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Abstract

The aim of this paper is to check if the models with realistic inhomogeneous matter dis-
tribution and without cosmological constant can explain the dimming of the supernovae
in such a way that it can be interpreted as an acceleration of the Universe. Employing
the simplest inhomogeneous model, i.e. Lemâıtre–Tolman model, this paper examines
the impact of inhomogeneous matter distribution on light propagation. These analyses
show that realistic matter fluctuations on small scales induce brightness fluctuations in
the residual Hubble diagram of amplitude around 0.15 mag, and thus can mimic ac-
celeration. However, it is different on large scales. All these brightness fluctuations
decrease with distance and hence cannot explain the dimmining of supernovae for high
redshift without without invoking the cosmological constant.This paper concludes that
models with realistic matter distribution (i.e. where variation of the density contrast is
similar to what is observed in the local Universe) cannot explain the observed dimming
of supernovae without the cosmological constant.

PACS Codes: 98.65.Dx, 98.65.-r, 98.62.Ai

1 Introduction

This paper examines the supernova observations in order to thoroughly estimate the influence

of inhomogeneities on light propagation. Studies in this field proved that inhomogeneities can

mimic the cosmological constant. However, this does not prove consistent with other
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astronomical observations. This paper provides some quantitative insight to matter

fluctuations’ influence in terms of the amplitude, δm, measured in the residual Hubble diagram.

The observations of supernovae are a powerful tool in modern cosmology. Analyses of the

supernova brightness provide us with a reliable estimation of their distance from an observer.

For this estimation to be satisfactory, all factors which might influence the observed supernova

luminosity must be taken into account. In literature five factors are examined; namely,

evolution of supernovae, dust absorption, selective bias, gravitational lensing, and cosmological

models. Except for the last one they do not seem to be responsible for observed ’dimming’ (for

details see Refs. [1–5]). Analyses of supernovae in various homogeneous cosmological models

imply a non-zero cosmological constant. However, similar analyses in inhomogeneous models

have not been systematically studied.

The luminosity distance of supernovae without the homogeneity assumption is to be analysed

as well. The luminosity distance in inhomogeneous models might differ from the FLRW

results. To examine this issue the Lemâıtre–Tolman model is employed. In this approach not

only matter is inhomogeneously distributed but the expansion of the space in not uniform as

well. Results in the form of the residual Hubble diagram provide us with the estimation of the

impact of matter inhomogeneities.

The effect of inhomogeneous matter distribution on supernova observations was studied by

many authors. For example employing the Lemâıtre–Tolman model and the Taylor expansion

of the luminosity distance in powers of the redshift Célérier [6] showed that the

inhomogeneities can mimic the cosmological constant. Iguchi, Nakamura and Nakao [7] also

used the Lemâıtre–Tolman model to show that it is possible to fit supernova data without the

cosmological constant. Similar results were obtained in the Stephani model by God lowski,

Stelmach and Szyd lowski [8]. and in the Szafron model [9]. Also models by Alnes,

Amarzguioui and Gron [10] where the density is increasing with distance and models by

Enqvist and Mattsson where expansion is decreasing with distance [11] successfully fit

supernova data without a need for the cosmological constant. There have also been other

models proposed, in particular Swiss cheese models by Mansouri [12] and Brouzakis, Tetradis

and Tzavara [13,14]. For a review on explanation of the acceleration expansion without the

cosmological constant the reader is referred to Ref. [15]. The effect of inhomogeneities was also

studied with aid of approximate methods [16–18]. Recently Vanderveld, Flanagan and

Wasserman [19] studied this issue using perturbation approach up to the second order in

density fluctuations. Their results are similar to [16–18] and indicate that the effect of

inhomogeneity on the expansion of the Universe is small and thus cannot explain the apparent

acceleration. However, because of the perturbation framework their results are valid only for

small values of density fluctuations. Since the real density fluctuations in our Universe largely
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exceed δ ∼ 1 in order to draw reliable conclusion similar analyses should be conducted by

employing exact solution of the Einstein equations.

These studies have shown that matter inhomogeneities can explain the apparent acceleration of

our Universe without employing the cosmological constant. This paper not only indicates that

there are some specific conditions which enable explanation of the supernova dimming without

Λ but also examines the influences of the realistic matter distribution on light propagation.

The structure of this paper is as follows: Sec. 2 presents the Lemâıtre–Tolman model; in Sec.

