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ABSTRACT

Close binary systems of compact stars, due to the emission of gravitational radiation,

may evolve into a phase in which the less massive star transfers mass to its companion.

We describe mass transfer by using the model of Roche lobe overflow, in which mass

is transferred through the first, or innermost, Lagrange point. Under conditions in

which gravity is strong, the shapes of the equipotential surfaces and the Roche lobes

are modified compared to the Newtonian case. We present calculations of the Roche

lobe utilizing the second order post-Newtonian (2PN) approximation in the Arnowitt-

Deser-Misner gauge. Heretofore, calculations of the Roche lobe geometry beyond the

Newtonian case have not been available. Beginning from the general N-body Lagrangian

derived by Damour and Schäffer, we develop the Lagrangian for a test particle in the

vicinity of two massive compact objects. As an exact result for the transverse-traceless

part of the Lagrangian is not available, we devise an approximation that is valid for

regions close to the less massive star. We calculate the Roche lobe volumes, and provide

a simple fitting formula for the effective Roche lobe radius analogous to that for the

Newtonian case furnished by Eggleton. In contrast to the Newtonian case, in which the
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effective Roche radius depends only upon the mass ratio q = m1/m2, in the 2PN case

the effective Roche lobe radius also depends on the ratio z = 2(m1 +m2)/a of the total

mass and the orbital separation.

Subject headings: relativity — binaries: close — stars: mass loss

1. Introduction

During the evolution of a close binary system involving compact stars, the stellar separation

shrinks due to the emission of gravitational waves. In the event that the stars are not of equal mass,

and the less massive star has a larger radius than its companion, mass transfer may ultimately occur.

Gravity wave emission generally causes the mutual orbit to circularize (Peters 1964). For circular

orbits, conservative mass transfer can be modelled as Roche lobe overflow under the assumption

that the star is not significantly disrupted due to tidal interactions. The Roche lobe is the innermost

gravitational plus centrifugal equipotential surface encompassing both stars.

In the model Roche lobe overflow, the radius of the less massive star is compared to the effective

radius of its Roche lobe. Once the two radii become equal, because the Roche lobe radius decreases

due to orbital decay, the star fills its Roche lobe and mass transfer occurs through the first, or

innermost, Lagrange point L1. Lying on the Roche lobe, L1 is located between the two stars on

the axis connecting their centers and is also a saddle point of the gravitational plus centrifugal

potential between the two stars. Due to its saddle point nature, the first Lagrange point acts as a

gravitational funnel through which mass transfer occurs.

Values of the Roche lobe radii as a function of orbital separation and mass ratio q = m1/m2,

where m1 refers to the lighter star, have been tabulated by Kopal (1959) for the Newtonian case.

Paczyński (1971) and Eggleton (1982) have given analytical fits. We use Eggleton’s functional form,

which has the advantage of being a continuous function of q, as a template in our work.

In this work, we carry out calculations of Roche lobes beyond the Newtonian case. We employ

the Arnowitt-Deser-Misner (ADM) form of post-Newtonian expansion and use the corresponding

Lagrangian at the second order (2PN) level wherein terms up to (M/r)2, where M = m1 + m2

and r is the distance, are retained. The same procedure as used in the Newtonian case for finding

the Roche lobes is utilized. Our strategy is to (i) construct the effective potential for the point

particle in the vicinity of two stars (the 3–body problem) in the co–rotating frame; (ii) evaluate

equipotential surfaces and calculate the corresponding effective Roche volume and radius for this

potential; and (iii) provide new fitting formulae as Eggleton did for applications involving mass

transfer.

The organization of this work is as follows. In §2, we calculate the effective potential for three

bodies at the 2PN level. We establish the Lagrangian in §2.1. The transverse-traceless part of

the Lagrangian is evaluated explictly in §2.2 through the introduction of an approximation valid
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for regions near m1 for test particles. In §3, we evaluate the Roche lobes and their effective radii

as a function of q and a relativity parameter for this potential, and provide a simple analytical

fit. In this section, we also show the impact of post–Newtonian corrections on the positions of the

Lagrange points and on the position of the center of mass. Our conclusions are contained in §4.
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−→

R 12

−→
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−→r
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Fig. 1.— The notation used in the evaluation of the Roche lobes in the 2PN approximation.

