three types of data, the hierarchical meshes uses memory most in our code. and the most time consuming
part of our serial code is the AMR Poisson solver. For the N -body code, other functions including particle-mesh
loops also use a significant fraction of the CPU time. However, the ratio of the CPU time for the mesh loops to the
total increases if the hydrodynamics blocks are incorporated. Thus, data decomposition of the hierarchical meshes
is the most important part of the parallelization. Since the red-black Gauss-Seidel iteration, which is the kernel of
the AMR Poisson solver, is iterated for the hierarchical meshes of the same level, we should divide hierarchical mesh
data equally in each level. However, we have already sorted the hierarchical meshes in each level by the Morton order
(Yahagi & Yoshii 2001). Hence, we simply divide the arrays of hierarchical meshes by Nproc at each level (Fig. 6).
Warren & Salmon (1993) parallelize the Barnes-Hut tree code using the Morton order. Their code, named hashed
oct tree method, sorts particles in the Morton order and distributes them to processors. However, we apply the
Morton order not to particles but to the hierarchical meshes. Fryxell et al. (2000) also uses the Morton order for data
decomposition. Difference between our code and their code is that we sort and divide hierarchical mesh data level by
level, while Fryxell et al. (2000) sort and divide all hierarchical meshes at once.
Our decomposition scheme causes that parent and child cells can be on different processors. Hence, communication

occurs when accessing child data from parent cell, or vice versa. Details of such communication will be discussed in
§4.2.
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Fig. 6. Hierarchical mesh data are sorted in the Morton order (connected N-shaped arrow) at each level. Hierarchical meshes are
distributed by dividing the sorted data by the number of processor, in the above case, four. Numbers in the figure indicate the ID
of the host processor to which the cell octets allocated.

4.1.3. Particle data

Particles are attached to the finest refined cell including them. Particles belonging to the same cell are connected by
a linked list and the cell including those particles keeps an index of the first particle of the linked list. Hence it is natural
that the particles are assigned to the processor which also covers cells including them. This data decomposition does
not guarantee the balanced decomposition. However, if the numbers of cells which contain one particle, two particles,
three particles, etc., are the same among processors, the numbers of particles in processors are balanced. We will
return to the issue of particle data decomposition in §5.

4.1.4. Example of data decomposition

We performed a Λ-dominated cold dark matter (ΛCDM) simulation with 643 particles in the 70 h−1 Mpc cubic box
using four processors. The base level and the dynamic range level, or the deepest level, of the simulation are 6 and 12,
respectively. The initial condition is prepared by grafic2 code provided by Bertschinger (2001), but we modified the
code to adopt the fitting function of the transfer function given in Sugiyama (1995) which includes the baryon’s effect.
Figure 7 shows the distribution of the hierarchical meshes at z = 0 which are assigned to four processors. Each panel
corresponds to a processor. For clarity, particles are projected onto a plane, then hierarchical meshes are generated.
Note that some cell octets and their parent cell octets are assigned to different processors. Distribution of particles are
shown in Figure 8. Distribution of the particles allocated to a processor is similar to that of the hierarchical meshes
allocated to the same processor.

4.2. Inter-level communication

Since we distribute hierarchical meshes by sorting them at each level, some cell octets and their parent cells are
attached to the different processors. Therefore, processors must communicate with each other when data of the child
cell octets or parent cells are needed, for example, when the coarse-to-fine or the fine-to-coarse operators are called
from the AMR Poisson solver. We call such communication among processors inter-level communication. Figure 9
shows how inter-level communication is implemented in our code. When cells (lower rectangles) need data of child cell
octets (upper rectangles), child cell octets’ data are transfered to the communication buffer (rectangles in the middle)
at the processor to which parent cells are attached. Then parent cells read data from the communication buffer.
Parent cells’ data are transfered to their child cell octets the other way around. Since cells are sorted in accordance
with the Morton order, it is guaranteed that child cell octets in the same processor are contiguous on the buffer arrays.
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Fig. 7. Distribution of the hierarchical meshes among processors. Squares indicate cell octets and each panel shows distribution of
the cell octets allocated to the corresponding processor. For clarity, cells are placed after projection of particles onto a plane. Note
that some cell octets and their parent cell octets are assigned to different processors.

