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ABSTRACT
In this paper we demonstrate how pulsating white dwarfs can be used as an astrophysical laboratory for

empirically constraining convection in these stars. We do this using a technique for fitting observed non-
sinusoidal light curves, which allows us to recover the thermal response timescale of the convection zone
(its “depth”) as well as how this timescale changes as a function of effective temperature. We also obtain
constraints on mode identifications for the pulsation modes, allowing us to use asteroseismology to study the
interior structure of these stars. Aspects of this approachmay have relevance for other classes of pulsators,
including the Cepheids and RR Lyrae stars.
Subject headings: convection—stars: oscillations—white dwarfs—dense matter

1. ASTROPHYSICAL CONTEXT

The physics of convection represents one of the largest
sources of uncertainty in modeling stars. In main sequence
objects, convection is believed to occur in the cores of stars
more massive than the Sun (e.g., Woo & Demarque 2001)
as well as in the envelopes of stars having masses less than
about 2.0M⊙. Red Giant stars should have fully convec-
tive envelopes (e.g., Salaris, Cassisi, & Weiss 2002), making
convection common throughout the H-R diagram. Along the
white dwarf cooling track we expect white dwarfs with helium
spectra (DBs) and temperatures less than∼35,000 K to have
surface convection zones, while those with hydrogen spectra
(DAs) and temperatures less than∼ 15,000 K should also
have convective surface layers.

The fact that there are major uncertainties in our ability to
model the physics of convection has significant astrophysical
consequences. For instance, whether or not convective over-
shoot occurs in the cores of massive stars affects the amount
of material which is available for nuclear burning, leading
to an uncertainty of∼ 20% in stellar ages (Di Mauro et al.
2003; Bitzaraki et al. 2001). For pulsating white dwarfs, un-
certainty regarding convection in their atmospheres is the
largest single source of error in their derived effective temper-
atures (e.g., Bergeron et al. 1995). This is significant since
we use what we learn about the interior structure of the pul-
sators to calibrate white dwarf cooling sequences, which in
turn can be used to determine the ages of individual white
dwarfs (Ruiz & Bergeron 2001) or the age of the Galactic disc
(Wood & Oswalt 1998; Wood 1992; Winget et al. 1987).

The very low-amplitude oscillations which have been ob-
served in the Sun and recently in other Solar-like stars (e.g.,
Bedding & Kjeldsen 2003) have traditionally been explained
through stochastic driving due to the outer convection zones
found in these stars (e.g., Kumar, Franklin, & Goldreich
1988; Houdek et al. 1999). However, one of the first results
from the Canadian space mission MOST (Microvariability
and Oscillations of STars) has been that the oscillations ex-
pected in the star Procyon are not present, at least not at de-
tectable levels (Matthews et al. 2004), implying that our un-
derstanding of convection in stars even slightly more massive
than the Sun may still be incomplete.
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In the sections which follow we describe a new tech-
nique for fitting observed non-sinusoidal light curves in white
dwarfs. With this technique we can recover the thermal re-
sponse timescale of the convection zone (or its depth) and how
this timescale changes as a function of effective temperature.
We also obtain mode identifications for the pulsation modes,
which helps us to use asteroseismology to study the interior
structure of these stars.

Our approach for deriving information on the depth of the
convection zone and its temperature sensitivity is based onthe
seminal numerical work of Brickhill (1992) and on the com-
plementary analytical treatment of Goldreich & Wu (1999)
and Wu (2001). Essentially, we take a hybrid of these two
approaches, and it is this model which we describe below.

2. THE MODEL

2.1. Assumptions

The fundamental assumptions of our hybrid model are that:

1. The flux perturbations beneath the convection zone are
sinusoidal in time and have the angular dependence of
a spherical harmonic.

2. The convection zone is so thin that we may locally ig-
nore the angular variation of the nonradial pulsations,
i.e., we treat the pulsations locally as if they were ra-
dial.

3. The convective turnover timescale is so short compared
to the pulsation periods that the convection zone can be
taken to respond “instantaneously”.

4. Due to the extreme sensitivity of the convection zone to
changes in temperature, we consider only flux and tem-
perature variations, i.e., the large-scale fluid motions
associated with the pulsations are ignored.

