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ABSTRACT

We discuss a new technique for studying astrophysical turbulence that utilizes the statistics of
Doppler-broadened spectral lines. The technique relates the power Velocity Coordinate Spectrum
(VCS), i.e. the spectrum of fluctuations measured along the velocity axis in Position-Position-Velocity
(PPV) data cubes available from observations, to the underlying power spectra of the velocity/density
fluctuations. Unlike the standard spatial spectra, that are function of angular wavenumber, the VCS
is a function of the velocity wave number kv ∼ 1/v. We show that absorption affects the VCS to a
higher degree for small kv and obtain the criteria for disregarding the absorption effects for turbulence
studies at large kv. We consider the retrieval of turbulence spectra from observations for high and
low spatial resolution observations and find that the VCS allows one to study turbulence even when
the emitting turbulent volume is not spatially resolved. This opens interesting prospects for using
the technique for extragalactic research. We show that, while thermal broadening interferes with the
turbulence studies using the VCS, it is possible to separate thermal and non-thermal contributions.
This allows a new way of determining the temperature of the interstellar gas using emission and
absorption spectral lines.

Subject headings: turbulence – ISM: general, structure – MHD – radio lines: ISM.

1. INTRODUCTION

Astrophysical fluids are usually turbulent and the turbulence is magnetized. This ubiquitous turbulence determines
the transport of heat and cosmic rays in the interstellar medium (see Elmegreen & Falgarone 1996, Stutzki 2001,
Narayan & Medvedev 2001, Schlickeiser 2002, Cho et al. 2003, Lazarian 2006a) the intra-cluster medium (Inogamov
& Sunyaev 2003, Sunyaev, Norman & Bryan 2003), processes of star formation (see McKee & Tan 2002, Elmegreen
2002, Larson 2003, Ballesteros-Paredes et al. 2006), and interstellar chemistry (see Falgarone 1999, Falgarone et al.
2006). An extended list of interstellar processes governed by turbulence is given in Elmegreen & Scalo (2004).
Using a statistical description is a nearly indispensable strategy when dealing with turbulence. The big advantage of

statistical techniques is that they extract underlying regularities of the flow and reject incidental details. Kolmogorov
description of unmagnetized incompressible turbulence is a statistical one. For instance, it predicts that the difference
in velocities at different points in a turbulent fluid increases on average with the separation between points as a cube
root of the separation, i.e. |δv| ∼ l1/3. In terms of the direction-averaged energy spectrum this gives the famous
Kolmogorov scaling E(k) ∼ 4πk2P (k) ∼ k5/3, where P (k) is a 3D energy spectrum defined as the Fourier transform
of the correlation function of velocity fluctuations 〈δv(x)δv(x + r)〉. In this paper we use 〈...〉 to denote the ensemble
averaging procedure1.
The velocity energy spectrum E(k)dk characterizes how much energy resides in the interval of scales k, k + dk. At

large scales l which correspond to small wave-numbers k ( i.e. l ∼ 1/k) one expects to observe features reflecting
energy injection. At small scales one should see the scales corresponding to sinks of energy. In general, the shape
of the spectrum is determined by a complex process of non-linear energy transfer and dissipation. For Kolmogorov
turbulence the spectrum over the inertial range, i.e. the range where neither energy injection nor energy dissipation
are important, is characterized by a single power law and is, therefore, self-similar. Other types of turbulence, i.e. the
turbulence of non-linear waves or the turbulence of shocks, are characterized by different power laws and therefore can
be distinguished from the Kolmogorov turbulence of incompressible eddies. Substantial advances in our understanding
of the scaling of compressible MHD turbulence (see reviews by Cho & Lazarian (2005), and references therein) allows
us to provide a direct comparison of theoretical expectations with observations.
Recovering the velocity spectra from observations is a challenging problem that has been studied for more than half

a century. Indeed, the first measurements were obtained with the velocity in the 50s (see von Hoerner 1951, Munch
1958). While the centroids were widely used to study turbulence in molecular clouds (see Kleiner & Dickman 1985,
Dickman & Kleiner 1985, Miesch & Scalo 1995, 1999) the recent theoretical work and numerical testing (Lazarian
& Esquivel 2003, Esquivel & Lazarian 2005, Ossenkopf et al. 2006) show that velocity centroids can reliably recover

1 The relation between the ensemble averaging and more common spatial averaging is discussed in Monin & Yaglom (1975). We address
the related issues throughout the paper when we discuss the practical implementations of our statistical technique.
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velocity spectra only for subsonic or mildly supersonic turbulence.
If turbulence is supersonic, the recovering of its velocity spectrum is possible with the Velocity Channel Analysis

(VCA), introduced in LP00. This technique has already been successfully used to study turbulence (see Stanimirovic &
Lazarian 2001). However, the VCA is just one way to use the general description of fluctuations in the Position-Position
Velocity space (henceforth PPV), presented in LP00. One can also study fluctuations along the velocity coordinate.
The appropriate formulas that relate the spectra along the velocity axis in the PPV volume to the underlying velocity
spectrum were derived in the Appendix of LP00. However, the utility and big advantages of such a study have been
realized only recently. The corresponding technique was termed the Velocity Coordinate Spectrum (henceforth VCS)
in Lazarian (2004) and the first examples of the practical application of VCS are presented in Lazarian (2005, 2006).
We feel that the importance of this new technique calls for a more rigorous analytical study. Therefore one of the

goals of the present paper is to provide more solid mathematical foundations for the VCS technique. Even more
important is to find out to what extent the absorption affects the VCS. As the absorption takes place in real space,
we derive our formulas in real space while the study in LP00 was done in the Fourier space.
The structure of our paper is as follows. In §2 we introduce the central object of our study, namely, the 1D correlation

function of PPV intensities in the presence of absorption. We consider both high resolution (pencil beam) and finite
resolution. In §3 we relate the correlations of velocity and density in real space and the correlations in PPV space. We
revisit Lazarian & Pogosyan (2004, henceforth LP04) and provide an improved discussion of the dominance of velocity
and density correlations to PPV correlations. In addition, we define transformations that reveal hidden symmetries
in the PPV space and extend the asymptotics of PPV correlations that we obtained in our earlier studies. In §4 we
consider the case of an optically thin medium and obtain the expressions for the VCS for both narrow and wide beams.
We discuss the transition from one regime to another as we probe different spatial scales of turbulence. In §5 we derive
the criteria for the VCS to be applicable to the observational data with self-absorption. A comparison of the VCS
with other techniques of turbulence studies, a brief discussion of the simplifications of the model, as well as an outline
of the prospects of the technique are given in §6. The summary is provided in §7. Appendixes are important parts
of our paper. The list of our notations is given in Appendix A. We discuss the practical averaging of spectral line
data in Appendix B. The fundamentals of the PPV statistics, i.e. PPV correlation functions and spectra, are derived
in Appendix C. A discussion of PPV power spectra and the transformation that reveals the symmetries between the
spatial and velocity coordinates is provided in Appendix D.

2. CORRELATIONS ALONG VELOCITY COORDINATE IN PPV

2.1. The Problem: Simplified Approach

The main object of our present study is a volume of turbulent gas or plasma (a “cloud”). Turbulent motions of the
gas, and its inhomogeneous distribution lead to fluctuations of intensity in the observed Doppler shifted emission or
absorption lines. Our goal is to relate the statistical measures that can be obtained through spectral line observations
to the underlying properties of the turbulent cascade. In what follows, we concentrate on the case of the emission
study, while keeping in mind that the general formalism presented in this paper can be easily extended to absorption
studies.
We assume that the cloud extent along the line of sight S is much smaller than the distance from the volume to

the observer. This allows us to use the geometry of parallel lines of sight. Each line of sight can then be labeled by a
two-dimensional position vector X on the cloud image, which together with z coordinate along the line of sight specifies
the three-dimensional position vector x = (X, z). Henceforth, following the convention adopted in LP00 and LP04
we denote by the capital bold letters the two dimensional position-position vectors reserving small bold letters for
vectors of three dimensional spatial position. Replacing z coordinate by the observationally available z-component of
gas velocity gives us a vector (X, v) in PPV cube. (Where the convergence of lines of sight is essential, cf. Chepurnov
& Lazarian, 2006, v should be treated as the radial coordinate.)
In this paper we study the fluctuations in PPV space in the velocity coordinate along the fixed line of sight, taking

into account the effects of self absorption of gas and the finite angular resolution of the telescope. Let us first introduce
the problem in a simplified form, disregarding the effects of telescope resolution (cf. §2.2, §6.2.2). A possible statistical
measure of the fluctuations of emission intensity IX(v) is the structure function

D(X, v1, v2) ≡
〈

[IX(v1)− IX(v2)]
2
〉

, (1)

which is the variance of the difference between intensities at two velocities v1, v2 along the same line of sight X. We
stress that the measure (1) is available for the infinite spatial resolution of an instrument, while for the finite resolution
an averaging over the neighboring lines of sight with the instrumental beam should be performed (see §2.2).
The intensities IX(v) are affected by both the turbulence and the absorption. As in LP04, to quantify these effects

consider the standard equation of radiative transfer (Spitzer 1978)

dIν = −gνIνds+ jνds , ds = −dz , (2)

with the absorption coefficient gν = α(x)ρ(x)φv(x) and the emissivity jν = ǫρ(x)φv(x) are taken proportional to the
density of atoms with velocity v that corresponds to the frequency ν. This density is given by ρ(x)φv(x), where ρ(x)
is the spatial density of atoms and φv(x) is the fraction of atoms that have velocity v. The turbulent motions affect
the velocity distribution. Indeed, the line-of-sight velocity v of the atom at the position x is a sum of z-components
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of the regular gas flow (e.g., due to galactic rotation) vgal(x), the turbulent velocity u(x) and the residual component
due to thermal motions. This residual thermal velocity v − vgal(x)− u(x) has a Maxwellian distribution, so

φv(x)dv =
1

(2πβ)1/2
exp

[

− (v − vgal(x) − u(x))2

2β

]

dv , (3)

where β = κBT/ma, ma being the mass of atoms. If the temperature tends to zero, the function becomes a δ-function,
that prescribes the velocity distribution that is determined by non-thermal velocities.
As shown in LP04 the solution of Eq. (2) is

IX(v) = ǫ

∫ ρs

0

dYve
−αYv =

ǫ

α

[

1− e−αρs(X,v)
]

, (4)

where

ρs(X, v) ≡
∫ S

0

ρ(z′)φv(z
′)dz′ . (5)

is the density of images of the emitting atoms in PPV space, which henceforth we shall refer to as the PPV density.
Again, following the convention in LP00 and LP04, we use the subscript s to distinguish the quantities in (X, v)
coordinates from those in (X, z) coordinates. As the result, Eq. (1) can be written as

D(v1, v2) =
ǫ2

α2

〈

[

e−αρs(X,v1) − e−αρs(X,v2)
]2
〉

, (6)

where, for the sake of simplicity, we omitted the label X. This is what we shall do for the rest of the paper, wherever
this does not cause a confusion.
The effects of turbulence are imprinted on D(v1, v2) through ρs(X, v). The PPV density ρs(X, v) depends on the

real density of gas ρ(X, z) and on velocity of gas particle v(X, z).