Stellar masses are denoted by m1 and m2 and the point-particle mass is taken to be m0. Vectors

RA (A = 0, 1, 2) denote positions of the three bodies with respect to the origin O, r is the position

of a generic point P , and rA is the position of this point with respect to the mass mA (we show

only r0). The vectors RAB indicate positions of the three bodies with respect to each other.

2. The 2PN potential for 3 bodies

Roche lobes are defined through the acceleration that a point-like particle feels in the frame

that is co-rotating with the two massive objects. While velocities of all three bodies disappear in

this frame, accelerations are vanishing only for the two massive objects with masses m1 and m2.

The effective potential causes acceleration on the third object, the point-particle with mass m0.
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Starting from the N-body Lagrangian in ADM coordinates derived by Damour & Schäfer (1985),

we obtain the 3–body Lagrangian for the situation depicted in Figure 1. We adopt the convention

in which we denote masses with uppercase Latin indices (A,B, . . .) and coordinates with lowercase

Latin indices (i, j, . . .). Also, we use units such that G = 1 and c = 1. We express all inertial-frame

velocities in terms of the rotating-frame velocities and the remaining rotationally induced part:

vA = vrot
A + ω × rA , (1)

where ω is the angular frequency of the rotating frame. Setting vrot
A = 0 for A = {0, 1, 2}, and

v̇rot
A = 0 for A = {1, 2}, but keeping v̇rot

0 6= 0 enables us to find the acceleration on the point–like

particle (body 0) from

m0ξ̈i =
d

dt

(∂L

∂ξ̇i

)
∣
∣
∣
∣
∣
vc.r.
A

=0

, (2)

where we have denoted the coordinate of the point–like body in the co–rotating frame by ξ. We

have

ξi = 0 , ξ̇ = 0 , and ξ̈i 6= 0 , (3)

since v̇c.r.
0 = ξ̈. We can find the effective potential for the particle 0 by separating out the “kinetic”

part of the Lagrangian that contains terms that are quadratic in ξ̇ and by treating the remaining

part of the Lagrangian as the effective potential that we have to determine. It is straighforward to

verify that this approach yields the Euler-Lagrange equations for ξi. After setting ξ̇ = 0, we use

the resulting potential in order to trace the equipotential surfaces that correspond to the Roche

lobes.

2.1. The 2PN Lagrangian

The computation of the effective Roche radii requires the effective potential that acts on a point

particle in the vicinity of two massive bodies. In order to improve upon the existing Newtonian

results, we utilize results that were obtained by using the post-Newtonian approximation of general

relativity.

The Roche problem requires a three–body Lagrangian in the case in which one of the bodies

is a point-like particle of infinitesimal mass. Such results were derived for the more general N-body

case by Damour & Schäfer (1985) who retained terms up to the second order (2PN) in M/r in the

Arnowitt–Deser–Misner (ADM) coordinate gauge.

For completeness, we list the main results of Damour & Schäfer (1985) here. The Newtonian,

or zeroth order, result is familiar:

LN =
1

2

∑

A

mAv
2
A +

1

2

∑

A,B 6=A

mAmB

rAB
, (4)
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where rAB ≡ |RAB |. The first order post-Newtonian correction is

L2 =
1

8

∑

A

mAv
4
A

+
1

4

∑

A,B 6=A

mAmB

rAB

{

6v2A − 7 (vA · vB)− (nAB · vA) (nAB · vB)
}

−1

2

∑

A 6=B 6=C

mAmBmC

rABrAC
, (5)

whereas the second order post-Newtonian contribution is

L4 =
1

16

∑

A

mAv
6
A +

3

8

∑

A,B 6=A,
C 6=B,D 6=C

mAmBmCmD

rAB rBC rCD
+

1

4

∑

A,B 6=A,
C 6=A,D 6=A

mAmBmCmD

rAB rAC rAD
− UTT

+
1

4

∑

A,B 6=A,

C 6=A

mAmBmC

rAB rAC

{

9v2A − 7v2B − 17 (vA · vB) + (nAB · vA) (nAB · vB)