Fig. 8. Distribution of particles among processors. Each panel shows distribution of the particles allocated to the corresponding
processor. Distribution of particles is similar to that of the hierarchical meshes shown in Fig. 7.

Fig. 9. Schematic illustration of the inter-level communication. Cells (lower rectangles) collect data from their child cell octets (up-
per rectangles) through the communication buffer (rectangles in the middle). Solid arrows and dotted arrows represent inter-processor
communication and local load and store, respectively. Cell octets collect data from their parent cells the other way around.
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Fig. 10. Wall-clock time per step, Tn, using n processors. Circles, diamonds, and crosses represent the wall-clock time measured
during the 38 steps from the beginning of the simulation, using 1283, 2563, and 5123 particles, respectively. Squares, triangles, and
asterisks indicate the wall-clock time measured during the 40 steps to the end of the simulation, using 1283, 2563, and 5123 particles,
respectively. Thick line shows the line, Tn ∝ n. Slopes of the lines for the case that the number of particles is 5123, are close to this
Tn ∝ n line.

4.3. Intra-level communication

Since we simply divide the sorted hierarchical meshes, domain borders could lie across patches of meshes. Thus,
neighboring cells could be distributed to different processors after the domain decomposition. However, the Gauss-
Seidel iteration needs potential at six neighboring cells to update potential at a cell. Hence, we prepare supplementary
cell octets, or ghost cell octets, to store copies of the neighboring cell octets distributed to different processors. After
each iteration of the Gauss-Seidel iteration, data from the original cells are transfered to the ghost cells by the
intra-level communication.

5. Timing analysis

We performed three runs of ΛCDM simulation on a system of vector parallel processors VPP5000 installed at the
Astronomical Data Analysis Center, National Astronomical Observatory of Japan (ADAC/NAOJ) to measure the
speed of the parallel AMR N -body code. Each node of VPP5000 has only one CPU and nodes are connected via a
crossbar switch. Peak performance of each node of VPP5000 is 9.6 GFlops. Peak data transfer rate is 1.6 GB/s × 2
(send and receive). Since in our parallel code the number of processors is restricted to be power of two, the number
of processors of the largest queue is 32 in the ADAC/NAOJ system. Hence we measured the speed of our code using
from 2 processors to 32 processors. The numbers of particles of three runs are 1283, 2563, and 5123. We measured the
wall-clock time per step during 38 steps from the beginning of the simulation and 40 steps to the end of the simulation
(z = 0) for each run. Figure 10 shows the measured wall-clock times per step, Tn, using n processors. Thick line in
the figure shows the line, Tn ∝ n−1. Slopes of the lines for the case that the number of particles is 5123 (crosses and
asterisks), are close to this Tn ∝ n−1 line, showing that the speed-up in that case is close to the ideal speed-up.
On the other hand, parallel efficiency, pn, is widely used as an indicator of parallel codes, and defined as follows:

pn =
1

n

(

T1

Tn

)

,

where T1 and Tn are the wall-clock time using one processor and n processors, respectively. However, as our case,
there are cases that T1 is unmeasurable. In such cases, parallel efficiency is derived as follows assuming the Amdahl’s
law:

Tn = T1(1−α+α/n)

= T1(1− βnα),

where α is the parallel fraction, the fraction of time of the seral code which is parallelizable, and βn = 1− 1/n.
Measuring the wall-clock time using different number of processors, α is derived as follows:

Tn = T1(1− βnα)

Tm = T1(1− βmα)
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Fig. 11. Parallel efficiency where the number of processor is 32, p32, estimated by Eq. 2 where m=8. Circles and squares indicate
the p32 at the beginning of the simulation and the end of the simulation, respectively.
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Fig. 12. Parallel fraction estimated by Eq. 1 where n = 32 and m = 8. Circles and squares indicate the parallel fraction at the
beginning of the simulation and the end of the simulation, respectively.