2.2. Effects of Finite Angular Resolution

Realistic observations have a finite angular resolution. The emission intensity measured by a telescope is
∫

dX1B(X1)IX1
(v1), where B(X1) is the beam of the instrument, assumed to be centered on the line of sight at

X1 = 0. The explicit introduction of the beam was avoided in LP00 and LP04 as those papers dealt with slices of
data for which spatial resolution was essential. For the case of studies of fluctuations along the velocity coordinate,
meaningful results may be obtained for spatially unresolved eddies as well.
Since integration commutes with taking ensemble average, the structure function of the beam-smeared signal is given

by

D(v1, v2) ≡
∫

dX1B(X1)

∫

dX2B(X2) 〈[IX1
(v1)− IX1

(v2)] [IX2
(v1)− IX2

(v2)]〉 , (7)

that is a generalization of Eq. (1).
Using Eq. (4) and a short hand notation ρij = ρs(Xi, vj), we can express D(v1, v2) via PPV density in the following

form

D(v1, v2)=
ǫ2

α2

∫

dX1B(X1)

∫

dX2B(X2)×

〈e−α(ρ11+ρ21)
[

1− e−α(ρ12−ρ11) − e−α(ρ22−ρ21) + e−α(ρ12−ρ11+ρ22−ρ21)
]

〉 . (8)

The idea behind writing the structure function in this form is to notice that the term in square brackets depends on
the difference between PPV densities at different velocities, but along the same line of sight, ρ21 − ρ22 and ρ11 − ρ12,
while the prefactor, ρ11 + ρ21, is evaluated at the same velocity, although between different lines of sight. This makes
Eq. (8), still fully general, particularly convenient for studying scaling behavior at small velocity separations.
To proceed further we need to consider some limiting cases and approximations. At sufficiently small v = v1 − v2,

one can expand the terms in the brackets into the power series

D(v)∼ ǫ2
∫

dX1B(X1)

∫

dX2B(X2)×

〈e−α(ρ11+ρ21)
[

(ρ12 − ρ11)(ρ22 − ρ21) +O
(

α∆ρ3
)

+O
(

α2∆ρ4
)]

〉 , (9)

where we assumed homogeneity of correlation functions in the velocity direction. As we discuss in Appendix B this is
not a necessary condition for the theory formulation, but we use it to simplify both our discussion and notations.
In LP04 2 we argued, that factoring out the averaging over the “absorption window” e−α(ρ11+ρ12)

D(v)∼ ǫ2
∫

dX1B(X1)

∫

dX2B(X2)×

〈e−α(ρ11+ρ21)〉
[

〈(ρ12 − ρ11)(ρ22 − ρ21)〉+ 〈O
(

α∆ρ3
)

〉+ 〈O
(

α2∆ρ4
)

〉
]

. (10)

2 Our consideration is similar to the one we advanced in LP04 for the two dimensional structure function of intensity. There, however,
the role of velocity v and angular R directions were reversed.
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provides a good approximation for studying the onset of the absorption effects.
In the case of an isotropic beam and homogeneous statistics the last expression becomes

D(v) ∼ ǫ2
∫

RdR B2(R) Wabs(R)
[

ds(R, v)− ds(R, 0) + 〈O
(

α∆ρ3
)

〉+ 〈O
(

α2∆ρ4
)

〉
]

, (11)

where R = |X1 −X2|, the PPV structure function is

ds(R, v) = 〈[ρs(X2, v2)− ρs(X1, v1)]
2〉 , (12)

the absorption window Wabs is
Wabs(R) = 〈e−α[ρs(X1,v1)+ρs(X2,v1)]〉 , (13)

and

B2(R) = 2π

∫

dX+B(X+ +R/2)B (X+ −R/2) , X+ = (X1 +X2)/2 . (14)

Eq. (11) provides the foundations of the formalism for finite resolution studies.

2.3. High Resolution Limit

The formalism is significantly simplified in the limit of infinitely high angular resolution, B(X) = δ(X). The criterion
for neglecting the beam spread depends on the properties of the turbulence.
For infinitely high (henceforth, high) resolution Eq. (8) becomes

D(v)=
ǫ2

α2
〈e−2αρ1

[

1− e−α(ρ2−ρ1)
]2

〉

≈ ǫ2

α2
〈e−2αρ1〉〈

[

1− e−α(ρ2−ρ1)
]2

〉 . (15)

where we have omitted a now irrelevant first spatial index in ρ, ρi ≡ ρ(0, vi). At the velocity scales both large enough
for the beam width to be neglected (which allows to set R to zero), and small enough for the series expansion to be
accurate

D(v) ∼ ǫ2Wabs(0)

[

ds(0, v) + α〈(ρ1 − ρ2)
3〉+ α2

12
〈(ρ1 − ρ2)

4〉+O(α4)

]

. (16)

The Eqs (11), (16) provide the basis for the subsequent discussion of the short scale limit of statistical descriptors and
the conditions under which the absorption start to play a role. They establish the link between observable fluctuations
of intensity along the line of the velocity coordinate, which are characterized here by D(v), and statistical descriptors
of PPV density ρs, namely, ds(R, v) (see Eq. (12)).

3. FLUCTUATIONS IN REAL SPACE AND PPV SPACE

This section presents the ground work in relating the correlation and structure functions in the PPV space and the
relevant statistical descriptors of the velocity and density in the emitting turbulent volume.

3.1. Statistical measures of velocity, density and PPV density

3.1.1. Correlations and spectra in real space

It is well known that in the presence of magnetic field turbulence becomes axisymmetric in the reference frame related
to the local direction of magnetic field (see discussion in Cho, Lazarian & Vishniac 2002 and references therein).
However, as we have discussed earlier (see LP00, LP04), to a large extent it is possible to use isotropic statistics
of density and velocity when dealing with observations. Briefly, this is related to the fact that the observations are
performed in the global system of reference related to the mean magnetic field. In this system of reference the anisotropy
is rather mild and spectra in directions parallel and perpendicular to the magnetic field have the same scaling. These
considerations were successfully tested using synthetic observations with the data cubes obtained through direct 3D
MHD simulations (Esquivel et al. 2003).
The fact above permits us to use the standard isotropic statistical measures like structure function, correlation

function and spectra (see Monin & Yaglom 1976) to describe both the velocity and density correlations in the turbulent
cloud under study. In what follows, we use the statistically isotropic (see Lazarian 1995 for a more general case)
correlation function of the xyz-space density field ρ(x)

ξ(r) = ξ(r) = 〈ρ(x)ρ(x + r)〉 , (17)

as well as the correlation function of the density fluctuations δρ = ρ− 〈ρ〉

ξ̃(r) = 〈δρ(x)δρ(x + r)〉 = ξ(r) − 〈ρ〉2 . (18)

At zero lag, ξ(0) = 〈ρ2〉 is the second moment of the field. At large separations the correlation function provides the

square of the mean value, ξ(∞) → ρ̄2, while ξ̃(∞) → 0.
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In addition, we use the density structure function

d(r) = 〈(ρ(x+ r)− ρ(x))2〉 , (19)

and the density power spectrum

P (k) =

∫

dreikrξ(r) or P (k) = − 1
2

∫

dreikrd(r) . (20)

The utility of using both structure and correlation functions can be illustrated with density fluctuations. An essential
difference between the two is that, while the value of the structure function at some scale r, d(r), is determined by the
integrated power of fluctuations over smaller scales r′ ≤ r, the value of the correlation function ξ(r) reflects the integral
of the power over scales r′ ≥ r. Therefore, the correlation functions are more appropriate to use for spectra where
most power is at increasingly small scales (Monin & Yaglom 1975), in particular for power-law spectra P (k) ∼ kn, for
n > −3. Following LP00 and LP04, we call such spectra “shallow”. In contrast, the “steep” power spectra, for which
n < −3 and most of the power is on the large scales, are more robustly described by the structure function.
For exact power law spectra with steep index, the correlation function is not formally well defined due to divergent

contribution from large scales 3, while for shallow index the structure function diverges due to small scale power.
However, as we discussed in LP04, if the appropriate cut-offs at small and/or large scales are introduced, both
descriptors can be used simultaneously and relate simply to each other

d(r) = 2 [ξ(0)− ξ(r)] , ξ̃(r) = 1
2 [d(∞)− d(r)] . (21)

In this case d(∞) = 2
(

ξ(0)− ρ̄2
)

= 2ξ̃(0).

For a shallow power law spectrum the correlation function is a decaying power law ξ̃(r) ∝ r−γ with γ > 0, while for
a steep power-law spectrum the structure function d(r) ∝ r−γ , is a rising power-law with γ < 0 (see Monin & Yaglom
1975, and numerical examples in Esquivel & Lazarian 2005). The relation between the spectral index n of P (k) and
the index γ of structure (for a steep spectrum) or correlation (for a shallow spectrum) functions is straightforward:

spectral index = γ − dimensionality of space . (22)

In this notation Kolmogorov turbulence in 3D has γ = −2/3 and the spectral index of P (k), n = −11/3. The usually
quoted Kolmogorov −5/3 index corresponds to the direction averaged spectrum, namely to 4πk2P (k).
We also use a structure function to characterize the turbulent velocity. Since only the z-component of the velocity

field is available, we just need
Dz(r) = 〈(uz(x+ r)− uz(x))

2〉 . (23)

Unlike the density for which both shallow and steep cases can be realized depending on the ratio of fluid viscosity and
resistivity (see Lazarian, Vishniac & Cho 2004), and Mach number (see Beresnyak, Lazarian & Cho 2005), the velocity
field scaling is always steep (see Cho, Lazarian & Vishniac 2003). The latter we write as Dz(r) ∝ rm, m > 0. 4

3.1.2. Correlations in PPV

In what follows we assume 2D statistical homogeneity and isotropy of ρs(X, v) in the X-direction over the image of
a cloud. Homogeneity and isotropy in X causes the mean density to depend only on velocity, while the correlation
functions depend only on the magnitude of separation between two sky directions R = |R| = |X1 − X2|. Then, in
PPV space the mean density is

ρ̄s(v1) = 〈ρs(X1, v1)〉 , (24)

and the correlation functions of the density and, closely related, density fluctuations δρs(X1, v1) = ρs(X1, v1)− ρ̄s(v1)
are

ξs(R, v1, v2)≡〈ρs(X1, v1)ρs(X2, v2)〉 , (25)

ξ̃s(R, v1, v2)≡〈δρs(X1, v1)δρs(X2, v2)〉 = ξ(R, v1, v2)− ρ̄s(v1)ρ̄s(v2) . (26)

For PPV statistics the structure functions are

ds(R, v1, v2)= 〈[ρs(X1, v1)− ρs(X2, v2)]
2〉 , (27)

d̃s(R, v1, v2)= 〈[δρs(X1, v1)− δρs(X2, v2)]
2〉 = ds(R, v1, v2)− [ρ̄s(v1)− ρ̄s(v2)]

2
. (28)

Here we have maintained the notation which highlights the symmetries of the correlation and structure functions. The
conditions under which the homogeneity along a velocity direction is fulfilled are formulated in Appendix B. For the
rest of the paper we assume that they are satisfied and we assume that the PPV correlation and structure functions
depend only on the velocity difference v. In Section 3.5 we discuss some asymptotic symmetries between X and v
directions.