+(nAB · vB)
2 + 16 (vB · vC)

}

+
1

8

∑

A,B 6=A,

C 6=A

mAmBmC

r2AB

{

− 5 (nAB · nAC) v
2
C + (nAB · nAC) (nAC · vC)

2

−2 (nAB · vA) (nAC · vC)− 2 (nAB · vB) (nAC · vC) + 14 (nAB · vC) (nAC · vC)
}

−1

2

∑

A,B 6=A,

C 6=A,B

mAmBmC

(rAB + rBC + rCA)
2

{

3 (nAB + nAC) · vA (nAB − nBC) · vB

+(nAB + nAC) · vA (nAB − nBC) · vA + 8 (nAB + nAC) · vA (nAB − nBC) · vC

−16 (nAB + nAC) · vC (nAB − nBC) · vA + 4 (nAB + nAC) · vC (nAB − nBC) · vC

}

+
1

2

∑

A,B 6=A,

C 6=A,B

mAmBmC

(rAB + rBC + rCA) rAB

{

3
[

(vA · vB)− (nAB · vA) (nAB · vB)
]

+
[

v2A − (nAB · vA)
2
]

− 8
[

(vA · vC)− (nAB · vA) (nAB · vC)
]

+4
[

v2C − (nAB · vC)
2
]
}

−1

4

∑

A,B 6=A

mAm
2
B

r2AB

{

v2A + v2B − 2 (vA · vB)
}

+
1

16

∑

A,B 6=A

mAmB

rAB

{

14v4A − 28v2A (vA · vB)− 4v2A (nAB · vA) (nAB · vB) + 11v2Av
2
B

+2(vA · vA)
2 − 10v2A(nAB · vB)

2 + 12 (vA · vB) (nAB · vA) (nAB · vB)

+3(nAB · vA)
2(nAB · vB)

2
}

. (6)
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The term UTT refers to the transverse-traceless part of the Lagrangian potential which requires

special treatment and is explicitly evaluated in §2.2.

We now specialize to the case of three bodies with masses m0, m1, and m2. For the Newtonian

and the first order post-Newtonian correction, we obtain

LN =
1

2

{

m0v
2
0 +m1v

2
1 +m2v

2
2

}

+
m0m1

r01
+

m0m2

r02
+

m1m2

r12
, (7)

and

L2 =
1

8

{

m0v
4
0 +m1v

4
1 +m2v

4
2

}

+
1

4

{

m0m1

r01

[

6v20 + 6v21 − 14 (v0 · v1)− 2 (n01 · v0) (n01 · v1)
]

+
m0m2

r02

[

6v20 + 6v22 − 14 (v0 · v2)− 2 (n02 · v0) (n02 · v2)
]

+
m1m2

r12

[

6v21 + 6v22 − 14 (v1 · v2)− 2 (n12 · v1) (n12 · v2)
]
}

−m0m1m2

r01r02r12

{

r01 + r02 + r12

}

. (8)

Because the second order post-Newtonian correction L4 is small, and we are interested in

computing the equipotential surfaces for a test particle, we assume

m0 ≪ m1 ,m2. (9)

We decompose the second order correction in order to facilitate its presentation:

L4 =
xi∑

a=i

L
(a)
4 +O

(
m2

0

)
(10)

and we drop terms of O
(
m2

0

)
. The decomposition is evident by comparing equation (6) with the

following:

L
(i)
4 =

1

16

{

m0v
6
0 +m1v

6
1 +m2v

6
2

}

, (11)

L
(ii)
4 =

3

4

{m0m
2
1m2

r01r
2
12

+
m0m1m

2
2

r02r
2
12

+
m0m

2
1m2

r201r12
+

m0m1m
2
2

r202r12
+

m0m
2
1m2

r01r12r02
+

m0m1m
2
2

r01r12r02

+
m2

1m
2
2

r312
+

m0m
2
1m2

r201r02
+

m0m1m
2
2

r01r202
+

m0m
2
1m2

r02r212
+

m0m1m
2
2

r01r212

}

, (12)