α=
Tm−Tn

βnTm− βmTn

. (1)

Then, parallel efficency is:

pn =
1

n

(

1

1− βnα

)

=
1

n

(

βmTn − βnTm

βmTn − βnTn

)

. (2)

We estimated the parallel efficiency at n = 32, p32, in the case that m = 8. Figure 11 shows p32 of each run at
z = zstart (circles) and z = 0 (squares). Figure 12 shows the parallel fraction estimated by Eq. 1 where n=32 and
m=8. These two figures indicate that our parallel code is more efficient as the size of the simulation increases.
Next, we measured the wall-clock time of three groups of functions: Poisson solver, AMR construction, and mass

assignment and force interpolation. Figure 13 shows the measured wall-clock time of each group at z = zstart and
z = 0. Most groups indicate the expected speed-up. However, speed-up of the Poisson solver at z = zstart slows down.
Since the number of hierarchical meshes at z = zstart is much smaller than that at z =0, wall-clock time of the Poisson
solver for the base mesh is dominant. Thus, there might be room for further optimization of the the Poisson solver
for the base mesh.
As mentioned in §4.1.3, our data decomposition does not guarantee the balanced decomposition of particle data.

Figure 14 shows the numbers of cells which include one particle, two particles, three particles, and more than three
particles at the end of the ΛCDM simulation using 5123 particles. The numbers of cells including particles is balanced
among processors at the finest level, and the dispersion is large at the coarser levels. Figure 15 shows the number
of particles in each level among processors. Again, particles are equally distributed at the finest level, although cells
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Fig. 13. Wall-Clock time of three groups of functions, Poisson solver (circles and triangles), AMR construction including the
reconnection of the linked list of particles (squares and crosses), and mass assignment and force interpolation (diamonds and
asterisks). Symbols connected by dotted lines and solid lines are measured at z = zstart and z = 0, respectively. The number of
particles is 5123. Thick line indicates the line ∝ n−1 which shows ideal speed-up. At the end of the simulation, wall-clock times of
all three groups of functions shows expected speed-up. However, at the beginning of the simulation, speed-up of the Poisson solver
slows down.

at the finest level can contain arbitrarily large number of particles. Figure 16 shows the total number of particles
assigned to each processor. The processor which is assigned the largest number of particles has particles about 50%
more than the average number. However, mass assignment and force interpolation part of our code, which includes
the particle-mesh loops, scales almost ideally as the number of processors is increased as shown in Figure 13. This is
because more mesh loops, which assign cells’ mass to the parent cells, are included into mass assignment and force
interpolation part than particle-mesh loops, which assign particle mass to the cells including it and interpolate force
at cells toward particles.

6. Summary

We have vectorized and parallelized the shared time step version of our AMR N -body code. First, in order to
vectorize our code, we grouped loops into three types, mesh loops, particle loops, and particle-mesh loops. It is easy to
vectorize mesh loops and particle loops. However, vectorization of particle-mesh loops is not so simple. Particle-mesh
loops contain a hash data structure: an array of hierarchical meshes and linked lists of particles beginning from the
array. The simplest way to treat a particle-mesh loop containing such a hash data structure is the depth-first order
loop, but such loop is unvectorizable. We vectorized particle-mesh loops by changing the loop order to the breadth-first
order.
We also parallelized our code for distributed memory machines. First, we decomposed data among processors. Data

decomposition of the base mesh is trivial. The hierarchical meshes are sorted by the Morton order level by level,
then split and distributed among processors. Data of particles are allocated to processors to which the data of cells
including them cells are assigned. Since the hierarchical meshes are sorted level by level, some cell octets and their
parent cells could be assigned to different processors. Thus we also implemented the inter-level communication to
collect the data from child cell octet allocated to different processors and vice versa.
Finally, we measured the parallel efficiency of our parallel AMR N -body code for three runs of ΛCDM simulation.

The parallel efficiency increases as the number of particle of simulation increases. The highest value of the parallel
efficiency and the parallel fraction in the case that the number of processors is 32, are 82.6 % and 99.3 %, respectively,
and they are measured in the 5123 particles simulation at z = 0.
With this parallel AMR N -body code we carried out large scale simulations as in Yahagi et al. (2004), and we are

going to investigate the nature of dark halos of galaxies and clusters of galaxies.