3 For very steep spectra, i.e. for n < −5, even structure functions fail to keep in check the contribution from large scale gradients and to
properly reflect the turbulence statistics (Monin & Yaglom, see also examples in Cho & Lazarian 2004, 2005). We obtain such steep power
spectra for fluctuations of intensity along the velocity coordinate and the problems that this entails are addressed below.

4 Note the difference in the signs of γ that we use for density with steep spectra and m used for velocity structure functions. This
difference is somewhat unfortunate, but in case of density where both steep and shallow spectra are possible, it allows us to write ∼ r−γ

scaling universally for both the correlation and structure functions.
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3.1.3. Relation between PPV and real space correlations

The PPV correlations can be expressed via real space velocity and density correlations using the set of assumptions
that was employed in LP00 and LP04 (see also Appendix C). If the gas is confined in an isolated cloud of size S and
the galactic shear over this scale is neglected, the zero-temperature correlation function is (see Appendix C)

ξs(R, v) ∝
∫ S

−S

dz

(

1− |z|
S

)

ξ(r)

D
1/2
z (r)

exp

[

− v2

2Dz(r)

]

, (29)

where, assuming for the sake of simplicity that the velocity field is solenoidal, the structure function of the z-components
of velocity is (see LP04)

Dz(r) = Crm
[

1 +
m

2

(

1− z2/r2
)

]

, (30)

where C is a normalization constant. We keep the vector notation, as, unlike the correlation function of the scalar
density field, the structure function of even isotropic vector field depends not just on r, but also on the angle with the
z-axis (via z/r) (see Monin & Yaglom 1975). In terms of R and z, a useful explicit expression is

Dz(r) = C
(

R2 + z2
)m/2−1 (

[1 +m/2]R2 + z2
)

. (31)

If the turbulent energy cascades from a scale larger or equal to the cloud size S, Dz(r) is growing up to the scale of
the cloud S at which the velocity structure function saturates at the value Dz(S) = CSm. Note, that a somewhat
complicated prefactor entering Eq. (C6) is omitted in Eq. (29), which is justified as we are interested in the functional
dependence of ξs rather than its amplitude. This expression is obtained by substituting ρs given by Eq. (5) into the
definition of the correlation function (25) and performing averaging over the Gaussian distribution of the turbulent
velocity field u(x), contained in φv(x) (see Appendix C).
For the studies of turbulence in the presence of a regular flow, e.g. the galactic shear velocity vgal, one should

replace v in the exponent in Eq. (29) by v − vgal (see LP00 and LP04). We found that neglecting the regular flow
provides an adequate approximation for studies in a wide range of circumstances. Besides isolated clouds, this includes
observations in directions of high galactic latitude, but also the case of HI in the Galactic plane, if we focus on small
scale phenomena. Indeed, the velocity gradient arising from the Galactic rotation is ∼ 0.7 km/s/50pc and decreases
linearly to shorter scales. At the same time turbulent relative motions of HI are expected to be 20 km/s at 50pc
and scale as r1/3. Thus, even if turbulent scaling saturates at S ∼ 50pc, for considering linear scales r < S, or,

correspondingly, in velocity direction v < D
1/2
z (S) ∼ 20 km/s, it is justifiable to neglect coherent shearing motions

arising from galactic rotation. If turbulence is extended to ever larger scales the region of validity of the approximation
extends until turbulent velocities equate with the shearing motion. This scale, denoted λ in LP00, is equivalent to the
“cloud” size5 S.
The effect of thermal motions is described by the convolution of correlation functions evaluated at a vanishing

temperature with a thermal window (Appendix C)

ξs(R, v) ∝
∫ ∞

−∞

dv′

(4πβ)1/2
exp

[

− (v − v′)2

4β

]
∫ S

−S

dz

(

1− |z|
S

)

ξ(r)

Dz(r)1/2
exp

[

− v′
2

2Dz(r)

]

. (32)

The structure function is computed from the formal expression

ds(R, v) = 2 [ξs(0, 0)− ξs(R, v)] (33)

where

ξs(0, 0) ∝
∫ S

−S

dz

(

1− |z|
S

)

ξ(z)

Dz(z)1/2
, (34)

Frequently, the two terms on the right hand side of Eq. (33) are individually divergent, but their combination is not,
provided that the subtraction is done before the integration over z.

3.2. Fluctuations of Density: Correlation Radius r0

3.2.1. Shallow density spectrum

For shallow density spectra, we use power-law correlation functions of overdensity:

ξ(r) = 〈ρ〉2
(

1 +
[r0
r

]γ)

, γ > 0 (35)

where r0 has the physical meaning of the scale at which fluctuations are of the order of the mean density. This ansatz
describes properly the situation where the deviations from the mean become uncorrelated at large distances. We have
argued in LP04 that the amplitude of density perturbations at the scale of a cloud should not exceed the mean density,
which for the shallow density spectrum translates to the requirement that r0 < S.

5 LP00 also contains asymptotics for the regime when shear-like regular motions exceed the turbulent velocities, which can provide a
starting point for future detailed consideration of this case.
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3.2.2. Steep density spectrum

To describe correlations in the random density field with steep (i.e. n < −3) power spectrum we start with the
structure function given by Eq. (19). Real world structure functions do not grow infinitely and therefore there is a
cut-off at some large scale rc above which the structure function saturates at some limiting value. Being interested in
r ≪ rc we shall not address here the issue of the precise form of the saturation and will proceed with a simple ansatz

d(r) = d(∞)
r−γ

r−γ + r−γ
c

, γ < 0 . (36)

To find the characteristic correlation length in this case, we note that the correlation function (now well defined because
of the cutoff at large scales so that Eq. (21) can be used) is

ξ(r) =
1

2
d(∞)[1 − d(r)/d(∞)] + 〈ρ〉2 =

d(∞)

2

r−γ
c

r−γ + r−γ
c

+ 〈ρ〉2 . (37)

At sufficiently small r ≪ rc Eq. (37) gives

ξ(r) ≈
(

1

2
d(∞) + 〈ρ〉2

)(

1− d(∞)

d(∞) + 2〈ρ〉2 [r/rc]
−γ

)

. (38)

Introducing the correlation scale

r0 = rc
[

1 + 2〈ρ〉2/d(∞)
]− 1

γ (39)

we recast Eq. (38) in a form similar to Eq. (35)

ξ(r) ≈
(

1

2
d(∞) + 〈ρ〉2

)

(

1−
[r0
r

]γ)

, γ < 0 (40)

which allows the uniform treatment of both the steep and shallow cases.

3.2.3. Physical meaning of r0

For a fixed γ the density correlation scale r0 determines the amplitude of the density fluctuations at a scale r
relative to the term that plays the role of the mean uniform density. While for the shallow spectra the uniform density
in the volume is just the ensemble average density 〈ρ〉 (see Eq. (35)), for the steep spectra the role of the uniform

density factor is played by
√

〈ρ〉2 + d(∞)/2 (see Eq. (40)). The meaning is clear: since the high amplitude density
perturbations with the steep spectra are concentrated at the largest scales ∼ rc, in a relatively small volume all long-
wave modes give mostly uniform offsets of the density, forming a background on which we study small scale ripples. In
other words, they serve as local mean densities. The typical magnitude of these modes is described by the dispersion,
1
2d(∞). Besides that, there is a contribution arising from the overall global mean density 〈ρ〉2. As the result, r0 ≥ rc
always (see Eq. (39)).

3.3. Velocity & density: Revisiting LP04

The term (1± (r0/r)
γ) in the expressions of the density correlation functions given by Eqs. (40) and (35) results in

the separation of the of the PPV correlation function into two parts (LP04)

ξ̃s(R, v)= ξ̃v(R, v) + ξ̃ρ(R, v),

d̃s(R, v)= d̃v(R, v) + d̃ρ(R, v). (41)

with the v-term describing pure velocity effects, while the ρ-term arises from the actual real space density inhomo-
geneities that are modified by velocity mapping. To simplify the notation we have dropped the index s from the
right-hand-side quantities, since this split is only meaningful in PPV space. This also corresponds to the split in the
PPV spectra discussed in LP00.
In LP04 we defined the amplitude of density perturbations for steep spectrum in a different way, which resulted in

some confusion, which, fortunately, did not affect our final results there. Here we present a correct discussion of the
contribution of the density and velocity fluctuations to the amplitude of fluctuations in PPV.
In PPV space correlation and structure functions are split into two contributions according to Eq. (41), it is possible

to see that the term that depends only on velocity fluctuations originates from the effective mean density part in
correlation functions (35) and (40), while the ρ-term arises from the density fluctuation part that is modified by
velocity fluctuations. The scale r0 is, thus, critical for establishing their relative magnitudes. Namely, for shallow
density spectra (i.e. γ > 0) the pure velocity effect dominates the density fluctuations at large r > r0, while for the
steep density spectra (i.e. γ < 0) the pure velocity term dominates at small scales, r < r0. Since as we argued in
§3.2.3 in the latter case r0 > rc, the density fluctuations are never dominant for γ < 0. This discussion invalidates
the results in the second column in Table 2 in LP04, where conditions for the dominance of density fluctuations are
formulated for γ < 0. The density term can dominate only if γ > 0, the regime which is summarized below in the
revised Table 1.
In terms of the practical interpretation of observations our present finding allows a more reliable interpretation of the

power spectra in terms of underlying velocity fluctuations. Indeed, one should not worry about density contamination
of the results of both VCA and VCS if the underlying density spectrum is steep.
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Condition γ > 0 Eqns
m ≥ max

[

2
3
, 2
3
(1− γ)

]

v2 < Dz(S)(r0/S)m (45)-(47)

2
3
(1− γ) < m < 2

3
v2 < Dz(S)(r0/S)

2/3γm
m−2/3(1−γ) (45)-(48)

m ≤ min
[

2
3
, 2
3
(1− γ)

]

r0/S > 1 (46)-(48)

TABLE 1
Range of the scales where the impact of density inhomogeneities to the PPV statistics exceeds the velocity contribution.