L
(iii)
4 =

1

4

{m0m
3
1

r301
+

m0m
3
2

r302
+

m1m
3
2

r312
+

m3
1m2

r312

}

, (13)
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L
(iv)
4 = −UTT , (14)

L
(v)
4 =

m0m
2
1

r201

{9

4
v20 +

13

8
v21 −

17

4
(v0 · v1) +

15

8
(n01 · v1)

2
}

+
m0m

2
2

r202

{9

4
v20 +

13

8
v22 −

17

4
(v0 · v2) +

15

8
(n02 · v2)

2
}

+
m1m

2
2

r212

{9

4
v21 +

13

8
v22 −

17

4
(v1 · v2) +

15

8
(n12 · v2)

2
}

+
m2

1m2

r212

{9

4
v22 +

13

8
v21 −

17

4
(v1 · v2) +

15

8
(n12 · v1)

2
}

,

(15)

L
(vi)
4 =

m0m1m2

4 r01r12

{

18v21 − 7v20 − 17 (v0 · v1) + (n01 · v0) (n01 · v1) + (n01 · v0)
2

+32 (v0 · v2)− 7v22 − 17 (v1 · v2) + (n12 · v1) (n12 · v2) + (n12 · v2)
2
}

+
m0m1m2

4 r01r02

{

18v20 − 7v21 − 17 (v0 · v1) + (n01 · v0) (n01 · v1) + (n01 · v1)
2

+32 (v1 · v2)− 7v22 − 17 (v0 · v2) + (n02 · v0) (n02 · v2) + (n02 · v2)
2
}

+
m0m1m2

4 r02r12

{

18v22 − 7v20 − 17 (v0 · v2) + (n02 · v0) (n02 · v2) + (n02 · v0)
2

+32 (v0 · v1)− 7v21 − 17 (v1 · v2) + (n12 · v1) (n12 · v2) + (n12 · v1)
2
}

, (16)

L
(vii)
4 =

m0m1m2

8 r201

{

− 5 (n01 · n02) v
2
2 + (n01 · n02) (n02 · v2)

2 − 2 (n01 · v0) (n02 · v2)

−2 (n01 · v1) (n02 · v2) + 14 (n01 · v2) (n02 · v2) + 5 (n01 · n12) v
2
2

− (n01 · n12) (n12 · v2)
2 + 2 (n01 · v1) (n12 · v2) + 2 (n01 · v0) (n12 · v2)

−14 (n01 · v2) (n12 · v2)
}

+
m0m1m2

8 r202

{

− 5 (n01 · n02) v
2
1 + (n01 · n02) (n01 · v1)

2 − 2 (n01 · v1) (n02 · v0)

−2 (n02 · v2) (n01 · v1) + 14 (n01 · v1) (n02 · v1)− 5 (n02 · n12) v
2
1

+(n02 · n12) (n12 · v1)
2 − 2 (n02 · v2) (n12 · v1)− 2 (n02 · v0) (n12 · v1)

+14 (n02 · v1) (n12 · v1)
}

+
m0m1m2

8 r212

{

5 (n01 · n12) v
2
0 − (n01 · n12) (n01 · v0)

2 + 2 (n12 · v1) (n01 · v0)

+2 (n12 · v2) (n01 · v0)− 14 (n12 · v0) (n01 · v0)− 5 (n12 · n02) v
2
0

+(n12 · n02) (n02 · v0)
2 − 2 (n12 · v2) (n02 · v0)− 2 (n12 · v1) (n02 · v0)

+14 (n12 · v0) (n02 · v0)
}

, (17)
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L
(viii)
4 = −1

2

m0m1m2

(r01 + r12 + r02)
2

{

(n01 · v0)
2 + (n01 · v1)

2 + (n12 · v1)
2 + (n12 · v2)

2

+(n02 · v0)
2 + (n02 · v2)

2 + 8
[

(n01 · v2)
2 + (n02 · v1)

2 + (n12 · v0)
2
]