3 presents observational constraints; Sec. 4.1.1 presents the residual Hubble diagram for

models with realistic density distribution but without the cosmological constant; Sec. 4.1.2

presents results of fitting models to the supernova measurements without the cosmological

constant; Sec. 4.2 presents the residual Hubble diagram for models with the realistic density

distribution and with the cosmological constant.

2 The Lemâıtre-Tolman model

The Lemâıtre-Tolman [20,21] model is a spherically symmetric solution of the Einstein

equations with a dust source. In comoving and synchronous coordinates, the metric is:

ds2 = c2dt2 −
R′2(r, t)

1 + 2E(r)
dr2 −R2(t, r)dΩ2, (1)

where dΩ2 = dθ2 + sin2 θdφ2, and E(r) is an arbitrary function of r. Because of the signature

(+,−,−,−), this function must obey E(r) ≥ −1
2 .

The Einstein equations can be reduced and presented as follows:

κρc2 =
2M ′

R2R′
, (2)

1

c2
Ṙ2 = 2E(r) +

2M(r)

R
+

1

3
ΛR2, (3)

where M(r) is another arbitrary function and κ = 8πG
c4

.

When R′ = 0 and M ′ 6= 0, the density becomes infinite. This happens at shell crossings. This

is an additional singularity to the Big Bang that occurs at R = 0,M ′ 6= 0. The shell crossing

can be avoided by setting the initial conditions appropriately [22].

Equation (3) can be solved by a simple integration:
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R(r)
∫

0

dR̃
√

2E(r) + 2M(r)

R̃
+ 1

3ΛR̃2
= c (t− tB(r)) , (4)

where tB(r) appears as an integration constant, and is an arbitrary function of r. This means

that unlike in the Friedmann models the Big Bang is not a single event, but it can occur at

different times at different distances from the origin.

Thus, the evolution of the Lemâıtre–Tolman model is determined by three arbitrary functions:

E(r), M(r), and tB(r). The metric and all the formulae are covariant under arbitrary

coordinate transformations of the form r = f(r′). Using such a transformation, one of the

functions determining the Lemâıtre-Tolman model can be given a desired form. Therefore, the

physical initial data of the Lemâıtre-Tolman model evolution consists of two arbitrary

functions (see Ref. [23] on how to specify the Lemiâıtre–Tolman model).

2.1 The Hubble parameter

In the Friedmann limit R → ra [a(t) is the scale factor], so the simplest generalisation of the

Hubble constant which in Friedmann models is H0 = ȧ/a would be H = Ṙ/R. However, from

the comparison of the approximate distance-redshift relation [24,27] with the Hubble law, the

Hubble parameter would rather be H = Ṙ′/R′. However, the above mentioned relation is valid

only for low redshift and thus if one analyses astronomical data of high redshift one should

refer to the definition of the Hubble constant based on the rate of volume change [24], i.e.

H = (1/3)Θ (where Θ is the scalar of the expansion), which in the Lemâıtre–Tolman model is:

H =
1

3
Θ =

1

3

(

2
Ṙ

R
+

Ṙ′

R′

)

. (5)

The above ambiguity in the definitions of the Hubble constant shows that one should be very

careful in measuring the parameter which is called the Hubble constant. For example the value

of the Hubble constant derived from the continuity equation: Hc = −(1/3)(ρ̇/ρ) (where ρ is

density) is in general not equal to the Hubble constant derived from the measurements of the

Hubble flow: Hf = V/D (where V is the receding velocity, D distance).

In this paper when referring to the Hubble parameter it is assumed that the Hubble parameter

is defined by eq. (5). Please note that at origin because of the regularity condition [25] R → ra

and H coincides with H0.
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2.2 The redshift formula

Light propagates along null geodesics. The vector tangent to the null geodesic, kα, obeyes the

following relation:

kα;βk
β = 0. (6)

As light propagates the frequency of photon changes. The ratio of the frequency at the

emission instant to the frequency at the observation moment defines the redshift:

νe
νo

:= 1 + z. (7)

The energy of photons measured by an observer with a 4–velocity uα is proportional to kαuα.

Thus, the redshift formula is as follows:

1 + z =
(kαuα)e
(kαuα)o

(8)

where subscripts e and o refers to instants of emission and observations respectively.