I would like to thank my thesis advisor Y. Yoshii for lasting encouragement and valuable suggestions. I am also
grateful to J. Makino for helpful comments which helped to improve this paper a lot, and to an anonymous referee
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Fig. 14. The numbers of cells which contain one particle (squares), two particles (diamonds), three particles (triangles), and more
than three particles (pluses) in each processor at the end of the ΛCDM simulation. The number of particles is 5123. Each panel
shows the number of cells in (a) the base level (L= 9), (b) 12th level, and (c) the finest level (L= 15).
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Fig. 15. The number of particles assigned to each processor at the end of the ΛCDM simulation. The number of particles in the
simulation is 5123. Circles, squares, diamonds, triangles, pluses, crosses, and asterisks indicate the number of particles at levels from
9 (the base level) to 15 (the finest level), respectively. At the finest level, particles are distributed in balance, while the dispersion
of the number of particles is large at the coarser levels.
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Fig. 16. Total number of particles assigned to each processor at the end of the ΛCDM simulation. The number of particles in the
simulation is 5123. The number of particles in each processor should be 4,194,304, if perfectly balanced.

for valuable comments. Simulations described in this paper were carried out using Fujitsu-made vector-parallel pro-
cessors VPP5000 installed at the Astronomical Data Analysis Center, National Astronomical Observatory of Japan
(ADAC/NAOJ), under the ADAC/NAOJ large-scale simulation projects (group-ID: yhy35b, rhy15b). I also acknowl-
edge the support from the Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Appendix 1. Code

A.1.1. Poisson solver for the hierarchical mesh

As an example of a mesh loop and in order to show how the flags in Table 3 are used, we show the Poisson solver
for the hierarchical meshes here.

{

int ico, jco, ic, i0, i1, i2, i3, i4, i5;
int number_of_refined, number_of_red, number_of_black;

int *refined_celloct, *red_celloct, *black_celloct;
double rho0;
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[...]

number_of_refined=0;

for (ico=head_celloct; ico<tail_celloct; ico++)
if (celloct[ico].flag & UPDATE_ALL)

refined_celloct[number_of_refined++] = ico;
number_of_red=0;

for (ico=head_celloct; ico<tail_celloct; ico++)
if (celloct[ico].flag & UPDATE_RED)

red_celloct[number_of_red++] = ico;
number_of_black=0;

for (ico=head_celloct; ico<tail_celloct; ico++)
if (celloct[ico].flag & UPDATE_BLACK)

black_celloct[number_of_black++] = ico;

/* Red sweep */
/* Refined cells */

for (jco=0; jco<number_of_refined; jco++){
ico= refined_celloct[jco];
ic = ico * 8;

i0 = celloct[ico].neighbor_x_minus * 8;
i1 = celloct[ico].neighbor_x_plus * 8;

i2 = celloct[ico].neighbor_y_minus * 8;
i3 = celloct[ico].neighbor_y_plus * 8;

i4 = celloct[ico].neighbor_z_minus * 8;
i5 = celloct[ico].neighbor_z_plus * 8;

cell[ic ].pot = (cell[i0+4].pot + cell[ic+4].pot +

cell[i2+2].pot + cell[ic+2].pot +
cell[i4+1].pot + cell[ic+1].pot -

cell[ic ].rho * rho0) / 6.0;
cell[ic+3].pot = (cell[i0+7].pot + cell[ic+7].pot +

cell[ic+1].pot + cell[i3+1].pot +
cell[ic+2].pot + cell[i5+2].pot -

cell[ic+3].rho * rho0) / 6.0;
cell[ic+5].pot = (cell[ic+1].pot + cell[i1+1].pot +

cell[i2+7].pot + cell[ic+7].pot +
cell[ic+4].pot + cell[i5+4].pot -
cell[ic+5].rho * rho0) / 6.0;

cell[ic+6].pot = (cell[ic+2].pot + cell[i1+2].pot +
cell[ic+4].pot + cell[i3+4].pot +

cell[i4+7].pot + cell[ic+7].pot -
cell[ic+6].rho * rho0) / 6.0;

}

/* Buffer cells */
for (jco=0; jco<number_of_red; jco++){

ico = red_celloct[jco];
ic = ico * 8;

[...]
if (celloct[ico].flag & UPDATE0){

cell[ic ].pot = [...];
}

if (celloct[ico].flag & UPDATE3){
cell[ic+3].pot = [...];

}
if (celloct[ico].flag & UPDATE5){

cell[ic+5].pot = [...];
}
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if (celloct[ico].flag & UPDATE6){

cell[ic+6].pot = [...];

}
}

/* Black sweep */

[...]
}

A.1.2. Scalar particle-mesh loop

{

int ip, ico;
[...]

for (ico=head_celloct; ico<tail_celloct; ico++){

for (ip=celloct[ico].head; ip != NULL_PARTICLE; ip=particle[ip].next){
/* Some operations */