+32
[

(n01 · v2) (n12 · v0)− (n02 · v1) (n12 · v0)− (n01 · v2) (n02 · v1)
]

+10
[

(n02 · v0) (n12 · v1)− (n01 · v0) (n12 · v2)− (n01 · v1) (n02 · v2)
]

+6
[

(n01 · v0) (n01 · v1) + (n02 · v0) (n02 · v2) + (n12 · v1) (n12 · v2)

− (n01 · v0) (n02 · v0) + (n01 · v1) (n12 · v1)− (n12 · v2) (n02 · v2)
]

+18
[

(n01 · v0) (n12 · v1)− (n02 · v0) (n01 · v1)− (n02 · v0) (n12 · v2)

− (n02 · v2) (n01 · v0) + (n12 · v2) (n01 · v1)− (n12 · v1) (n02 · v2)
]

+8
[

− (n01 · v0) (n12 · v0) + (n02 · v0) (n12 · v0)− (n01 · v2) (n12 · v2)

+ (n02 · v2) (n01 · v2) + (n02 · v1) (n12 · v1) + (n01 · v1) (n02 · v1)
]

+8
[

− (n01 · v2) (n01 · v0)− (n01 · v2) (n01 · v1)− (n02 · v1) (n02 · v0)

− (n02 · v1) (n02 · v2)− (n12 · v0) (n12 · v1)− (n12 · v0) (n12 · v2)
]

+24
[

(n01 · v2) (n02 · v0) + (n01 · v0) (n02 · v1) + (n02 · v2) (n12 · v0)

+ (n02 · v1) (n12 · v2)− (n01 · v2) (n12 · v1)− (n01 · v1) (n12 · v0)
]
}

, (18)

L
(ix)
4 =

1

2

m0m1m2

(r01 + r12 + r02)

{

1

r01

[

6 (v0 · v1)− 6 (n01 · v0) (n01 · v1) + v20 − (n01 · v0)
2

−8 (v0 · v2) + 8 (n01 · v0) (n01 · v2) + 8v22 − 8(n01 · v2)
2 + v21 − (n01 · v1)

2

−8 (v1 · v2) + 8 (n01 · v1) (n01 · v2)
]

+
1

r12

[

6 (v1 · v2)− 6 (n12 · v1) (n12 · v2) + v21 − (n12 · v1)
2 − 8 (v0 · v1)

+8 (n12 · v1) (n12 · v0) + 8v20 − 8(n12 · v0)
2 + v22 − (n12 · v2)

2

−8 (v0 · v2) + 8 (n12 · v2) (n12 · v0)
]

+
1

r02

[

6 (v0 · v2)− 6 (n02 · v0) (n02 · v2) + v20 − (n02 · v0)
2 − 8 (v0 · v1)

+8 (n02 · v0) (n01 · v1) + 8v21 − 8(n02 · v1)
2 + v22 − (n02 · v2)

2

−8 (v1 · v2) + 8 (n02 · v1) (n02 · v2)
]
}

, (19)
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L
(x)
4 = −m0m1(m0 +m1)

4r201

(
v20 + v21 − 2 (v0 · v1)

)
− m0m2(m0 +m2)

4r202

(
v20 + v22 − 2 (v0 · v2)

)

−m1m2(m1 +m2)

4r212

(
v21 + v22 − 2 (v1 · v2)

)
, (20)

L
(xi)
4 =

m0m1

16r201

{

14
(
v40 + v41

)
− 28 (v0 · v1)

(
v20 + v21

)
− 4 (n01 · v0) (n01 · v1)

(
v20 + v21

)

+22v20v
2
1 + 4(v0 · v1)

2 − 10v20(n01 · v1)
2 − 10v21(n01 · v0)

2

+24 (v0 · v1) (n01 · v0) (n01 · v1) + 6(n01 · v0)
2(n01 · v1)

2
}

+
m0m2

16r202

{

14
(
v40 + v42

)
− 28 (v0 · v2)

(
v20 + v22

)
− 4 (n02 · v0) (n02 · v2)

(
v20 + v22

)

+22v20v
2
2 + 4(v0 · v2)