3.4. Asymptotics of line-of-sight PPV correlations

The line-of-sight correlations are of particular importance for our present study. The expression for d̃ρ(0, v) is related
to the PPV correlation function as

d̃ρ(0, v) = 2 [ξρ(0, 0)− ξρ(0, v)] . (42)

A similar expression is valid for d̃v(0, v). For the power-law small-scale statistics that we deal with in this paper

d̃v(0, v) can be obtained from d̃ρ(0, v) by setting γ = 0. Therefore, without losing generality, we shall consider d̃ρ(0, v)
only, which is given by the integral (see Eqs. (29) and (42))

d̃ρ(0, v)∼
(r0
S

)γ
∫ 1

−1

dẑ
1

|ẑ|γ+m/2

[

1− exp

(

− v̂2

2|ẑ|m
)]

∝ ρ̄2S2

Dz(S)

1

m

(r0
S

)γ
[

1

p
−
(

v̂2

2

)p

Γ

(

−p,
v̂2

2

)]

(43)

where p = (1 − γ)/m− 1/2 > 0 and, to shorten intermediate formulas, the dimensionless quantities v̂ = v/D
1/2
z (S),

ẑ = z/S, r̂ = r/S are introduced. Here Γ is the incomplete gamma-function, but when Γ is used with one argument,
the ordinary gamma function is implied.
If we perform the series expansion of the incomplete gamma-function for small argument v̂, the square brackets in

Eq. (43) provide

p−1 − 2−pv̂2pΓ
(

−p, v̂2/2
)

= −2−pv̂2pΓ[−p]−
(

1

2(1− p)
v̂2 +O(v̂4)

)

. (44)

The informative part of the structure function is in the v̂2pΓ[−p] term, while terms in the series part of Eq. (44)
individually have no information about the underlying scaling and thus present a problem for a straightforward use
of structure functions. For instance, the very first v2 term in the series is dominant whenever p > 1, saturating the
structure function at v2 behavior. 6 More precisely, the leading behavior of the structure function given by Eq. (43)
is

d̃ρ(0, v)∝
ρ̄2S2

Dz(S)

(r0
S

)γ

A0v(γ,m)

(

v2

Dz(S)

)

1−γ
m − 1

2

, m >
2

3
(1− γ) , (45)

d̃ρ(0, v)∝
ρ̄2S2

Dz(S)

(r0
S

)γ

A0v(γ,m)
v2

Dz(S)
, m <

2

3
(1− γ) , (46)

with numerical factors A0v(γ,m) given in Appendix A. In particular, setting γ = 0 for the v-term contribution,

d̃v(0, v)∝
ρ̄2S2

Dz(S)
A0v(0,m)

(

v2

Dz(S)

)

1
m− 1

2

, m >
2

3
, (47)

d̃v(0, v)∝
ρ̄2S2

Dz(S)
A0v(0,m)

v2

Dz(S)
, m <

2

3
, (48)

Notably, for the pure velocity effect, the value m = 2/3, which corresponds to Kolmogorov velocity scaling, presents
a boundary case.
Where does the saturation come from? The v2p contribution arises from small spatial separations z ∼ 0 in the

integral in Eq. (43) reflecting small scale turbulent behavior, while v2 terms come from the longest separations z ∼ S.
Hence, we see that when p > 1 the longwave modes of the size of the cloud dominate the velocity structure function
even at small velocity separations v and mask the information about the small spatial scales. We therefore have to
conclude that the two-point velocity coordinate structure function is not a useful quantity to measure directly, unless
m > 2/3(1−γ), which, in particular, excludes the case when Kolmogorov turbulent velocity dominates the fluctuations
of intensity.
However, as we show in §4.1 , the terms that saturate the structure function only provide the contribution to the

power spectra that is localized at long wavelengths. Therefore in the Fourier domain one can evaluate the short-wave
spectrum of the PPV fluctuations along the velocity coordinate for a more general set of m and γ values.

6 The series expansion for the incomplete gamma-function is irregular at integer p. A rigorous treatment of these cases, most notable of
which is the case of Kolmogorov velocity, m = 2/3, γ = 0, p = −1, gives rise to additional logarithmic factors.
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3.5. Hidden symmetry between line-of-sight and angular PPV correlations

The Eq. (11) requires the knowledge of ds(R, v) in both positional, R, and velocity, v, directions. In LP04 we
obtained

d̃ρ(R, 0) ∝ − ρ̄2S2(r0/S)
γ

Dz(S)
AR0(γ,m)

(

R

S

)1−γ−m/2

(49)

AR0(γ,m) is defined as an integral when the angular dependence of Dz(r) is taken into account (see Appendix A). It
reduces to the combination of Gamma functions of LP04 if this dependence is ignored.
Here we want to present a remarkable symmetry between the line-of-sight statistics and the statistics in PP direction.

Indeed, the comparison of Eq. (46) and Eq. (49) shows that if one identifies with velocity v a linear scale æ according7

to
v2 = F (γ,m)Dz(S) (æ/S)

m
, (50)

where F (γ,m) = [AR0(γ,m)/A0v(γ,m)]
m/(1−γ−m/2)

, then the line-of-sight structure function ds(0,æ) acquires the
asymptotic form, identical to ds(R, 0),

d̃s(0, t) = d̃s(t, 0) ∝
(

t

S

)1−γ−m/2

. (51)

The physical meaning of the new variable æ defined by Eq. (50) is that it defines the scale at which the turbulent
velocity dispersion is equal to v. In our turbulent model (see §3.1) we expect that after the transformation Eq. (50),
the asymptotic statistics of 3D PPV cubes will be approximately isotropic and the three dimensional PPV distance
r2PPV = R2+æ2 can be introduced. More exactly, applying the transformation to Eq. (29) for the correlation function

ds(R,æ)=2 (ξ(0, 0)− ξs(R,æ))

∝
∫ S

−S

dz

[

1

zγ+m/2
− (R2 + z2)1−γ/2−m/4

(1 +m/2)R2 + z2
exp

(

−F (γ,m)

2

æm

(R2 + z2)m/2

)]

(52)

and introducing the angle cos θ = æ/rPPV, sin θ = R/rPPV, we see that the rPPV scaling factorizes

ds(R,æ) ∝ (rPPV)
1−γ−m/2

ARæ(θ, γ,m) , rPPV ≪ S (53)
when the integration is extended to infinity, as is appropriate for rPPV ≪ S. The integral form for the function
ARæ(θ, γ,m) that describes the angular dependence in (R,æ) space is given in Appendix A. This function is defined
so that ARæ(π/2, γ,m) = AR0(γ,m). With our choice of the coefficient F (γ,m) in the transformation relation,
ARæ(0, γ,m) = ARæ(π/2, γ,m). Figure 1 demonstrates that the variation of ARæ(θ) at intermediate angles is typically
within ten percent.
In this discussion we have ignored the complication that arises from the saturation of the structure function in the

velocity direction. Indeed, the line-of-sight asymptotics of Eq. (45) is valid only for 1− γ − 3m/2 < 0, a range much
narrower than the 1 − γ −m/2 < 2 allowed for Eq. (49). Analysis of this saturation involves taking the limit of the
integration in Eq. (52) in the way it is done in Section 3.4.
The issue of the limited validity of structure functions is resolved, if the power spectrum is used directly. For this

purpose the spectral formalism of LP00 proves to be useful. In Appendix D we remind the reader of the asymptotic
results for the PPV spectrum P (K, kv) that were obtained in LP00 using a velocity wave number kv, reciprocal to

v/D
1/2
z (S). In these variables, the PPV spectrum is manifestly anisotropic, having seemingly very different scalings

along and perpendicular to the line-of-sight. The hidden symmetries are revealed if kæ ∼ 1/æ is used.
The symmetry transformation of PPV statistical descriptors allows one to introduce a new technique for determining

the turbulent velocity statistics from PPV cubes. Since the mapping Eq. (50) depends explicitly on velocity scaling
m and the amplitude of the turbulent motions Dz(S), one can fit for these parameters under the requirement that
the structure function or the spectrum of the mapped PPV cube acquire the same scaling in all directions. However
this issue is beyond the scope of the present paper. Within this paper the symmetries allow us to generalize our
asymptotics obtained for particular PPV directions over a wider PPV volume.

4. VCS FOR A TRANSPARENT MEDIUM: α → 0

The intensity in optically thin lines provides direct information on the density in PPV space. In this case, α → 0,
the intensity is given by the linear term in the expansion of the exponent in Eq. (4)

Iv(X) = ǫρs(X, v) . (54)
We shall treat separately several limits. First of all, in the limit of high angular resolution (the narrow beam)

Dnar(v) ∝ d̃s(0, v) (55)
while in the limit of poor angular resolution (the wide beam) when the spectral data is effectively integrated over the
whole image of the object

Dwide(v) ∝
∫

dRRd̃s(R, v) . (56)

We shall provide a criterion for the transition from one regime to another.

7 We intentionally use a the unusual symbol æ to stress the peculiar non-linear nature of the coordinate transformation that reveals the
hidden symmetries in the PPV. Although æ has dimensionality of a distance, one should not confuse it with a real distance to an emitter.
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Fig. 1.— Function ARæ(θ, γ,m) for selected γ and m. The variations of the function with the angle θ are moderate, which reflects the
hidden symmetry between the PPV variables.

4.1. High Resolution: Narrow Beam

As the first step we consider the case of high resolution. The expressions for d̃s(0, v) were discussed in §2.5, where the
pitfalls related to the direct use of structure functions along the velocity coordinate were demonstrated. In particular,
it was shown that the v2 contribution arises from the boundary effects. Here we analyze why this contribution is not
dominant for the VCS.
The power spectrum is defined for narrow beam studies as

Pnar(kv) = − 1√
2π

∫ ∞

−∞

dv cos[kvv]Dnar(v). (57)

Using Eqs. (43), (55) and (41) we obtain

Pnar(kv) ∝ e−βk2
v

∫ 1

−1

dẑ |ẑ|−γ exp

[

−1

2
k2vDz(S)|ẑ|m

]

, (58)

where as before ẑ ≡ z/S. In the case where the integration over ẑ is extended to infinity, we just get

Pnar,inf (kv) ∝
2

1−γ
m

m
Γ

[

1− γ

m

]

e−βk2
v

[

kvD
1/2
z (S)

]−2(1−γ)/m

, (59)

which coincides with the result obtained in the last Appendix of LP00 8. There the same result was obtained using
the three-dimensional PPV power spectrum P (K, kv) in PPV (see Appendix D). Indeed, the narrow-beam Pnar(kv) is
given by the integral over K Pnar(kv) ∝

∫

dKP (K, kv), thus, Pnar(kv) ∝ P1(kv), where P1(kv) is the one dimensional
spectrum defined in LP00.
When the boundary effects are retained

Pnar(kv) ∝
2

1−γ
m

m

(

Γ

[

1− γ

m

]

− Γ

[

1− γ

m
,
kvD

1/2
z (S)

2

])

e−βk2
v

[

kvD
1/2
z (S)

]−2(1−γ)/m

. (60)

Thus, the boundary effects in Fourier space are localized to small k modes, through the incomplete Gamma function
term. At high kv → ∞ this term becomes negligible and we restore the correct power law asymptotics even for very
steep slopes 2/m > 3 (a power spectrum slope of −3 corresponds to a structure function slope −2 in 1D).