In the Lemâıtre–Tolman model the above formula reduces to [26,27]:

ln(1 + z) =
1

c

re
∫

ro

dr
Ṙ′(t(r), r)
√

1 + 2E(r)
, (9)

where all the above quantities are evaluated at the null cone, i.e. they can be calculated by

solving the following equation:

cdt = −
R′(t, r)

√

1 + 2E(r)
dr. (10)

From eq. (3) we obtain:

Ṙ′ =
c2

Ṙ

(

M ′

R
−

MR′

R2
+ E′ +

1

3
ΛRR′

)

. (11)

Models considered in this paper were defined by functions presented in Table 1. The radial

coordinate was chosen as a present day value of the areal radius, i.e. r := R0. In the case when

5



model is defined by a pair tB and ρ, M(r) is calculated from eq. (2) then the function E(r) is

calculated from eq. (4). In the case when model is defined by a pair H(r) and ρ, M(r) is

calculated from eq. (2), then Ṙ is calculated from eq. (5), and finally eq. (3) is used to

calculate E(r).

Once the functions M(r), E(r) are known, the evolution equation — eq. 3 — can be solved

and the evolution of the model can be traced back in time. Simultaneously eq. (10) is solved in

order to calculate all quantities at the null cone. Then, using eqs. (11) and (9) the redshift can

be estimated. Finally, from the reciprocity theorem [24], the luminosity distance is calculated

using the following relation:

DL(t(r), r) = R(t(r), r)(1 + z)2. (12)

3 Observational constrains

The astronomical observations providing us with information about the local Universe prove

that matter distribution and expansion of the space are not homogeneous.

The measurement of the matter distribution implies that the density contrast (δ = ρ/ρb − 1)

varies from δ ≈ −1 in voids [28] to δ equal to several tens in clusters [29]. These structures are

of diameters varying from several Mpc up to several tens of Mpc. However, if averaging is

considered on large scales, the density varies from 0.3ρb to 4.4ρb [30, 31] and the structure sizes

are of several tens of Mpc. So far there is no observational evidence that structures larger than

supercluster, i.e. of diameters of hundreds of Mpc or larger exist in the Universe.

The measurements of the Hubble constant provide us with diffrent values of H0 — from

61 ± 3 (random) ± 18 (systematic) km s−1 Mpc−1 [32], to H0 = 77 ± 4 ± 7 km s−1 Mpc−1 [33].

However, due to very large observational and systematical errors (larger than 10%) it is

impossible to observe any variations of the Hubble constant.

This paper assumes that any realistic model must remain consistent with the above

astronomical data. Namely, in models with the Hubble parameter as a variable we expect

these variations to stay within the range indicated by the above observations. Analogously, in

models with an inhomogeneous density distribution, we expect the density fluctuations to

remain within the range indicated by the observations.
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4 Results

The supernova observations are provided by the gold data set [2]. This data is presented in

form of the distance moduli, i.e.:

µ = m−M = 5 log D + 25 (13)

where m represents an observed magnitude, M — absolute magnitude, and D — luminosity

distance expressed in Mpc. The usual way of presenting the supernova data is the residual

Hubble diagram. The residual Hubble diagram presents ∆m as a function of redshift:

∆m = m−memp = 5 log
D

Demp
. (14)

where memp is an expected magnitude in an empty RW model.

The luminosity distance in the empty cosmology is larger than in the decelerating FLRW

universe but it is smaller than in the accelerating FLRW universe. Therefore, if the supernovae

are fainter (of higher magnitude) than they would be for an empty universe, this is interpreted

as an evidence of acceleration. In the analyses below the results are presented in the form of

the residual Hubble diagrams. The chosen background model, on which fluctuations will be

imposed, is the FLRW model with the density:

ρb = 0.27 × ρcr = 0.27
3H2

0

8πG
, (15)

and the Hubble constant H0 = 65 km s−1 Mpc−1.

4.1 Models without cosmological constant

This section examines if the observed dimming of the supernova brightness may be caused

merely by the matter inhomogeneities, without employing the cosmological constant. To do so

the cosmological constant is set to zero and presureless matter is assumed to be the only

component of the Universe.

4.1.1 Realistic fluctuations

Astronomical observations of the local Universe indicate that its density varies from low values

in voids to high values in clusters. Models 1, 2 and 3 are rough estimates of this phenomenon.
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In model 1 the majority of regions through which supernova light propagates are of low

density. In model 2 most regions’ density is higher than the background density. Model 3 has a

cosine variation of density and its average density is of the background value. The exact form

of these fluctuations is presented in Table 1. Alhtough the density distribution in above models

is spherically symmetric and the real matter distribution in the Universe is not, such

estimation is adequate if the time of the light propagation is small. For larger periods of time

the evolution of matter becomes important. However since redshift z ≈ 0.5 the Universe did

not evolve significantly, so up to redshifts z ≈ 0.5 the analysis presented here should not differ

significantly form reality. For higher redshifts we may expect larger differences between the

results of these models and the real picture. Despite these differences, such analysis is

important because it provides us with estimation of the influence of light propagation effects

on the final results of supernova observations.