2 − 10v20(n02 · v2)
2 − 10v22(n02 · v0)

2

+24 (v0 · v2) (n02 · v0) (n02 · v2) + 6(n02 · v0)
2(n02 · v2)

2
}

+
m1m2

16r212

{

14
(
v41 + v42

)
− 28 (v1 · v2)

(
v21 + v22

)
− 4 (n12 · v1) (n12 · v2)

(
v21 + v22

)

+22v21v
2
2 + 4(v1 · v2)

2 − 10v21(n12 · v2)
2 − 10v22(n12 · v1)

2

+24 (v1 · v2) (n12 · v1) (n12 · v2) + 6(n12 · v1)
2(n12 · v2)

2
}

. (21)

2.2. The transverse–traceless part of the Lagrangian UTT

The calculation of the 3-body ADM Lagrangian from Damour & Schäfer (1985) is somewhat

lenghty, but straightforward, except for the transverse-traceless part of the interaction potential

UTT in equations (6) and (14). It is not known in general how to evaluate this term explicitly,

except for the two-body case (see Damour & Schäfer (1985); Ohta et al. (1973, 1974)). In order to

circumvent this problem, and since we are interested only in the vicinity of the star with mass m1,

we assume

r01 ≪ r12 , and r01 ≪ r02 . (22)

and expand equations (5) and (6) in terms of r01/r12. As in the rest of the Lagrangian, we assume

the body 0 to be a point-particle and therfore drop all terms that are of quadratic (or higher) power

in m0.

Utilizing these two physically motivated assumptions, we expand UTT as

UTT = U
(12,12)
TT + U

(10,12)
TT + U

(12,02)
TT +O(m2

0) , (23)

with

U
(AB,CD)
TT = − 1

4π

∫

d3x
[
fTT
ij (A,B)

]

,k

[
fTT
ij (C,D)

]

,k
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=
1

2π

∫

d3x

(
mA

rA

)

,i

(
mB

rB

)

,j

fTT
ij (C,D) , (24)

where A,B,C,D = 0, 1, 2 and g,i ≡ ∂g(x)/∂xi for any function g(x).

The integrand fTT
ij (A,B) is given by

fTT
ij (A,B) =

(

∂

∂Ri
A

∂

∂Rj
B

+
∂

∂Rj
A

∂

∂Ri
B

)

ln (rA + rB + rAB)

−δij
8

(
2

rArB
− 2

rArAB
− 2

rBrAB
+ 2

nA · nAB

r2AB

− 2
nB · nAB

r2AB

)

−
∂2
ij

8

(

2 ln (rA + rB + rAB)−
rA + rB
rAB

+
r2A(nA · nAB)

2r2AB

− r2B(nB · nAB)

2r2AB

)

+
1

2r2AB

(

ni
A nj

AB + nj
A ni

AB − ni
B nj

AB − nj
B ni

AB

)

, (25)

where i = 1, 2, 3 denotes spatial components. Here, as in Figure 1,

rA = r−RA , RA = RB +RAB , and rA = rB +RAB . (26)

In the preceding equations, we denote the position of the integration point with r, the position (i.e.

“trajectory”) of the body A with RA, the vector between the integration point and the body A

with rA, and the vector defined by two bodies A and B with RAB .

Two out of three terms in equation (23) are already available or easily derived from previous

calculations of the two-body Lagrangian. The result for U
(12,12)
TT is given in Damour & Schäfer

(1985); Ohta et al. (1973, 1974):

U
(12,12)
TT = −1

2

m2
1m

2
2

r312
. (27)

It is straightforward to obtain an approximate result for U
(12,02)
TT by using an expansion in terms

of r01/r12 and keeping only terms with nonpositive powers of r01/r12. This approximation has a

straightforward physical interpretation that r02 ≈ r12 around R1. A quick calculation yields

U
(12,02)
TT ≈ −1

2

m0m1m
2
2

r312
+O

(
r01
r12

)

. (28)

However, the remaining term turns out to require a much more laborious calculation. We start

from the expression

U
(10,12)
TT = 2

∫
d3x

4π

(
m2

r2

)