The third assumption is given weight by appeal to standard
convection models of these stars, which indicate that the time
taken for a convective fluid element to circulate from top to
bottom of the convection zone should be less than a second.
Since the pulsation periods of these stars are much longer than
this, i.e., hundreds of seconds, this appears to be a safe as-
sumption. While plausibility arguments for the other assump-
tions may similarly be made, it is perhaps better to see how
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well they allow us to model the observed light curves before
deciding on their viability (“the proof is in the pudding”).

2.2. Energetics

We assume energy conservation in that the flux emitted at
the photosphere,Fphot, is equal to the flux incident at the base
of the convection zone,Fbase, minus the energy per unit time
which is absorbed by the convection zone,dQ̃/dt, i.e.,

Fphot = Fbase−
dQ̃
dt

. (1)

Physically, this can be thought of as the convection zone hav-
ing a specific heat; it must absorb some amount of energy for
its photospheric temperature to be raised by a given amount.

Due to the assumption that the convection zone is instanta-
neously in quasi-static equilibrium, we can compute the term
dQ̃/dt purely in terms of static envelope models having dif-
ferent values ofTeff (see Wu 2001, eq. 4). This energy ab-
sorption rate depends only on the photospheric flux (orTeff),
leading to the following equation:

Fphot = Fbase+ τC
dFphot

dt
, (2)

where the new timescaleτC ≡ τC (Fphot) describes the changing
heat capacity of the convection zone as a function of the local
photospheric flux. Thus, we have reduced the problem to a
first-order, ordinary differential equation in time1. Since the
perturbations at the base of the convection zone are assumed
to be linear,Fbaseis taken to have the usual time and angular
dependence of a nonradial oscillation mode, i.e.,

Fbase= Re[Aei(ωt+δ)Yℓm(θ,φ)], (3)

so equation 2 must be solved on a grid of points across the vis-
ible surface of the star having different values ofθ andφ, and
the resulting fluxes need to be added together to calculate the
observed light curve (note:A andδ in equation 3 are the am-
plitude and phase associated with the pulsation mode, respec-
tively). Fortunately, because of the simplifications we have
introduced, this problem is still computationally tractable.

In Figure 1, we show a theoretical calculation of how this
timescaleτC is expected to vary as a function ofTeff. For a
given value ofα (the mixing length to pressure scale height
ratio), we see thatτC changes by approximately a factor of
1000 as the temperature goes from 12000 K (the observed
onset of pulsations in DAVs) to 11000 K (the observed disap-
pearance of pulsations in DAVs). If we parameterize this as a
power law inTeff, i.e.,

τC ≈ τ0T −N
eff , (4)

we find thatN ≈ 90–95 andτ0 is a function ofα, demon-
strating avery strong temperature dependence (the curves in
Fig. 1 were computed using the standard mixing length theory
of Böhm & Cassinelli 1971). We note that although the value
of τ0 is affected by the version of mixing length theory em-
ployed and the choice ofα, e.g., Böhm-Vitense (1958) versus
Böhm & Cassinelli (1971), the value ofN inferred from these
standard models is relatively constant, having values in the
range 90–95 in the DAV instability strip; for the DBVs, we
find N ≈ 20–23. The simplified convection model used by

1 In the previous approaches of Ising & Koester (2001) and Brickhill
(1992), one must essentially solve a second-order partial differential equa-
tion in timeand space, which is computationally much more intensive.

FIG. 1.— Theoretical calculations of the thermal response timescale of the
convection zone,τC , as a function ofTeff. The local mixing-length theory of
Böhm & Cassinelli (1971) has been used (ML2), for the given values ofα.

Wu (1997), while still quite temperature sensitive, has a value
of N ≈ 55 for DAV models. As we will see, the observations
can be used to constrain the value ofN. For comparison with
previous work by Wu, we note that in terms of her variables
thatN ≈ 2β +γ.

Since a typical pulsator may have excursions in temperature
of several hundreds of degrees, we expectτC to vary greatly
during the pulsations, leading to nonlinear light curves. In-
deed, nonlinearities beyond second order can become impor-
tant, making it possible to constrain not onlyτ0 but also the
other parameters of the fit, such asN, the inclination angleθi ,
as well as theℓ andm values of the pulsation mode.