8 Direct Fourier transform of the power-law Dnar = −2−pm−1Γ[−p]v2p gives, of course, the same result.



11

4.2. Poor Resolution: Wide Beam

The correlations of I(v) are modified when the instrument resolution is poor. In the limit when the turbulent scale
(or the whole cloud) is within the beam, we effectively integrate PPV fluctuations over the image, i.e R coordinate.
Namely,

Dwide(v) ∝
∫ ∞

0

dRRd̃s(R, v) (61)

Ignoring the boundary effects and angular dependence of Dz(r) (these do not affect asymptotic scaling) we can join
the R and z integrations into a three-dimensional integral to obtain

Dwide(v) ∝
ρ̄2S2

Dz(S)

∫

dr̂ r̂2
1

r̂γ+m/2

[

1− exp

(

− v̂2

2r̂m

)]

∝ v̂2
3−γ
m −1 , (62)

where once more the dimensionless variables v̂ = v/D
1/2
z (S), r̂ = r/S were used. This slope is very steep, e.g., for the

pure velocity term, γ = 0, 6/m− 1 > 2 for all m < 2, and as we have learned in §2.5 the boundary effects saturate the
direct structure function measurements at the universal, non-informative9 slope value 2.
One again we should use the power spectrum which allows the non-informative terms to be weeded out. At high wave

numbers kv the one dimensional VCS in the wide-beam approximation, Pwide(kv), is equal to the three dimensional
PPV power spectrum P (K, kv) taken at K = 0,

Pwide(kv) ∝ P (K = 0, kv) . (63)

Three dimensional PPV power spectrum has been obtained in LP00. We have

Pwide(kv) ∝ (r0/S)
γe−βk2

v

(

kvD
1/2
z (S)

)−2(3−γ)/m

, (64)

where the amplitude of the density contribution is defined through the correlation length r0. For velocity contribution,
γ = 0,

Pwide(kv) ∝ e−βk2
v

(

kvD
1/2
z (S)

)−6/m

(65)

which provides the high kv asymptotics for the VCS in the poor resolution regime.

4.3. Transition from High to Poor Resolution

A realistic beam has a finite width, ∆B. We remind the reader that we deal with the case in which the emitting
volume extend along the line of sight is much smaller than the distance to the volume. As the result, the angular
extend of the beam is straightforwardly related to the physical scales that we deal with.
Whether the narrow (Eq. (59)) or wide beam (Eq. (64)) regime is applicable depends on kv. To the linear scale ∆B

corresponds the velocity scale

V∆B ≡
√

D(S)(∆B/S)m , (66)

equal to the magnitude of turbulent velocities at the separation of a size ∆B. It is not difficult to find that when

k−1
v > V∆B (67)

the beam is narrow, while on shorter scales its width is important.
The rigorous derivation of this criterion is straightforward. Results in §3.5 and Appendix D allow to describe the VCS

as the resolution changes. However, the simplified argument below, that are based on the already derived formulas,
gives a more intuitive way to obtaining of the result. Indeed, it is evident, that the difference between the narrow-
beam and the wide beam power spectra is the integration over K. One can approximate Pnar(kv) ∝ (∆K)2P (0, kv) =
(∆K)2Pwide(kv), where ∆K is the size of Fourier domain over which the integral is accumulated. Comparing our

results in Eq. (59) and Eq. (64) for the ideally narrow and fully-integrated beams, we find that ∆K ∼ k
2/m
v . The

beam is narrow, if ∆B corresponds to Fourier space integration of at least the size ∆K and is wide otherwise. With
proper dimensional coefficients taken into account, we arrive to the criterion in Eq. (67). Another conclusion is that
the beam is effectively infinitely wide for all the scales of VCS study, if the beam width exceed the scale at which the
underlying structure function of the turbulent velocity saturates (this scale is identified with S in this paper).

4.4. Expected Regimes for VCS

In Figure 2 we summarize the different scalings of VCS. As in our earlier papers (LP00, LP04) the main difference
stems from the density being either shallow or steep. If the density is shallow i.e. scales as ξ ∼ r−γ , γ > 0, which
means that the correlations increase with the decrease of the scale, then it eventually becomes important at sufficiently
small velocity differences, i.e. at sufficiently large kv. In the opposite case, i.e. when γ < 0, the contributions of density
can be important only at large velocity separations.

9 The situation is a bit better if the density dominates and γ > 0, but still the parameter range of sensitivity of the structure function
remains limited to high m > 2(1− γ/3).
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The amplitude of the density contribution to VCS is encoded in the correlation length r0. The velocity scale that
corresponds to r0 is

Vr0 =
√

Dz(S) (r0/S)
m . (68)

The comparison of the density (γ is present) and velocity (γ = 0) contributions to VCS, given by Eq. (59) or Eq. (64)
respectively, gives the critical scale when they are equal

k−1
0 = C(γ,m)Vr0 (69)

The numerical factor C(γ,m) =
√
2 (Γ[1/m]/Γ[(1− γ)/m])

m
2γ for a narrow beam and is somewhat different for a wide

beam, but in both cases it is of order of unity in the interesting range −1 < γ < 1 (several aspects of our formalism
break down at γ = 1). So we can roughly equate the scale of equality of the density and velocity effects to r0, i.e., in
velocity units,

k−1
0 ≈ Vr0 . (70)

The left and middle panels of Figure 2 deal with the case of shallow density. Velocity is dominant at kv < k0, while
the density term provides the main contribution at kv > k0. The left panel demonstrates the case where the scale of
transition from asymptotics is entirely dominated by velocity to the one influenced by spatially resolved velocity and
density, V∆B < Vr0 . The observed fluctuations arising from the unresolved turbulent eddies depends on the scalings
of both velocity and density. In the middle panel, V∆B > Vr0 , the transition scale is unresolved. In this case if there is
still a dynamical range for moderately long scales to be resolved by the experiment Dz(S)

1/2 > k−1
v > V∆B, the VCS

of the resolved eddies will be determined by the turbulent velocities only.
The right panel of Figure 2 addresses the case of a steep density spectrum. The difference now is that fluctuations of

the density are maximal at low wave-numbers and it is there that the density could be important. Velocity is dominant
at shorter scales kv > k0. However, as we discussed in §2.3, the steep density correlation length r0 is large, at least
as large as the density power cutoff rc, which argues for density fluctuations to be subdominant everywhere up to the
scale of the emitting turbulent volume (“cloud”), which is the range of scales that we consider here.

Fig. 2.— Qualitative representation of the density and velocity contributions to the VCS power spectrum and the resulting scaling
regimes. In every panel light lines show contributions from the ρ-term (density modified by velocity, dashed line) and v-term (pure velocity
effect, solid line) separately, while the dark solid line shows the combined total VCS power spectrum. Thermal suppression of fluctuations
is shown by the dotted line. The labels above the dark solid curve are arranged so as to illustrate the sequential transition of the scalings of
the total power spectrum. Everywhere except the intermediate regimes, the total spectrum is dominated by one of the components to which
the current labeled scaling corresponds. Labels below the dark solid lines mark the scaling of the subdominant contributions. For the left
and middle panels the density power spectrum is taken to be shallow, γ > 0. The left panel corresponds to high amplitude of the density
correlations, r0 > ∆B, where density effects become dominant at relatively long wavelengths for which the beam is narrow. In the middle
panel, the amplitude of density correlations is low r0 < ∆B and they dominate only the smallest scales which results in the intermediate
steepening of the VCS scaling. The right panel corresponds to the steep density spectrum. In this case the density contribution is always
subdominant. In this example the thermal scale is five times shorter than the resolution scale V∆B .

4.5. Thermal Broadening and VCS Cookbook

4.5.1. Thermal effects and inertial range

In Figure 2 we have plotted the power spectra over 3 decades of velocity magnitude to compactly demonstrate all
possible scalings. We clearly see two contributions to the VCS, one part arising from pure velocity effects in uniformly
distributed matter, while the other represents the contribution of density inhomogeneities modified by the velocity.
Thermal effects are shown as well.
In observations, one can anticipate a coverage over two decades of velocity magnitudes before thermal effects get

important. Potentially, correcting for the thermal prefactor exp(−βk2v) in Eqns. (59,64), one can extend the observa-
tional range further. Note, that the thermal corrections are different for species of different mass. Therefore, by using
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heavier species one can extend the high k cut-off by the square root of the ratio of the mass of the species to the mass
of hydrogen.
How small subsonic (in Cold gas) scales can still be probed depends on the signal-to-noise ratio of the available data.

Indeed, the ability to deconvolve the thermal smoothing is limited by noise amplification in the process. However, any
extension of the VCS by a factor a in velocity results in the extension of the sampled spatial scales by a factor of a2/m,
which is a3 for the Kolmogorov turbulence.
Even with a limited kv coverage, important results can be obtained with VCS, especially if observations encompass

one of the transitional regimes. For example, if one measures a transition from a shallow spectrum to a steeper one (see
the left and the right panels in Figure 2) one has the potential to i) determine the velocity index m, since the difference
between the slopes is always 4/m; ii) determine γ next; iii) estimate the amplitude of turbulent velocities from the
position of the transition point as discussed above. On the other hand, if one encounters a transition from a steep to
a shallower spectrum, one i) may argue for the presence of the shallow density inhomogeneities; ii) estimate γ/m from
the difference of the slopes, and then m; iii) estimate the density correlation radius r0. Finally, if no transition regime
is available, as is the case of strong absorption (see Figure 3) than when γ < 0 one can get m, while for the case of
γ > 0 a combination of γ and m is available.

4.5.2. Separating thermal and non-thermal velocities

Consider HI in the Warm and Cold phases as an example. If one disregards, for the sake of simplicity, the cross-
correlation between the fluctuations in these two phases, then the VCS from such a system will be a sum of the spectra
from Tcold ∼ 100 K and Twarm ∼ 104 K gas. It is easy to see that the contribution of the Warm gas to the total VCS
may be neglected for all velocities that are subsonic for Warm gas, i.e. for velocities less than 10 km/s. Because the
suppression of the Warm gas contribution is exponential, the VCS would reflect the turbulence in the Cold gas, even
if the mass fraction of the Cold gas is small. Therefore, to correct for the thermal velocities, one should multiply10 the
VCS power spectrum by exp(βcoldk

2
v).

In a more complex model with HI at intermediate temperatures (Heiles & Troland 2003) the cold gas still dominates
the VCS. In fact, the machinery that we have developed here allows us to make an independent test of the HI temper-
atures measured by other techniques. The ability of the VCS to separate of thermal and non-thermal contributions to
the line-width makes it a unique tool. One can apply spatial smoothing to the PPV data of a cloud. As the result, the
position of the knee between the high and low resolution spectra (see Figure 2) will change. The inverse wavenumber at
the knee k−1

knee corresponds to the non-thermal velocity at the scale of smoothing θsmooth. Thus we can establish the am-

plitude of the non-thermal velocities, in particular at the scale of the whole cloud D
1/2
z (S) ≈ k−1

knee(θcloud/θsmooth)
m/2,

where m is the index of the velocity structure function that is being determined by the VCS (this index is m = 2/3
for Kolmogorov turbulence) and θ’s are angular sizes of the cloud and the smoothing length. This allows one to
measure cloud gas temperatures. We shall discuss the details of this technique elsewhere. Choosing the correct factor
of exp(βcoldk

2
v) to straighten the VCS plot can be another procedure for determining the cold gas temperature (e.g.