}
}

}

A.1.3. Vectorized particle-mesh loop

{
int mp, np, jp, ico;

int *list_of_particle;
[...]

np = 0;

for (ico=head_celloct; ico<tail_celloct; ico++){
if (celloct[ico].head != NULL_PARTICLE)

list_of_particle[np++] = celloct[ico].head;
}

while (np>0){
for (jp=0; jp<np; jp++){

/* Some operations */
}
for (jp=0; jp<np; jp++)

list_of_particle[jp] = particle[list_of_particle[jp]].next;
mp = np;

np = 0;
for (jp=0; jp<mp; jp++){

if (list_of_particle[jp] != NULL_PARTICLE){
list_of_particle[np++] = list_of_particle[jp];

}
}

}
}

Appendix 2. Code of the scalar mass assignment and the vectorized mass assignment

A.2.1. Include file

#define N_DIM 3

#define BASE_LEV 8
#define BASE_N (1 << BASE_LEV)

#define NBASE (1 << (BASE_LEV * N_DIM))
#define FBASE_N (BASE_N + 2)
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#define NFBASE (FBASE_N * FBASE_N * FBASE_N)

#define BZIND 1
#define BYIND FBASE_N

#define BXIND (FBASE_N * FBASE_N)

#define NPTCL NBASE
#define NULL_PTCL (-1)

#define MALLOC(x, y, z) \

{\
x=(y *) malloc (sizeof(y) * (z));\

if (!x)\
fprintf(stderr, "malloc failure (%s) in %s: line %d\n",\

#x, __FILE__, __LINE__);\
}

A.2.2. Scalar mass assignment code

double rhobm[NFBASE];

double ppos[NPTCL*N_DIM];

void scalar_assign (double *cpusa)
{

int im, ip, ix, iy, iz, *prnt;
double ct0, dx, dy, dz, lmdx, lmdy, lmdz;

double *tpos;

ct0 = scnd();
MALLOC(prnt, int, NPTCL);
MALLOC(tpos, double, NPTCL * N_DIM);

for (ip=0; ip<NPTCL; ip++){

ix = (int) ppos[ip*N_DIM ];
iy = (int) ppos[ip*N_DIM+1];

iz = (int) ppos[ip*N_DIM+2];
prnt[ip] = ix * BXIND + iy * BYIND + iz;

}

#pragma loop novrec
for (ip=0; ip<NPTCL*N_DIM; ip++)

tpos[ip] = ppos[ip] - (double)((int) ppos[ip]);

for (im=0; im<NFBASE; im++) rhobm[im] = 0.0;
for (ip=0; ip<NPTCL; ip++){

im = prnt[ip];
dx = tpos[ip*N_DIM ]; lmdx = 1.0-dx;

dy = tpos[ip*N_DIM+1]; lmdy = 1.0-dy;
dz = tpos[ip*N_DIM+2]; lmdz = 1.0-dz;

rhobm[im ] += lmdx * lmdy * lmdz;
rhobm[im +BZIND] += lmdx * lmdy * dz;
rhobm[im +BYIND ] += lmdx * dy * lmdz;

rhobm[im +BYIND+BZIND] += lmdx * dy * dz;
rhobm[im+BXIND ] += dx * lmdy * lmdz;

rhobm[im+BXIND +BZIND] += dx * lmdy * dz;
rhobm[im+BXIND+BYIND ] += dx * dy * lmdz;

rhobm[im+BXIND+BYIND+BZIND] += dx * dy * dz;
}

free(prnt);
free(tpos);
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*cpusa += scnd() - ct0;

}

A.2.3. Vectorized mass assignment code

int hpbm[NFBASE];

int pnxt[NPTCL];

void vector_assign (double *cpuva)
{

int ip, im0, im, jm, nm, mm, ix, iy, iz, ich;

int im0l[] = {0, BZIND, BYIND, BYIND+BZIND,
BXIND, BXIND+BZIND, BXIND+BYIND, BXIND+BYIND+BZIND};

int *lbm, *lpt;
double ct0, dx, dy, dz, lmdx, lmdy, lmdz;

double *tpos;
#pragma procedure novrec

ct0 = scnd();

MALLOC(lbm, int, NBASE);
MALLOC(lpt, int, NBASE);