Since the fluxes in equations (1)–(3) refer to the total en-
ergy being gained and lost by the convection zone, they repre-
sent bolometric fluxes. By using sequences of static, numer-
ically computed envelopes to connect conditions at the base
of the convection zone with those at the photosphere, we im-
plicitly have taken into account theT 4 nonlinearities associ-
ated with variations in the photospheric temperature. How-
ever, since the observations that are typically made are in afi-
nite wavelength range which is well-separated from the peak
wavelength flux, we must apply a correction factor for the
computed fluxes when comparing with the observations.

For data taken with phototubes, we assume that the observa-
tions are taken in a narrow bandpass centered on 4300 Å, and
for CCD data taken with the ARGOS photometer we assume
a central wavelength of 5000 Å (Nather & Mukadam 2004).
The simplified model for the correction factor which we em-
ploy here assumes a blackbody distribution for the radiative
flux, which we then linearize about the effective temperature;
we apply this correction individually to each element of sur-
face area at each time step. In practice, this bolometric correc-
tion leads to a reduction in the observed pulsation amplitudes
of ∼ 1.5 for the DAVs and∼ 2.4 for the DBVs. Finally, we
note that we have used the same simplified limb-darkening
law as Wu for both the DAVs and DBVs, namely the Edding-
ton limb-darkening law:

h(µ) = 1+
3
2
µ, (5)

whereµ is the cosine of the angle between a surface normal
vector and the line-of-sight.

3. LIGHTCURVE FITTING

In this section we examine how the hybrid model repre-
sented by equations (2)–(4) compares with the model of Wu
(1997, 2001), both for synthetic data and for actual observa-
tions of stars.
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(a) Hybrid Model (b) Wu Model

FIG. 2.— Test fits of synthetic light curves having no angular dependence. In the lower panel of (a) we show the synthetic data (crosses) and our fit (solid
curve), and in the upper panel we show the thermal response timescale used to generate the synthetic light curve (solid curve) compared with that which we derive
from our fit (dashed curve). The vertical dotted lines indicate the maximum and minimum temperature excursions which thephotosphere undergoes during a
pulsation cycle. (b) The same as (a) but using Wu’s second-order expression for the light curve fits.

Wu’s model uses the harmonics and combination frequen-
cies that arise from the second-order solution of equations
(2)–(4). For a single mode with harmonics, Wu’s model con-
strainsτ0, but the quantitiesN, θi , and the amplitude are de-
generate with respect to each other. This is a result of using
only the lowest-order nonlinear terms.

Our approach is to numerically solve equations (2)–(4), so
we implicitly include the contributions of all the nonlinear
terms, including those of higher order. Thus, by using more of
the information present in the light curves we hope to remove
the degeneracies in the fits.

The technique developed by Wu was designed to be used
for the amplitudes and phases as derived from a Fourier trans-
form of the data. For consistency, we prefer to make compar-
isons directly with the light curves, so we use her formulae to
generate trial light curves which are then fitted to the data.

3.1. Tests omitting angular structure

In this section we omit the angular structure and study fits
to the emergent flux from a fixed surface element using syn-
thetic data; this is formally equivalent to examining pulsations
havingℓ = 0 = m. In addition to the convective parametersτ0
andN, we fit the amplitudeA and phaseδ in equation 3; the
frequency is assumed known from the observations. Since
there is no ambiguity associated with the choice of an inclina-
tion angle, we expect that the method of Wu, along with our
method, will lead to non-degenerate best fit solutions.

In Fig. 2 we show fits to synthetic (test) light curves using
(a) our hybrid models and (b) Wu’s second-order expression.
To compute the synthetic light curve in this test we have as-
sumed that the thermal response timescale of the convection
zone,τC, is given by local MLT models such as the curves
shown in Fig. 1. Thus, the only difference between the in-
put model and our fits is that our fits assume the simplified
form for τC given by equation 4. The adequacy of this as-
sumption can be seen in Fig. 2a which shows that not only
is the light curve reproduced well (lower panel) but also that