Chepurnov & Lazarian 2006).

4.5.3. VCS cookbook

The VCS cookbook is rather straightforward. VCS near a scale kv depends on whether the instrument resolves

the correspondent spatial scale
[

k2vDz(S)
]−1/m

S, where S is the scale where turbulence saturates. If this scale is

resolved then Pv(kv) ∝ k
−2/m
v and Pρ(kv) ∝ k

−2(1−γ)/m
v . If the scale is not resolved then Pv(kv) ∝ k

−6/m
v and

Pρ(kv) ∝ k
−2(3−γ)/m
v . These results are presented in a compact form in Table 2. The transition from the low to the

Spectral term ∆B < S
[

k2vDz(S)
]

−

1
m ∆B > S

[

k2vDz(S)
]

−

1
m

Pρ(kv) ∝
(

kvD
1/2
z (S)

)

−2(1−γ)/m
∝
(

kvD
1/2
z (S)

)

−2(3−γ)/m

Pv(kv) ∝
(

kvD
1/2
z (S)

)

−2/m
∝
(

kvD
1/2
z (S)

)

−6/m

TABLE 2
Scalings of VCS for shallow and steep densities.

high resolution regimes happens as the velocity scale under study gets comparable to the turbulent velocity at the
minimal spatially resolved scale. As the change of slope is the velocity-induced effect, it is not surprising that the
difference in spectral indexes in the low and high resolution limit is 4/m for both Pv and Pρ terms, i.e it does not
depend on the density11. This allows for separation of the velocity and density contributions. For instance, Figure 2

10 In a similar way one can treat the velocity resolution of the instrument. However, in this case, similar to the case of the thermal
broadening corrections, the extent to which the VCS can be extended is limited by the noise amplification that the procedure entails.

11 In the situation where the available telescope resolution is not sufficient, i.e. in the case of extragalactic turbulence research, the high
spatial resolution VCS can be obtained via studies of the absorption lines from point sources.
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illustrates that in the case of shallow density both the density and velocity spectra can be obtained.
Note that obtaining the density spectrum from a well resolved map of intensities is trivial for the optically thin

medium, as the density spectrum is directly available from the column densities (i.e. velocity integrated intensities).
However, for the absorbing medium such velocity-integrated maps provide the universal spectrum K−3, where K is the
2D wavenumber (LP04). Similarly, even for the optically thin medium, it is not possible to get the density spectrum
if the turbulent volume is not spatially resolved. On the contrary, Pρ(kv) reflects the contribution of shallow density
even in this case (see Figure 2).

5. EFFECTS OF ABSORPTION

The main scale dependent effect of absorption is to diminish correlation between intensity of emission at widely
separated velocities or lines of sight, i.e from distant points in PPV space. The effect of absorption has been discussed
at length in LP04 in the framework of the VCA technique. Here we capitalize on the insight obtained there.
Along the velocity coordinate the separations that are affected by absorption can be estimated using Eq (16). Similar

to LP04 we get that the absorption becomes important when α2ds(0, v) > 1, thus for v exceeding the absorption velocity
scale Vab which we define as

α2d̃s(0, Vab) = 1 . (71)

Let us consider in detail the γ < 0 case when the velocity term dominates VCS. Asymptotic expressions for dv given
by Eq. (47) and (48) lead to the absorption window width

Vab/Dz(S)
1/2≈ (αρ̄s)

2m
m−2(1−γ) , m > 2/3 (72)

Vab/Dz(S)
1/2≈ (αρ̄s)

−1
, m < 2/3 (73)

where we have omitted numerical coefficients of order unity and have estimated ρ̄s = ρ̄S/Dz(S)
1/2.

For our purpose of studying turbulence over its power-law inertial range, the only velocity range that matters is
v < Vab.
When the resolution of the instrument is finite and signal is averaged over an angular area, absorption determines

how distant lines-of-sight contribute to the correlated signal. This effect is described by the absorption windowWab(R),
introduced in §2 (see Eq. (13)), which behaves similar to the instrument beam, downweighting the distant pairs.
Let us estimate the form of the window assuming Gaussian statistics and homogeneity of the density fluctuations

δρs = ρs − 〈ρs〉. Then (see LP04)

Wabsorption ≈ 〈e−αρs(X1,v1)〉〈e−αρs(X2,v1)〉eα2

2 〈δρ2
s(X1,v1)+δρ2

s(X2,v1)〉e−
α2

2 d̃s(R,0) (74)

The last term is the one that determines the scale dependence of the window. The most important qualitative
characteristic of the window is its width, which for absorption we shall define as Rab at which

α2d̃s(Rab, 0) = 1 . (75)

In terms of the velocity-density decomposition of the PPV structure function, the product of the two windows arises,

which is ∼ e−α2d̃v(R,0)/2e−α2d̃ρ(R,0)/2. Both factors act simultaneously but the one with the smallest width determines
the gross effect. This is dv(R, 0) for γ < 0. Setting γ = 0 in Eq. (49) to obtain the asymptotics for dv(R, 0) we get

Rab/S ≈ (αρ̄s)
2

m−2 . (76)

One must compare the absorption window scale Rab to the beam ∆B on one hand, and to the scales under study
v on the other hand. When Rab > ∆B, the absorption window is not important. In the opposite regime, Rab <
∆B, when the absorption affects the angle averaging, one compares the velocity scale, corresponding to Rab, Vab =

D
1/2
z (S) (Rab/S)

m/2
, with v. For v < Vab the effective window is a low resolution one, while for v > Vab absorption

seems to induce an effective high resolution beam. Given the symmetry between the line-of-sight and orthogonal sky
correlations that we discussed in §3.5, it is, however, no surprise that Vab defined this way coincides with the critical
velocity separation given by Eq. (73) above which absorption destroys the power-law scaling solutions. Hence, one
cannot recover the high resolution scaling laws with the help of absorption effects.
Thus, we conclude that to study the inertial turbulence range one should focus on v < Vab and to be able to measure

high-resolution asymptotic VCS one must have instrument resolution better than the ’absorption window, V∆B < Vab

(see Figure 3).

6. DISCUSSION

6.1. Simplifications Employed

To simplify our presentation we considered emission that is proportional to the first power of density. However, we
found that for many cases, e.g. for steep density, the actual spectrum of density is irrelevant. Therefore these results
are not affected by the actual assumptions about the scaling of emissivity. In general, our results may be trivially
generalized if correlation functions of emissivities are used instead of correlation functions of densities (Chepurnov &
Lazarian 2006). With this in mind we may claim that the VCS is applicable not only to HI, but also to CO transitions,
emission by ions in turbulent plasmas, various molecules etc.
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Fig. 3.— Qualitative representation of the absorption effects on the VCS power spectrum and the resulting scaling regimes. Shaded
region corresponds to the regimes obscured in the presence of absorption.

Following LP04 in the paper we employed a simplified treatment of the radiative transfer. However, it is explained
in LP04 that a more elaborate treatment of absorption cannot change the high wavenumber asymptotics that we are
interested in. In short, at low kv the absorption gets important and it destroys the power-law behavior. We do not
have predictions for the VCS in this regime. However, our results show that at sufficiently high kv (which depends
on the window function determined by the absorption) the power-laws are not affected and the VCS can be used to
study turbulence.
Note, that in the paper above we have analyzed the problems of using structure functions along the velocity coordinate

being very steep. One possible way of proceeding with a real space statistical description in this case is to design a ’next
order’ structure function which will have a counter-term eliminating the contaminating quadratic in velocity term.
Such ’next order’ function will be insensitive not only to the constants added to the field, but also to the gradients
of the field. We shall not develop higher order structure function formalism here. (Eq. (44) gives a good guidance on
what terms need to be canceled). Instead, we argue for using spectra along the velocity coordinate which allows us to
avoid a lot of unnecessary trouble.

6.2. VCS and Other Techniques

6.2.1. VCS & VCA: optically thin lines

A unique feature of the VCS is that this technique utilizes information that has not been used before, as far as we
know. Indeed, we developed the VCA in LP00 to explain the puzzling data on spectra of PPV slices (see Green 1993).
The motivation for LP04 was both to study the domain of applicability of VCA in the presence of absorption and
to explain the CO line integrated data (see Stutzki et al. 1998). The situation is different with the VCS, where the
practical application of the technique to the actual data has just started (see Lazarian 2004, 2005, 2006, Chepurnov
& Lazarian 2006).
The earlier techniques to study turbulence, e.g. velocity centroids or VCA require the observations to spatially resolve

the scale of the turbulence under study12. This constrains the variety of astrophysical objects where the turbulence
can be studied. The technique presented here, namely, the VCS, is a unique tool that allows studies of astrophysical
turbulence even when the instrument does not resolve the turbulent fluctuations spatially. Indeed, it is essential for the
technique to resolve only the fluctuations of intensity along the V-axis (see §4.2). This is of immense importance for
studies of turbulence in poorly resolved extragalactic objects, supernova remnants and circumstellar regions13. There
is also potential for the modification of the technique for laboratory research, e.g. for plasma turbulence studies.
Our study of the effect of finite temperatures for the technique reveals that, unlike the VCA, the temperature

broadening does not prevent the turbulence spectrum from being recovered from observations. Indeed, in VCA, gas
temperature acts in the same way as the width of a channel. Within the VCS the term with temperature gets factorized.
One can correct for this term, e.g. by fitting for the temperature that would remove the exponential fall off in the
spectrum. This also allows for a new way of estimating the interstellar gas temperature (see Chepurnov & Lazarian
2006).
Another advantage of the VCS compared to the VCA is that it reveals the spectrum of turbulence directly, while

within the VCA the slope of the spectrum should be inferred from varying the thickness of the channel. As the
thermal line width acts in a similar way as the channel thickness, additional care (see LP04) should be exercised not

12 As it was discussed in LP00, the VCA can be applied directly to the raw interferometric data, rather than to images that require good
coverage of all spatial frequencies. However, even with interferometers, the application of the VCA to extragalactic objects is restricted.

13 For some of these objects the issue of isotropy and homogeneity of turbulence may arise. Indeed, if the properties of turbulence change
substantially along the line of sight, the measured spectra would represent the averaged properties of turbulence. To get more detailed
information one may need to average the fluctuation arising, for instance, from a supernova remnant, over annuli over the image, which
would require some spatial resolution, but may not still require resolving the spatial turbulent scale under study.
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to confuse the channel that is still thick due to thermal velocity broadening with the channel that shows the thin slice
asymptotics. We feel that a simultaneous use of VCA and the VCS makes the turbulence spectrum identification more
reliable.