MALLOC(tpos, double, NPTCL * N_DIM);

for (ip=0; ip<NPTCL*N_DIM; ip++)
tpos[ip] = ppos[ip] - (double)((int) ppos[ip]);

for (ich=0; ich<(1<<N_DIM); ich++){
im0 = BXIND + BYIND + BZIND + im0l[ich];

nm=0;
for (ix=0; ix<(BASE_N/2); ix++){
for (iy=0; iy<(BASE_N/2); iy++){ im = im0 + ix * BXIND + iy * BYIND;

for (iz=0; iz<(BASE_N/2); iz++, im++){
if (hpbm[im] != NULL_PTCL) {

lbm[nm] = im;
lpt[nm] = hpbm[im];

nm++;
}

}}}
while (nm){

for (jm=0; jm<nm; jm++){
im = lbm[jm];

ip = lpt[jm];
dx = tpos[ip*N_DIM ]; lmdx = 1.0-dx;

dy = tpos[ip*N_DIM+1]; lmdy = 1.0-dy;
dz = tpos[ip*N_DIM+2]; lmdz = 1.0-dz;

rhobm[im ] += lmdx * lmdy * lmdz;
rhobm[im +BZIND] += lmdx * lmdy * dz;

rhobm[im +BYIND ] += lmdx * dy * lmdz;
rhobm[im +BYIND+BZIND] += lmdx * dy * dz;

rhobm[im+BXIND ] += dx * lmdy * lmdz;
rhobm[im+BXIND +BZIND] += dx * lmdy * dz;
rhobm[im+BXIND+BYIND ] += dx * dy * lmdz;

rhobm[im+BXIND+BYIND+BZIND] += dx * dy * dz;
}

for (jm=0; jm<nm; jm++) lpt[jm] = pnxt[lpt[jm]];
mm=nm; nm=0;

for (jm=0; jm<mm; jm++)
if (lpt[jm] != NULL_PTCL){

lbm[nm] = lbm[jm];
lpt[nm] = lpt[jm];
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nm++;

}
}

}

free(lbm);
free(lpt);

free(tpos);
*cpuva += scnd() - ct0;

}

A.2.4. Particle sieve code

void particle_sieve (double *cpus)
{

int im, jm, nm, mm, ip, ix, iy, iz, ilk, nlk;
int *lbm, *lpt, *prnt, *tnxt, *llk;

double ct0;

#pragma procedure novrec
ct0 = scnd();

MALLOC(lbm, int, NBASE);
MALLOC(lpt, int, NBASE);

MALLOC(prnt,int, NPTCL);
MALLOC(tnxt,int, NPTCL);

MALLOC(llk, int, NPTCL);

for (ip=0; ip<NPTCL; ip++){
ix = (int) ppos[ip*N_DIM ];

iy = (int) ppos[ip*N_DIM+1];
iz = (int) ppos[ip*N_DIM+2];

prnt[ip] = ix * BXIND + iy * BYIND + iz;
}

nm=0;
for (im=0; im<NFBASE; im++)

if (hpbm[im] != NULL_PTCL){
lbm[nm] = im;

lpt[nm] = hpbm[im];
nm++;

}
for (im=0; im<NFBASE; im++) hpbm[im] = NULL_PTCL;

nlk=0;

while (nm){
for (jm=0; jm<nm; jm++) tnxt[jm] = pnxt[lpt[jm]];

for (jm=0; jm<nm; jm++){
im = lbm[jm];

ip = lpt[jm];
if (prnt[ip] == im){

pnxt[ip] = hpbm[im];

hpbm[im] = ip;
}

}
for (jm=0; jm<nm; jm++)

if (prnt[lpt[jm]] != lbm[jm]) llk[nlk++] = lpt[jm];
mm=nm; nm=0;

for (jm=0; jm<mm; jm++)
if (tnxt[jm] != NULL_PTCL){
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lbm[nm] = lbm [jm];

lpt[nm] = tnxt[jm];
nm++;

}
}

#pragma loop scalar

for (ilk=0; ilk<nlk; ilk++){
ip = llk[ilk];

im = prnt[ip];
pnxt[ip] = hpbm[im];

hpbm[im] = ip;
}

free(lbm);

free(lpt);
free(prnt);

free(tnxt);
free(llk);
*cpus += scnd() - ct0;

}
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