TABLE 1
SUMMARY OF TEST FITS WITHOUT NOISE

model θi (deg) τ0 (sec) N Amp ℓ m MSDa

input model — 123.8 93.1 0.100 0 0 —
hybrid model — 122.5 94.9 0.100 0 0 0.014
Wu model — 109.0 89.7 0.088 0 0 8.272

input model 56.0 123.8 93.1 0.070 1 0 —
hybrid model 54.5 122.3 99.5 0.067 1 0 0.001
hybrid model 0.0 118.4 71.4 0.067 2 0 0.021
Wu model — 111.2 — — — — 1.343
hybrid model 83.1 162.0 359.4 0.094 1 1 0.369
aMSD≡

1
N

∑N
i=1 [Iobs(i) − Icalc(i)]2

the match between the inputτC and that derived from the fit
is quite good (upper panel). In Fig. 2b, we show the same
comparisons using Wu’s second-order expressions for the flux
perturbations. In the lower panel we see that this provides a
reasonable qualitative fit to the synthetic light curve, although
the marked discrepancies between light curve and the fit arise
from neglecting the higher order terms. In the upper panel we
see that the slope of the derivedτC is fairly close to that of the
input model.

The parameters associated with these fits are presented in
the upper part of Table 1. The goodness of fit is measured by
the mean-squared deviation (MSD), defined by

MSD≡

1
N

N∑

i=1

[Iobs(i) − Icalc(i)]2, (6)

whereIobs andIcalc are the observed and theoretically calcu-
lated light curves which have been normalized to an average
value of 1, respectively, andN is the number of data points.
We see that the fit using the hybrid model is able to recover
the parameters of the input model quite well. Although the
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l=2, m=0

l=1, m=0

FIG. 3.— Upper panel: The best fit residuals as a function ofθi . Lower
panel: Contours of constant fit residuals showing the relationship between
the intrinsic amplitude of the mode andθi . The minimum on the right corre-
sponds to theℓ = 1, m = 0 solution, and the minimum on the left corresponds
to theℓ = 2, m = 0 solution. The cross indicates the parameters of the input
model.

Wu model fit hasmuch higher residuals, it too reproduces the
parameters of the input model fairly well.

3.2. Tests including angular structure

We now repeat the tests of the previous section, this time
incorporating the expected angular structure of the pulsation
modes into the calculation. In addition to the quantum num-
bersℓ andm which now must be taken into account, the light
curve shape also becomes a function of the inclination angle,
θi . For the fits, we have initially variedθi in 1◦ increments,
and in the neighborhood of the minimum we have decreased
the increments to 0.1◦.

In addition, we must discretize the surface of the stel-
lar model and sum over all elements to calculate the light
curve. In order to minimize the number of computations
for a given accuracy, we discretize the surface of the model
so that the surface area of each element projected along the
line-of-sight is the same. Thus, elements near the edge of
the disc contribute with the same weight (except for limb-
darkening). Each of the elements is wedge-shaped and they
are arranged radially on annuli centered on the the visible disc
of the model. The input models were calculated using 1024
surface elements arranged on 16 annuli, and the subsequent
fits to these models and fits elsewhere in this paper have used
256 elements arranged on 8 annuli.

In Wu’s second-order theory, a degeneracy exists among the
parameters such that it is not possible to disentangleθi from
the intrinsic mode amplitude or from the thermal timescale
parameterN, i.e., equally good fits are possible for any value
of θi . Our hope is that the inclusion of the higher-order non-
linear effects in our hybrid model will lift this degeneracyand
allow unique fits to be made.

In the lower part of Table 1 we show the results of different
fits to a sample light curve havingℓ = 1,m = 0, andθi = 56.0◦

FIG. 4.— The same plot as Fig. 2 but for the best fit solution of Figure 3.

(these values are similar to those derived in Section 3.4.2 for
PG1351+049). Based on the residuals, the hybrid model with
ℓ= 1,m = 1 can be ruled out, as can be the Wu model, although
it again provides a reasonable estimate ofτ0. The remaining
hybrid models both have very low residuals, making a choice
between the two difficult.

In Figure 3 we examine the uniqueness of the mode iden-
tifications as well as possible degeneracies in the fit parame-
ters. In the upper panel the residuals of the two best fits are
plotted as a function ofθi , and in the lower panel contours
of constant residuals of these fits are shown as a function of
θi and mode amplitude. We see that while there is a partial
degeneracy betweenθi and the amplitudeA, the presence of
the higher-order nonlinearities does indeed lift this degener-
acy and allow a unique solution to be obtained. This best-fit
solution is shown in Figure 4.