Current density distributions are equal to these shown in Fig. 1. Note that this graph only

represents density up to 200 Mpc to demonstrate a periodic character of assumed density

distributions. As mentioned in Sec. 2 to specify the Lemâıtre–Tolman model two initial

conditions have to be known. The first initial condition is the density distribution. The second

initial data in this section is the distribution of the bang time function. It is assumed that

tB(r) = 0. This assumption follows from the Cosmic Microwave Background (CMB)

observations. These observations imply that the Universe was very homogeneous at the last

scattering moment and as a consequence the amplitude of the bang time function could not be

larger than a few thousand years, which in comparison with the present age of the Universe is

negligible. If the tB were of larger value the temperature fluctuations would be greater than it

is observed in the CMB sky [34].

Using the algorithm from Sec. 2 the luminosity distance was calculated for the three above

mentioned models.

The results are presented in the form of the residual Hubble diagram in Fig. 2 and indicate

that realistic density fluctuations can mimic the acceleration on small scales. Firstly, in the

residual diagram there are some regions where ∆m is positive. Secondly, in some regions the

luminosity distance increases faster than in the FLRW models. However, on large scales, a

tendency for curves to decrease remains unchanged. Near the origin the fluctuations in

residual diagram are large and are approximately equal to 0.15 mag, but they are decreasing

with distance.

Fig. 2 also depicts the curve for the homogeneous Ωmat = 0.27, ΩΛ = 0 model which, however,

is not clearly visible due to very tight fluctuations of model 3 around it. Curve 2 presented in

Fig. 2 lies above the curve of the the homogeneous hyperbolic model because in this model the
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Figure 1: Density distribution models 1, 2 and 3 (Sec. 4.1.1), and models 7, 8, 9 (Sec 4.2).

expansion of the space is smaller than the expansion of the homogeneous Universe. This is

because in this model the density of regions through which light propagates is larger than the

background density. In model 1, a vast majority of the region is of lower density, hence, curve

1 is below the curve representing the hyperbolic homogeneous Universe. As one can see, if

Λ = 0, the realistic density fluctuations alone cannot be responsible for the observed dimming

of the supernova brightness.

4.1.2 Fitting the observations

It has been proved that the Lemâıtre–Tolman model may be fitted to any set of observational

data [35]. Thus, the Lemâıtre–Tolman model can always be fitted to supernova data, without

employing a cosmological constant. Nevertheless, if such a fitted model is in consistent with all

the astronomical data (such as galaxy redshift surveys, CMB), then the problem remains

unresolved. This section addresses the above mentioned problems.

To specify a Lemâıtre–Tolman model one needs to know two initial functions. The functions

such as E(r) or M(r) are difficult to extract from observations. However, the observations

provide us with the measurements of ρ, H0 and tB. In this section these functions are chosen
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Figure 2: Magnitude residual diagram for models 1, 2 and 3. For clarity supernova data (gold
data set) from Ref. [2] is only presented for redshifts larger than 0.4.

Table 1: The exact form of functions used to define models 1–9.
Model Pair of functions

model 1 tB = 0; ρ/ρb = 0.5 + 0.2 cos(10−5πrMpc−1)
+0.5 cos2(10−5πrMpc−1)

model 2 tB = 0; ρ/ρb = 0.4 + 0.6 cos(2 × 10−5πrMpc−1)
+1.8 cos2(2 × 10−5πrMpc−1)

model 3 tB = 0; ρ/ρb = 1 + 0.4 cos(10−5πrMpc−1)
model 4 tB = 0; ρ/ρb = 1 + (8 × 10−6rMpc−1)0.55

model 5 ρ/ρb = 1;
H/H0 — not an analytic functions, see Fig. 4

model 6 tB = 0; H/H0 = 1
model 7 as in model 1
model 8 as in model 2
model 9 as in model 3
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to enable one of them to be consistent with the astronomical observations, while the second

function remains in accordance with the supernova observations as much as possible.

The Following models are considered:

1. Model 4.

In model 4 the bang time function tB(r) = 0 is consistent with the CMB observations.