6.2.2. VCS & VCA: self-absorption and absorption lines

The introduction of absorption in VCS and VCA brings about different results. Within the analysis of velocity slices
spectra (VCA) the absorption results in new scalings for slices for which absorption is important. The turbulence
spectral indexes can be recovered for the VCA within sufficiently thin slices, provided that the thickness of the slices
exceeds the thermal line width. For the VCS no new power-law asymptotics is available in the presence of absorption.
When absorption becomes important the spectra get exponentially damped. This simplifies the interpretation of the
data.
As we discussed in LP00 and LP04 the VCA is applicable to studies of not only emission, but also absorption lines.

An example of such a study is provided in Deshpande, Dwarakanath & Goss (2000), where an extended synchrotron
emission background was used to map the absorption in the HI gas. The necessity of using extended emission sources
limits the extent of possible VCA studies of turbulence. This is not an issue for the VCS, for which absorption lines14

from point sources can be used. Interestingly enough, in this case the VCS asymptotics for the high resolution limit
should be used irrespectively of the actual beam size of the instrument.

6.2.3. Relation to other techniques

Talking about the role of the present study in a more general framework of the techniques for studies of turbulent
velocities we would say that this paper provides a formalism that should allow to describe the properties of Spectral
Correlation Functions (SCF) (see Padoan, Goodman & Juvela 2003 and references therein) in the presence of ab-
sorption. The relation, however, between these techniques and another statistical tool, namely, Principal Component
Analysis (PCA) (see Heyer & Brunt 2004 and references therein) is not yet clear.
Taking turbulence studies in a broader context, we may note, that similar to the successful studies of electron density

fluctuations in the ionized media (see Spangler & Gwinn 1990) the VCS can study turbulence without requiring high
spectral resolution. Note, however, that the aforementioned scintillation studies have limitations arising from limited
number of sampling directions as well as from the technique being relevant only for ionized gas at extremely small
scales. Moreover, these sorts of measurements provide only the density statistics, which is an indirect measure of
turbulence. Naturally, combining information on turbulence obtained by different channels provides big advantages
for constraining the models of interstellar turbulence and testing its correspondence with the theoretical expectations15.

6.3. Progress and Prospects

While establishing the mathematical foundations of the VCS, in this paper we have improved the statistical descrip-
tion of the PPV. In particular, we established the source of problems related to the use of structure functions along
the velocity coordinate and proposed a remedy. In addition, we corrected our earlier statements about the relative
importance of density and velocity contribution in the case when the density is steep. As the result, we established
that the for a steep density spectrum, the density contribution is always subdominant. This fact simplifies practical
studies of turbulence both using the VCS and the VCA.
We have extended the general theory of the correlations in PPV space. Potentially, although we did not pursue this

within this paper, our findings on the symmetries existing in the PPV space open a way to study the velocity field
using the entire PPV data cubes, rather than slices, as we use in the VCA, or along-the-line statistics as we use in
the VCS. This also allows one to extend the centroids and modified centroids (Lazarian & Esquivel 2003, Esquivel &
Lazarian 2005) techniques for studies of turbulence in the presence of absorption.
In §4.5 we have discussed the thermal broadening using HI as an example. Using heavier species that exhibit lower

thermal broadening allows one to study turbulence up to smaller scales. One can extend the range of environments
that can be proved by the VCS using different wavelengths. For instance, the X-ray spectrometers with high spatial
resolution can be used to study of turbulence in hot plasma. In particular, the potential of VCS is high for studies
of plasma turbulence in clusters of galaxies (see Sunyaev et al. 2003 and references therein). A simulated example of
such a study with the future mission Constellation X is provided in Lazarian (2006).
Studies of turbulence in objects which are poorly resolved spatially is a natural avenue for the VCS applications.

Interestingly enough, in this case one can combine the absorption line studies, which would provide the VCS for the

14 The mathematical formulation to the problem of the VCS for absorption lines are very similar to the VCS for emission lines. The

absorption for optical and UV lines for which stimulated emission is negligible is proportional to
∫ S
0 dzρ(x)φv(x) and therefore measurements

of the absorbed intensity can be treated the same way as the intensity of the emission spectral line in §2.1. The difference is that this case
is simpler as one should not worry either of the finite resolution or absorption effects. In the case of HI absorption study of the ratio of
density over temperature enters instead of density. In the case of an isobaric medium the product of density and temperature are constant
and the problem is similar to studies of transitions for which the emissivity is proportional to ρ2. In general, our study shows that the
VCS in most cases is dominated by velocity fluctuations. Thus we expect that the temperatures should not much affect the VCS even for
HI absorption line studies.

15 For instance, the issues of whether the Alfvenic turbulence has Kolmogorov spectrum of −5/3 or the Iroshnikov-Kraichnan spectrum
of −3/2 have been widely discussed in the literature (e.g. Maron & Goldreich 2001, Muller, Biskamp & Grappin 2003, Biskamp 2003,
Boldyrev 2005, Beresnyak & Lazarian 2006). The difference in the VCS slopes for these two underlying spectra is 1, which can be found
through observations. Defining the type of spectrum is important for many applications, including thermal conduction, cosmic ray and
cosmic dust dynamics (see Lazarian 2006ab, Cho & Lazarian 2006, Yan, Lazarian & Draine 2004 and references therein.
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high resolution, with the emission studies that would provide the VCS in the poor resolution limit. Potentially, both
velocity and density spectra can be obtained this way.
The importance of this work goes beyond the actual recovery of the particular power-law indexes. First of all, the

technique can be generalized to solve the inverse problem to recover non-power law turbulence spectra. This may be
important for studying turbulence at scales at which either injection or dissipation of energy happens16. Such studies
are important for identifying astrophysical sources and sinks of turbulent energy. Second, studies of the transition
from low resolution to high resolution regimes allows one to separate thermal and non-thermal contributions to the
line-widths as has been discussed in §4.4. This could both test the thermal correction that can be applied to extend
the power-law into sub-thermal velocity range (see §4.4 and Chepurnov & Lazarian, 2006) and enable studies of
temperature distribution of the gas in atomic clouds (Heiles & Troland, 2003).

7. SUMMARY

I. VCS is a new technique to study astrophysical turbulence in interstellar gas, intracluster plasma, supernova
remnants etc. Its major advantage to the existing techniques is that it does not necessarily require high spatial
resolution to recover the information on turbulence.
II. VCS can employ both absorption and emission lines to study turbulence. The current study concentrates mostly

on emission lines and develops a mathematical formalism that may be modified to deal with absorption lines. We
account for the effects of thermal broadening and self-absorption.
III. VCS has two parts, one depending exclusively on velocity and the other depending on both velocity and density:

the relative amplitude of the two terms depends on the amplitude of density perturbations and the dominance of the
particular part depends on whether density statistics is shallow or steep:
a) if the density statistics is steep (P (k) ∝ k−n, n > 3), the VCS is affected only by the turbulent velocity.
b) if the density spectrum is shallow, then at small wave-numbers the VCS is affected only by the velocity fluctuations

and at larger wave-numbers - by both density and velocity fluctuations. The wavenumber corresponding to the
transition point between the two regimes above depends on the amplitude of the density fluctuations.
IV. The particular power-law indexes of the VCS depend on whether the fluctuations under study are spatially

resolved or not. The transition from one regime to another occurs for velocities corresponding to the minimal spatially
resolved scale. The density and velocity contributions can be separated by smoothing the data. The difference
between the VCS spectral indexes for low resolution and high resolution depends only on the spectrum of the velocity
fluctuations.
V. The transition between the low and high resolution regimes allows one to identify the spatial scale associated with

a particular turbulent velocity. Therefore observing this transition provides a way to relate the velocity dispersion with
the angular separation between the lines of sight. This allows one to separate thermal and nonthermal contribution
to line broadening in clouds.
VI. VCS allows the recovery of the underlying spectrum of turbulence in the presence of absorption. For the power-

law spectra, the main effect of absorption amounts to the introduction of the low frequency spatial filter for the
fluctuations along the velocity coordinate.
VII. Both in cases of negligible and important absorption thermal broadening of spectral lines introduces the expo-

nential suppression of the amplitude of the high frequency VCS, which makes cold gas the most important contributor
to the VCS signal. This suppression is factorized in the expressions for the VCS and it can be corrected for by choos-
ing the particular exponential factor that straightens the VCS to a power law at large kV . Choosing this correction
provides yet another way of estimating the temperature of cold gas.

We thank Tom Bethel and Nicholas Hall for reading the manuscript and providing valuable comments. We also
thank Alexey Chepurnov and two anonymous referees of the paper for their input. Discussions with Carl Heiles and
Snezana Stanimirovic are acknowledged. AL research is supported by by NSF grant AST 0307869 and the NSF Center

16 Consider turbulent damping scale. The study can provide us with the angular scale at which damping occurs, i.e. with the ratio
of ddiss/L, where L is the distance to the cloud under study. Thus if we know the distance, we can have an insight into the damping
of turbulence and therefore the physical conditions in the cloud. Alternatively, there are situations where the distance to the cloud is
notoriously poorly known, as this is the case of high velocity clouds (see Wakker 2004). In such situations the calculations of ddiss scale
(see expressions (20) and (6) in Lazarian et al. (2004), where ddiss should be identified with the inverse of the critical perpendicular
wavenumber) can be provided with higher accuracy using the velocity dispersion at the scale of the cloud. This allows to place better limits
on L.
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for Magnetic Self Organization in Laboratory and Astrophysical Plasmas.

APPENDIX

A. NOTATIONS

ρ(x) 3D density field.
u(x) 3D turbulent velocity field.
ξ(r) 3D density correlation function.
d(r) 3D density structure function.
Dz(r) z-component of 3D velocity structure function.
ρs(X1, v1) density in PPV space .
ξs(R, v) PPV density correlation function.
ds(R, v) PPV density structure function.

ξ̃s(R, v) PPV density fluctuations correlation function.

d̃s(R, v) PPV density fluctuations structure function.
I(X1, v1) emission intensity at velocity v1 in the direction X1.
D(v1, v2) intensity structure function along the velocity coordinate.
P (kv) power spectrum of intensity along the velocity coordinate.
æ coordinate in velocity direction rescaled to reveal P-V symmetries
B(X) angular beam of the instrument.
S saturation scale of the turbulent velocities. Identified with the spatial extend of the

turbulent cloud.

D
1/2
z (S) characteristic turbulent velocity difference at separation S. Sets the extend of the

spectral line along the velocity coordinate.

A0v(γ,m) =

{

2
3
2−

1−γ
m Γ

(

3
2 − 1−γ

m

)

/(1− γ −m/2), m > 2
3 (1− γ)

1/(1− γ − 3m/2), m ≤ 2
3 (1− γ)

.

AR0(γ,m) = 2
∫∞

0
dz
[

z−γ−m/2 − (1 + z2)1−γ/2−m/4/(1 +m/2 + z2)
]

.

ARæ(θ, γ,m) = 2
∫∞

0
dz
[

z−γ−m/2 − (sin2 θ+z2)1−γ/2+m/4

(1+m/2) sin2 θ+z2 exp
(

−A(γ,m)
2

cosm θ(sin2 θ+z2)1−m/2

(1+m/2) sin2 θ+z2

)]

.

F (γ,m) = [AR0(γ,m)/A0v(γ,m)]
m/(1−γ−m/2)

.