Although no noise has been added to the synthetic light
curve, the derived value ofθi , 54.5◦, does differ slightly from
the input value of 56.0◦. This is because for finite amplitude
pulsations the parameterization in equation (4) forτC does not
exactly reproduce the variations inτC of the input model.

From the above fits, we see that a mode withℓ = 1, m = 0,
andθi = 56◦ can be mimicked by a mode withℓ = 2,m = 0, and
θi= 0◦; indeed, even the amplitudes which are derived in these
two cases are nearly identical. While more work is needed to
address the cause of this similarity, we find from exploratory
calculations that the degeneracy between these mode pairs ex-
ists only whenθi > 45◦ for theℓ = 1 mode.

3.3. Tests including noise

In this section we examine the effect of Gaussian noise
on our light curve fits. In Figure 5 we show an example of
such a fit, where the level of the noise has been chosen to be
somewhat higher than the data which will be analyzed in sec-
tion 3.4. In Table 2 we show the results of many different fits
to the given input model for solutions having differentℓ and
m values. The parameter values and their error bars listed in
the table were obtained by computing the average and stan-
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TABLE 2
SUMMARY OF TEST FITS INCLUDING NOISE

model θi (deg) τ0 (sec) N Amp ℓ m MSD

input model 56.0 123.8 93.1 0.070 1 0 —
hybrid model 51.5± 5.2 127.1± 9.0 -108.6± 16.9 0.066± 0.009 1 0 0.459± 0.056
hybrid model 0.3± 0.5 118.5± 6.5 -69.8± 2.4 0.067± 0.002 2 0 0.437± 0.081
hybrid model 84.0± 1.3 212.6± 51.4 -355.1± 10.1 0.111± 0.019 1 1 1.711± 0.168
hybrid model 85.1± 1.4 104.2± 11.5 -3.0± 1.8 0.620± 0.148 2 1 1.779± 0.153
hybrid model 0–90 100–110 0 0.16–0.40 2 2 10–11

FIG. 5.— The same plot as Fig. 4 but for Gaussian noise added to the
synthetic light curve.

dard deviation of fit values for 10 different realizations ofthe
noise. In the case of theℓ = 2, m = 2 fit, the fits are so poor
that there is no single “best fit”; for this case, we have simply
indicated the allowed ranges for the parameters.

Unsurprisingly, the two fits having the lowest residuals are
the same ones as in the noise free case, and the difference
in their residuals is not statistically significant. Thus, choos-
ing between them on the basis of their residuals alone is not
possible, and we are indeed faced with the problem of non-
uniqueness. As in the noise free case, however, these fits still
provide a good estimate ofτ0 and the amplitude, and theℓ = 2
solution gives a decent estimate ofN.

Examining the results of this and the previous sections, we
see that the hybrid model is able to accurately derive many of
the parameters of the input model, both for the case with and
without noise. Indeed, the model of Wu can also provide rea-
sonably good estimates ofτ0, although not of the other param-
eters due to the degeneracy betweenθi , N, and the amplitude.
While fits to actual data will of course be more difficult, these
results give us hope that we will be able to derive meaningful
constraints on the parameters through such a fitting procedure.

3.4. Fits to observations

Since we are using a new technique, we wish to start with
the best possible candidates, i.e., those for which the applica-
tion of the method is the most straightforward. For the present

application, we therefore restrict ourselves to stars which (1)
aremono-periodic, having one oscillation mode which dom-
inates their light curves, (2) havelarge-amplitudes, so that
their light curves contain clear nonlinearities, and (3) have
high signal-to-noise data, so that the errors are as small as
possible. In future work we will examine the degree to which
these criteria can be relaxed, while the focus of our present
work is to demonstrate that the method does indeed work for
the cases examined below.

While by no means an exhaustive list, two stars fill these
requirements admirably: the DBV PG1351+049 and the DAV
G29-38. Both stars have light curves which are nearly mono-
periodic (at least during the time the observations were made),
have significant nonlinearities, and high quality data are avail-
able for both. In the following two sections we describe the
fits to these data.