The density distribution is chosen so that it fits the supernova observations. The results

are presented in Fig. 3. The values of χ2 test are presented in Table 2. The density

distribution in model 4 monotonically increases; from an average value (ρ = ρb) at the

origin to a value of ρ = 2.5ρb at the distance of 3 Gpc. The increase of density yields a

decrease of the expansion. Fig. 4. presents the Hubble parameter (as defined by eq. (5)).

If local density and Hubble flow measurements extend up to the distance of Gpc then it

might be supposed that model 4 is unrealistic. However, there are no systematic

observations of the density distribution or expansion at distances of Gpc and all that is

really known is that the relative motion of our Galaxy with respect to the CMB is small.

This implies that to explain the relatively small motion with respect to the CMB rest

frame the expansion of the Universe should increase at a larger distace. As can be seen

the Lemâıtre–Tolman model is of a great flexibility so one can always choose such

functions which would fit the CMB (the diameter distance to the surface of the last

scattering is approximately 14 Gpc). This, however, requires futher complications of such

a model.

2. Model 5.

In model 5 the density distribution is assumed to be equal to the background value

ρ = ρb. This implies that no Gpc–scale structures exist in it. The second function which

defines the Lemâıtre–Tolman model is the Hubble parameter which is chosen to fit the

supernova observations. The variations of the Hubble parameter are presented in Fig. 4.

As can be seen in Fig. 4 the variations of the Hubble parameter are comparable within

3σ estimation of the Hubble constant. However, such a behaviour is rather unrealistic,

and together with model 4 suggests the existence of very large scale structures (of several

Gpc diameters). Furthermore, in model 5 the bang time function is very inhomogeneous

and decreases to almost −1.7 billions years at distance of 2.4. Such a large amplitude of

tB is strongly inconsistent with CMB observations.

3. Model 6

In this model the Hubble parameter is chosen to be of 65 km s−1 Mpc−1. The density

and tB(r) are chosen to fit the supernova data. However, none of the attempts to obtain
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Figure 3: The residual Hubble diagram for models 4 and 5.

a satisfactory fit to the observational data succeeded. The best fitted model within the

family of constant H models is the empty FLRW model (with ∆m = 0).

The above results suggest that the only way to fit the supernova data is to set the expansion of

the Universe to be decreasing on the past null–cone. This can be done either be setting the

expansion of the Universe to be decreasing with radial coordinate (models 4 and 5) or to

assume the existence of cosmological constant (standard approach). The first alternative

implies that the cosmological constant is not needed but our position in the Universe is very

special and that on the scales of Gpc there exist large structure in the Universe. The second

alternative is that the models presented in this section support the present–day acceleration of

the Universe as an explanation of the supernova observations. Within the type of models

considered above it is impossible to fit the supernova data with realistic matter distribution

(i.e. where variations of the density contrast are similar to what is observed in the local

Universe). Currently, in terms of analyses of observations it seems that these two

interpretations are equally probable. The difference is in the philosophical assumptions. The

first interpretation requires that our position in the Universe is a special one. This, however,

cannot be proved right or wrong by any current observations. The galaxy redshift surveys, like

SDSS or 2dFGRS, measure galaxis up to redshift only z ≈ 0.4. On the other hand the CMB

observation provide us with information about the state of the Universe which is currently
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Figure 4: The Hubble parameter for models 4 and 5.

about 14 Gpc remote from us. Because of flexibility of the Lemâıtre–Tolman model, models 4

and 5 can be fitted to the CMB data, simply by assuming that this Gpc–structure is

compensated by outer regions and than the Universe is homogeneous. This implies the

existance of very a large structure in the Universe, of diameters of order of Gpc. The second

interpretation is based on the assumption that our position in the Universe is not special at all

and on large scale the Universe is homogeneous. As mentioned above this assumption cannot

be verified by observation, however there are some theoretical results that support this

statement. These are the Ehler-Geren-Sachs (EGS) [36] theorem and ‘almost EGS

theorem’ [37] which states that if anisotropies in the cosmic microwave background radiation

are small for all observers then our Universe must be ’almost FLRW’ on large scales.

Therefore, it seems that the interpretation that the cosmological constant is of a non–zero

value seems to be more probable.