C(γ,m) =
√
2 [Γ(1/m)/Γ((1− γ)/m)]

m/2γ
.

B. HOMOGENEITY OF DATA AND REDUCTION OF NOISE

For practical data handling one has to deal with the actual line shape. An important issue is whether the statistics
along the V-coordinate can be assumed homogeneous, in which case the statistical descriptors are the functions of
the velocity separation v = v1 − v2 only, D(v1, v2) = D(v). To be valid this requires statistical homogeneity of the
PPV density, which, in particular, corresponds to the case of a flat mean line profile 〈IX(v)〉 = const for the velocities
under consideration. More generally, one would like to subtract the mean line profile, and assume homogeneity for the
fluctuations only.
Whether statistics is homogeneous or not is also important to our ability to measure it with the noisy data. In the

measurements, the ensemble average 〈. . .〉 is replaced by the volume average over the space in which the statistics is
homogeneous, i.e. does not change with the translations in space. Take D(v1, v2). How can we estimate it from the
data ? If it depends separately on v1 and v2 and we have only a single line of sight, then there is no averaging available
and our estimate of the correlation will be very noisy D(v1, v2) ≈ [I(v1)−I(v2)]

2. For homogeneous statistics, however,
we can average over v+ = (v1 + v2)/2, D(v) ∝

∫

dv+[I(v1)− I(v2)]
2, beating the noise down significantly. However, if

we have measurements at several lines of sight, we can average our estimator over X which may give us the ability to
measure even inhomogeneous D(v1, v2).
Statistics of the fluctuations will then be described by the modified structure function

D̃(v) = 〈[I(v1)− 〈I(v1)〉] [I(v2)− 〈I(v2)〉]〉 = D(v1, v2)− [〈I(v1)〉 − 〈I(v2)〉]2 (B1)

Eq. (B1) indicates that at small separations v the correction due to the mean profile is at least quadratic in v,

[〈I(v1)〉 − 〈I(v2)〉]2 ∼ v2. As we discuss in §2.5 this results in an easily separable δ function contribution to the VCS.

C. STATISTICS OF DENSITY IN PPV

The random fields ρ(x) and u(x) are assumed to be uncorrelated. The accuracy of this assumption was studied
analytically in LP00, LP04 and tested numerically in Lazarian et al. (2001), and Esquivel et al. (2003). As the result,
this key assumption was shown to be accurate both for the data obtained via MHD turbulence simulations as well
as for particular general type flows that were treated analytically. We shall also consider statistical properties of the
density distribution ρ(x) to be homogeneous.
Under these assumptions, the mean and the two-point correlation function of the PPV density are given, corre-
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spondingly, by

〈ρs(X1, v1)〉=
∫ S

0

dz1 〈ρ(x1)〉〈φv1(x1)〉 =

= ρ̄

∫ S

0

dz1 〈φv1(x1)〉 , (C1)

〈ρs(X1, v1)ρs(X2, v2)〉=
∫ S

0

dz1

∫ S

0

dz2 〈ρ(x1)ρ(x2)〉 〈φv1(x1)φv2(x2)〉 =

=

∫ S

0

dz1

∫ S

0

dz2 ξ(r)〈φv1(x1)φv2(x2)〉 . (C2)

The computation is, thus, reduced to evaluating the ensemble average of the products of the Maxwell functionals φv(x)
over the Gaussian distribution of the turbulent velocities u, i.e, 〈φv1(x1)〉 =

∫

du1φv1(x1)P (u1) and 〈φv1(x1)φv2(x2)〉 =
∫

du1du2φv1(x1)φv2(x2)P (u1, u2), u1 = u(x1), u2 = u(x2). In our picture we identify the scale S at which the
structure function Dz(r) that describes the turbulent field is saturated Dz(∞) ≈ Dz(S) with the size of the emitting
cloud. The one point distribution function of the line-of-sight velocity component is then

P (u1) =
1

√

πDz(S)
exp

[

− u2
1

Dz(S)

]

(C3)

(the velocity is defined with respect to the rest frame of the cloud, and is, thus, taken to have a zero mean) while the
Gaussian two point probability function is most conveniently given in terms of the uncorrelated variables u = u1 − u2

and u+ = (u1 + u2)/2

P (u, u+) =
1

π
√

2Dz(S)−Dz(r)
√

Dz(r)
exp

[

− u2
+

Dz(S)−Dz(r)/2

]

exp

[

− u2

2Dz(r)

]

(C4)

In LP04 we obtained the general results. Here we reproduce the results of the computation just for the case of
vanishing regular shear velocities vgal that are dealt with in this paper

〈ρs(X1, v1)〉=
ρ̄S

√
π [Dz(S) + 2β]

1/2
exp

[

− v21
Dz(S) + 2β

]

(C5)

〈ρs(X1, v1)ρs(X2, v2)〉=
1

2π

∫ S

−S

dz (S − |z|) ξ(r)

[Dz(r) + 2β]1/2
exp

[

− v2

2(Dz(r) + 2β)

]

×
√
2

[β +Dz(S)−Dz(r)/2]1/2
exp

[

− v2+
β +Dz(S)−Dz(r)/2

]

, (C6)

where we used the notation v = v1 − v2, v+ = (v1 + v2)/2, r = r1 − r2, z = z1 − z2, R = X1 −X2.
The residual dependence of the quantities in Eqs. (C5-C6) on the absolute velocity v1 or v+ is the signature of

statistical inhomogeneity of the density in PPV space at the edges of the line |v1|, |v+| > (Dz(S)+β)1/2. However, we
are interested primarily in the X and v dependence of PPV correlations at separations small compared with the extent
of the cloud in PPV space. If the measurements are done in a narrow velocity channel, then the inhomogeneity means
a different normalization of the correlation function for channels at the edge of the line relative to central channels. If
localization along the velocity coordinates is not focused upon, the observed correlations can, and often are, estimated
by averaging over all central velocities v+ for the fixed v. Whenever the observed signal is linearly related to the
density in PPV, as in the case of the intensity in an optically thin line, such estimation is given by the PPV density
correlation averaged along the velocity coordinate

ξs(R, v)≈ 1

[Dz(S) + 2β]1/2

∫

dv+〈ρs(X1, v1)ρs(X2, v2)〉 (C7)

≈ ρ̄2S

[Dz(S) + 2β]1/2

∫ S

−S

dz

(

1− |z|
S

)

ξ(r)/ρ̄2

[Dz(r) + 2β]1/2
exp

[

− v2

2(Dz(r) + 2β)

]

which is not sensitive to the mean line profile. In this paper we shall not consider scales comparable to the whole

extent of the line and will use Eq. (C7) as our main formula for v ≪ D
1/2
z (S).

At vanishing temperature

ξs(R, v) ≈ ρ̄2S

D
1/2
z (S)

∫ S

−S

dz

(

1− |z|
S

)

ξ(r)/ρ̄2

D
1/2
z (r)

exp

[

− v2

2Dz(r)

]

(C8)

while for a finite temperature we can cast Eq. (C7) in the form of convolution of the zero temperature correlation
function with the thermal window

ξs(R, v) ∝
∫ ∞

−∞

dv′

(4πβ)1/2
exp

[

− (v − v′)2

4β

]
∫ S

−S

dz

(

1− |z|
S

)

ξ(r)

Dz(r)1/2
exp

[

− v′
2

2Dz(r)

]

. (C9)
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D. 1D, 2D AND 3D PPV POWER SPECTRA

Here we present short-wave asymptotics and useful approximations for the 1D, 2D and 3D PPV power spectra. One
of the main formulas of LP00, Eq. (16) expresses the 3D PPV power spectrum through a 3D real space correlation
function. Using the notation of the present paper this result can be written as

Ps(k) ∝
∫

d3reiKRξ(r) exp
[

−k2vDz(r)
]

(D1)

In comparison with LP00, here k = (K, kvD
1/2
z (S)/S) and in the absence of coherent shearing motions (e.g., due to

galactic rotation) the 3D plane wave is reduced to the 2D one. For the negative γ we integrate over the structure
function d(r) rather than the correlation function ξ(r).
The one-dimensional spectrum along the velocity coordinate is

P1(kv)=

∫

dKPs(K, kv) (D2)

∝
∫

dzξ(z) exp
[

−k2vDz(S)(z/S)
m
]

∝ (r0/S)
γ
[

kvD
1/2
z (S)

]2(γ−1)/m

(D3)

The result is valid for γ < 1. P1(kv) coincides with Pnar(kv) in this paper.
The two-dimensional spectrum orthogonal to the line of sight is

P2(K)=

∫

dkvPs(K, kv) (D4)

∝
∫

d3reiKR
ξ(r)

rm/2
− (regularization for γ +m/2 ≤ 1)

∝− rγ0S
m/2

D
1/2
z (S)

∫

d2ReiKR

∫

dz

[

(R2 + z2)1−γ/2+m/4

(1 +m/2)R2 + z2
− 1

zγ+m/2

]

(D5)

∝ (r0/S)
γ
(KS)

γ+m/2−3
(D6)

The regularizing term that appears in Eq. (D5) is proportional to δ(K), thus not affecting the high wave number
asymptotics. Its introduction is equivalent to taking the Fourier transform of ds(R) = 2(ξs(0, 0)−ξs(R, 0)) rather than
ξs(R, 0) to compute the P2(K). This definition is appropriate for shallow spectra γ +m/2 ≤ 1. The final asymptotics
is valid for γ +m/2 > −1. For 1 < γ +m/2 < 3 no regularization is necessary and asymptotic expression (D6) arises
directly.
The spectra in orthogonal PPV directions, P1(kv) and P2(K) look quite different. Let us however introduce the

scaled velocity wavenumber kæ = S
[

k2vDz(S)
]1/m

and correspondingly transformed PPV wavevector kPPV = (K, kæ).
The 1D spectrum in kæ coordinates is obtained from the condition of power conservation under variable change,

P1(kæ)dkæ = P1(kv)dkv = (Dz(S)/S
m)1/2P1 (kv[kæ]) k

m/2−1
æ dkæ. Therefore,

P1(kæ) ∝ (r0/S)
γ (Dz(S)/S

m)1/2 [kæS]
γ+m/2−2 . (D7)

With this variable change, correspondent to transformation in PPV space from v to zv according to Eq. (50), the spectra
exhibit the same scaling in both zv and position coordinates (the difference by one is due to different dimensionality of
spaces that P1 and P2 are defined on). This is the same relation that we have discussed for the structure functions in
Section 3.5, however the language of spectra has an advantage that there is no issue with structure function saturation
for γ + 3m/2 < 1.
The asymptotic scalings of all PPV spectra at high wavenumbers, including the one for 3D Ps(K, kv) that we take

from LP00, are summarized in Table D3. In this Table the two parts that 3D spectrum Ps(k) splits into (see LP00)

Ps(k) = Pv(k) + Pρ(k) , (D8)

(where the part Pv(k) depends only on the velocity statistics and the part Pρ(k) has contributions from both velocity
and density), are presented separately.
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