3.4.1. The DAV G29-38

The light curve of the DAV G29-38 was obtained by S.
Kleinman in 1988 (Winget et al. 1990; Kleinman 1995). Due
to the very long time baseline of the observations, the result-
ing folded light curve/pulse shape has a very high signal-to-
noise. We show this light curve, folded at a period of 615.15 s,
along with two different fits to it, in the lower panels of Fig-
ure 6: the crosses are the folded light curve and the solid curve
are the fits to it. The fit on the left is for anℓ = 1,m = 1 pulsa-
tion mode, while that on the right is for anℓ = 1, m = 0 mode.

From Table 3 we see that these two fits, along with the
ℓ = 2, m = 0 fit, have residuals which are not statistically dif-
ferent from one another. However, they imply vastly differ-
ent temperature sensitivities (i.e.,N) for the thermal response
timescale of the convection zone. In particular, if white dwarf
convection zones were as weak a function ofTeff as implied by
either theℓ = 1, m = 0 or theℓ = 2, m = 0 solution (N ∼ 5–7),
there would hardly be any change in depth of their convection
zones as they cross the ZZ Ceti instability strip. This runs
counter to all theoretical predictions of convection, whether
based on MLT or on numerical hydrodynamic simulations
(Freytag 1995). We conclude that the physically meaning-
ful solution is theℓ = 1, m = 1 solution. This yields a value
of N ≈ 95, which is exactly in the range predicted by stan-
dard models of convection. In addition, we note the identi-
fication ℓ = 1 is consistent with that found by Clemens et al.
(2000) from an examination of the wavelength dependence of
the pulsation amplitude.

3.4.2. The DBV PG1351+049

In 1995 the DBV star PG1351+049 was observed as part
of a Whole Earth Telescope (WET; Nather et al. 1990) cam-
paign (e.g., Winget et al. 1991, 1994). In 2004, we re-
observed this star using the Argos CCD photometer on the
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(a) l=1, m=1 (b) l=1, m=0

FIG. 6.— Lower panels: fits (solid curve) to the observed pulse shape (crosses) of the DAV star G29-38 for observations taken in 1988. Upper panels: the
empirically derivedτC as a function ofTeff (solid curve) versus that calculated assuming a given mixing-length theory (dashed curve). The fit on the left assumes
ℓ = 1, m = 1, while the fit on the right assumesℓ = 1 andm = 0.

TABLE 3
DERIVED PARAMETERS FORG29-38

θi (deg) τ0 (sec) N Amp ℓ m MSD

65.5a± 3.4 187.4± 20.3 95.0± 7.7 0.259± 0.011 1 1 0.160± 0.045
73.9 ± 0.7 150.1± 6.5 7.1± 0.6 0.417± 0.025 1 0 0.178± 0.035
31.9 ± 1.3 151.2± 7.4 5.8± 0.6 0.363± 0.022 2 0 0.171± 0.037
82.0 ± 0.8 139.4± 3.9 1.6± 0.4 1.190± 0.098 2 1 0.382± 0.028
∼80.0 ∼110 0.0 ∼0.27 2 2 ∼41.0

apreferred fit

McDonald 2.1m telescope. This second set of high quality
observations is important because it allows us to cross check
this technique. If we really are learning about the fundamental
parameters of the star then we would not expect those parame-
ters to have changed, i.e., the average depth of the convection
zone,τ0, and the inclination angle,θi , should be the same,
although other quantities such as the amplitude of the mode
might very well be different.

As we saw in the previous section, a degeneracy in the pa-
rameters can occur so that two sets of parameters produce
roughly equivalent fits. This is also the case for this star; we
find both anℓ = 1, m = 0 fit and anℓ = 2, m = 0 fit which
reproduce the data well.

In Figure 7, we show the results of theℓ = 1 fits. The data
have been folded at the period of the mode, 489.335 s, to im-
prove signal-to-noise and to simplify the fitting. We note that
the fit is very good and reproduces the features in the light
curve quite well. In the upper panel we show the convective
timescaleτ0 derived from these data (solid curve) and one
computed using mixing-length theory (dashed curve). The
fact that the slopes are similar is encouraging, since the the-
oretical curve can be moved upward or downward simply by
tuning the value ofα, while its slope is much less sensitive to
α.