4.2 Cosmological constant

This section investigates the light propagation in the inhomogeneous universe with the

cosmological constant. The value of the cosmological constant corresponds to the concordance

value, ΩΛ = 0.73. Investigated models include model 7, 8, and 9. These models’ density
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Table 2: Test χ2 of fitting the supernova observations.
Model χ2

NDF

model 1 2.05
model 2 1.46
model 3 1.62
model 4 1.19
model 5 1.15
model 7 1.35
model 8 1.26
model 9 1.14
FLRW (Ωm = 0, ΩΛ = 0) 1.35
FLRW (Ωm = 0.27, ΩΛ = 0.73) 1.14
FLRW (Ωm = 0.27, ΩΛ = 0) 1.59

distribution is similar to the density distribution of models 1, 2, and 3 respectively. The results

of fitting these models to supernova data are presented in Table 2.

Results presented in Fig. 5 indicate that realistic matter fluctuations (as in the case with no

Λ) introduce fluctuations to the residual Hubble diagram. These fluctuations are large for low

redshifts but decrease fast for high redshifts. It can be seen from Table 2 that all models with

Λ fit the supernova data better. The residual Hubble diagram presented in Fig. 5 shows that

the influence of the density fluctuations is significant only for small redshifts. It is uncertain

whether this phenomenon is real or is just a consequence of the spherical symmetry

assumption. Within a small distance from the origin, spherical symmetry is valid but as the

distance increases it becomes less accurate. Fig. 5 indicates that the amplitude of the

fluctuations in the residual Hubble diagram is decreasing with redshift. This can be due to the

evolution — in the past, the density fluctuations were of a smaller amplitude, hence the lower

amplitude of fluctuations in the residual diagram. However, the Universe has not evolved

significantly since the redshit z ≈ 0.5. so it might be possible that in non-symmetrical models

the amplitude of the magnitude fluctuations would not decrease so fast as in our case. To

confirm this hypothesis the above calculations should also be repeated in the inhomogeneous

nonsymmetrical model. If it is confirmed it could partly explain the large scatter of the

supernova data which is currently believed to be caused by numerous factors, like

observational errors or non–uniform absolute brightness of the supernovae.
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Figure 5: Magnitude residual diagram for models 7, 8 and 9. For clarity reason supernovae data
(gold data set) from Ref. [2] are presented only for redshift larger than 0.4.

5 Conclusion

This paper investigates the propagation of the light of supernovae in the inhomogeneous

Lemâıtre–Tolman model. The inhomogeneous models are of great flexibility and can fit the

data without invoking the cosmological constant, which has been proved by Mustapha, Hellaby

and Ellis [35]. Many authors before, like Célérier [6] or recently Alnes, Amarzguioui and

Gron [10] have proved that the matter inhomogeneities in the Lemâıtre–Tolman model can

mimic the cosmological constant and thus can be an alternative to dark energy. However, this

paper indicates that the models which fit the supernova measurement without invoking the

cosmological constant are very peculiar (see model 4 and 5, Sec. 4.1.2). These models have

either a very peculiar expansion of the space (decreasing from the origin), or an unrealistic

density distribution (increasing from the origin) or/and a very large amplitude of the bang

time function (tB(r)). Introducing the Ockham’s Razor principle, it is more likely that the

Universe is accelerating rather than the conditions in our position in the Universe are so very

special and extraordinary that they could be possibly responsible for the observed dimmining

of the supernova brightness.

The results show that in the inhomogeneous Lemâıtre–Tolman model the amplitude of
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brightness fluctuations observed in the residual Hubble diagram is significantly large for low

redshifts of amplitude around 0.15 mag but it decreases for higher redshifts. Thus, for redshifts

larger than z ≈ 0.3 these fluctuations are neglgible. All this may be the result of the evolution

(as in the past the density fluctuations were smaller, and, consequently were of smaller

influence on the brightness fluctuations). However, it is also possible that this fast decrease

can be due to the symmetry restrictions. The Lemâıtre–Tolman model assumes a spherical

symmetry which puts too many constrains on the evolution and another parameters of the

model. Therefore, it would be worth investigating the light propagation in the models which

are both non-symmetrical and inhomogeneous. If in the inhomogeneous and non-symmetrical

models the magnitude fluctuations do not decrease so fast, the observed scatter of supernova

measurements might be partially possible to explain.

The main conclusion of this paper is that matter inhomogeneities introduce the brightness

fluctuations to the residual Hubble diagram of amplitude approximately 0.15 mag for low

redshifts, and thus can mimic the acceleration on small scales. However, to explain the excess

of faint supernovae without applying any special conditions (such as for instance peculiar

expansion of the Universe) the cosmological constant has to be employed.
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