From Table 4, we see that the results of theℓ = 1 fits are
remarkably consistent between the two sets of observations,
with the main difference being that the inferred amplitude
has decreased by approximately 30%. In other words, even
though the pulse shapes of PG1351+049 were different in the

two epochs, they can both be fit by solutions whose only sig-
nificant difference is the amplitude of the mode. This is fur-
ther evidence that the proposed mechanism, i.e., modulation
of the flux by the convection zone (e.g., Brickhill 1992; Wu
2001), is the dominant nonlinear effect.

From Table 4, we see that while theℓ = 2 solution has
marginally lower residuals it is essentially equivalent tothe
ℓ = 1 solution. Interestingly, we see thatτ0, N, and even the
amplitude of theℓ = 2 mode are reasonably close to the values
derived from theℓ = 1 solution. The only large difference is
the value of the inclination angle, which is 0◦ for theℓ = 2 fit
as opposed to∼ 58◦ for ℓ = 1. While such a pole-on view-
ing angle is certainly possible, it is much less likely than a
more equatorial orientation. For instance, given random ori-
entations, the probability ofθi < 10◦ is only 1.5%. For this
reason, theℓ= 1 fit seems the likelier choice, although we can-
not rule out theℓ = 2 possibility. Given thatτ0 andN are very
similar in both fits, we are still able to obtain constraints on
the physics of convection using these data.

4. DISCUSSION

The fits we have obtained for the stars PG1351+049 and
G29-38 are quite good, implying that the physical assump-
tions which have gone into our models are realistic. Although
these fits are not necessarily unique, for G29-38 we were able
to rule out on general theoretical grounds the one competing
solution, and for PG1351+049 we found that both solutions
gave similar values of the parameters (other than the inclina-
tion angle). Thus, if we view this as a technique to determine
the parametersτ0, N, and the mode amplitude then we have
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(a) 1995 (b) 2004

FIG. 7.— Fits to the observed pulse shape of the DBV star PG1351+049 for (a) data taken in 1995 with the Whole Earth Telescope (WET) and (b) data taken
in May 2004 with the Argos photometer on the McDonald 2.1 m. Both fits assumeℓ = 1, m = 0. We note that the star’s pulsation amplitude and pulse shape was
different in these two epochs.

TABLE 4
DERIVED PARAMETERS FORPG1351+049

epoch θi (deg) τ0 (sec) N Amp ℓ m MSD

1995 57.8± 1.6 86.7± 8.3 22.7± 1.3 0.328± 0.018 1 0 4.15± 0.65
2004 58.9± 3.1 89.9± 3.6 19.2± 2.1 0.257± 0.021 1 0 0.95± 0.25
1995 0.0± 5.9 85.1± 8.8 18.1± 1.4 0.305± 0.014 2 0 4.04± 0.74
2004 0.0± 6.1 89.0± 6.1 16.0± 1.1 0.233± 0.011 2 0 0.94± 0.15

been successful.
Previous studies using the approach of Wu (2001) to deter-

mine the various parameters describing convection and pulsa-
tion (e.g., Kotak, van Kerkwijk, & Clemens 2002) have met
with less success than our present analysis. We believe thisis
for three reasons. First, by using the higher order nonlinear-
ities we are using more information in the light curve, which
lifts some of the degeneracies. Second, the stars we examined
had large amplitudes (i.e., 5–10%) which made the nonlinear
effects larger and easier to measure. Third, after being folded
the light curves of our objects had very high signal-to-noise.

We note that from the fits to PG1351+049 and the test cases
examined in Section 3.2, this method of mode identification
provides better constraints onm than onℓ. This is fortu-
nate, since the complementary technique of chromatic am-
plitudes (Clemens et al. 2000; Robinson et al. 1995) provides
constraints only onℓ. Therefore, using these techniques in
concert, it should be possible to obtain unique mode identifi-
cations.

Our results also seem to make sense in terms of simple (and
naive) theories of convection, as can been seen by the close
agreement between the slopes of the dashed and solid curves
in the top panels of Figures 6a and 7; thus, when combined
with spectroscopic temperature estimates they can lead to es-
timates of the mixing length for a given convection model.
In addition, these fits can provide independent constraintson
the ℓ andm values of pulsation modes, something which is
necessary for using asteroseismology to study the interiors of
these stars. We consider these results a proof of concept for
this method, and they show that pulsating white dwarfs may
provide the ideal crucible for tests of theories of convection.

In deriving these fits, we have made no assumptions about
either the temperature of the star or the value of any mixing-
length parameter which might be used to describe its convec-
tion zone. If we now wish to assume that we know theTeff
and logg values for these stars, for instance, by taking values
from the literature, then we can derive further constraintson
the value ofα for a particular mixing length theory.

For the DAV G29-38, Bergeron et al. (2004) derive the val-
uesTeff = 11,820 K and logg = 8.14. Assuming ML2 con-
vection we find that this implies a value ofα ∼ 0.6. For the
DBV PG1351+049, if we takeTeff = 22,600 K and logg = 7.9
(Beauchamp et al. 1999), then we find a value ofα∼ 0.5. As
a point of comparison, Montgomery & Kupka (2004) found,
albeit for hotter models, that the peak convective flux in their
non-local Reynolds Stress model could be approximately re-
produced forα∼ 0.6–0.7 for the DA models andα∼ 0.4–0.5
for the DB models, which is broadly consistent with the above
values.

Since the value ofα is a parameterization of the com-
plex problem of turbulent heat transport, there is no reason
to suppose a priori that the value ofα needed to represent the
physics in the “efficient” regime near the base of the convec-
tion zone will also be appropriate for representing the physics
in the “inefficient”, optically thin region near the photosphere.
Thus, the fact that our studies implyα ∼ 0.5 for the DBVs
is not necessarily at odds with the value ofα = 1.25 which
is assumed in the model atmosphere fits of Beauchamp et al.
(1999). On the other hand, the valueα = 0.6 which we derive
for the DAVs appears to be consistent with that used for many
model atmosphere fits of these stars (Bergeron et al. 2004).
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5. CONCLUSIONS

Encouraged by our successes with these two stars, we
would like to apply this method to pulsating white dwarfs
throughout both the DAV and DBV instability strips. Thanks
to the Sloan Digital Sky Survey, the number of known white
dwarf pulsators has essentially doubled in the last two years
(Mukadam et al. 2004; Kleinman et al. 2004; Mullally 2005).
Since these pulsators, as well as those previously known, are
a population having a range of temperatures and masses, we
will be able to map out the depth of their convection zones as
a function of bothTeff and logg. This should provide us with
a detailed map of how convection works in both the DAV and
DBV instability strips.

Given that most pulsating white dwarfs are multi-periodic,
this technique needs to be extended to deal with pulsators
which have more than one pulsation mode simultaneously
present. This will mean directly fitting observed light curves,
as opposed to fitting folded light curves (pulseshapes). Work
in this direction is presently underway, and we hope to present
such fits in the near future.

In addition, aspects of the approach employed here may
also be relevant for other classes of pulsating stars. For in-
stance, standard models of Cepheids and RR Lyrae stars indi-
cate that the convective turnover timescale in their outer HI
zones should be about one-tenth that of their pulsation peri-
ods, so the assumptions made in section 2.1 concerning the
instantaneous response of the convection zone to the pulsa-

tions should still be valid, although changes in the radius of
the star also need to be taken into account. In particular, we
believe that our approach could possibly provide an alternate
explanation for the so-called “phase lag” seen in Cepheids.
This phase lag is the observed difference in phase between the
time of maximum light and that of minimum radius. The stan-
dard explanation due to Castor (1968) assumes that the hydro-
gen ionization zone is completely radiative, whereas it is very
likely strongly convective. Such an investigation could lead,
for instance, to independent constraints (e.g., mass, depth) on
the hydrogen convection zones in these stars.

Finally, the space mission MOST’snon-detection of solar-
like oscillations in the star Procyon (Matthews et al. 2004)
calls into question our detailed understanding of convection
in stars even slightly different than the Sun. This indicates
that the present model of solar convection and pulsation may
not scale in the way which is expected when we extrapolate
from the solar case, and is just one of many pieces of evi-
dence that we still have a long way to go in understanding the
physics of convection in stars.

The author would like to thank the anonymous referee for
helpful comments, as well as D. Koester, D. O. Gough, D. E.
Winget, and T. S. Metcalfe for useful discussions, and F. Mul-
lally, S. J. Kleinman, and S. O. Kepler for providing some of
the data analyzed in section 3.4.
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