,i

(
m1

r1

)

,j

fTT
ij (1, 0)

= 2m0m
2
1m2

∫
d3x

4π

xi −Ri
2

r32

xj −Rj
1

r31
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×
{(

∂

∂Ri
1

∂

∂Rj
0

+
∂

∂Rj
1

∂

∂Ri
0

)

ln (r1 + r0 + r01)

−δij
8

(
2

r1r0
− 2

r1r01
− 2

r0r01
+ 2

n0 · n01

r201
− 2

n1 · n01

r201

)

−
∂2
ij

8

(

2 ln (r1 + r0 + r01)−
r1 + r0
r01

+
r20(n0 · n01)

2r201
− r21(n1 · n01)

2r201

)

+
1

2r201

(

ni
0 n

j
01 + nj

0 n
i
01 − ni

1 n
j
01 − nj

1 n
i
01

)}

. (29)

Instead of performing the entire calculation, we present all the necessary ingredients and techniques

for an (alas, still long!) example. As an illustration, we show details of the calculation for the

logarithmic term in equation (29). The procedures for the remaining terms are identical and are

omitted here for brevity.

After differentiating the logarithmic term with respect to body positions RA, expanding the

result in terms of r01/r12, and grouping terms according to their composition in terms of ni
AB

, we

obtain

2

∫
d3x

4π

ni
1

r21

nj
2

r22

(

∂

∂Ri
1

∂

∂Rj
0

+
∂

∂Rj
1

∂

∂Ri
0

)

ln (r1 + r0 + r01)

= 2

∫
d3x

4π

ni
1

r21

nj
2

r22

[

(ni
1 + ni

01)(−nj
0 + nj

01)

(r1 + r0 + r01)
2 +

1

r1 + r0 + r01

ni
01n

j
01 − δij

r01
+

(

i ↔ j
)
]

≈ 2

∫
d3x

4π

ni
1

r21

nj
2

r22

[

− 1

4

(ni
1 + ni

01)(n
j
1 − nj

01)

r21
+

1

2

ni
01n

j
01 − δij

r01r1
+

(

i ↔ j
)
]

=
2

r01

(
ni
01n

j
01 − δij

)
∫

d3x

4π

ni
1

r31

nj
2

r22
+
(
ni
01n

j
01 − δij

)
nk
01

∫
d3x

4π

ni
1n

k
1

r41

nj
2

r22
, (30)

where terms O(r01/r12) have been dropped.

Various combinations of unit vectors can be expressed through derivatives with respect to

particles’ distances about the integration point P

ni
A

rNA
=

1

N − 1
∂̃i

(

1

rN−1
A

)

, (31)

where ∂̃i ≡ ∂/∂Ri
A. For combinations of several ni

A’s, analogous relations can be derived to be:

ni
An

j
A

rNA
=

1

N(N − 2)
∂̃2
ij

(

1

rN−2
A

)

+
1

N

δij

rNA
, (32)

ni
An

j
An

k
A

rNA
=

1

(N − 3)(N − 1)(N + 1)
∂̃3
ijk

(

1

rN−3
A

)
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+
1

(N − 1)(N + 1)

(

δij ∂̃k + δjk∂̃i + δki∂̃j

)
(

1

rN−1
A

)

, (33)

ni
An

j
An

k
An

l
A

rNA
=

1

(N − 4)(N − 2)N(N + 2)
∂̃4
ijkl

(

1

rN−4
A

)

+
1

(N − 2)N(N + 2)

(

δij ∂̃2
kl + δli∂̃2

jk + δkl∂̃2
ij

+ δjk∂̃2
li + δik∂̃2

jl + δjl∂̃2
ik

)
(

1

rN−2
A

)

+
1

N(N − 2)

1

rNA

(

δijδkl + δikδjl + δilδkj
)

, (34)

where in equations (32) through (34) we have abbreviated multiple derivatives as

∂̃N
ij...k ≡ ∂

∂Ri
A

∂

∂Rj
A

. . .
∂

∂Rk
A

︸ ︷︷ ︸

N derivatives

. (35)

After expressing the unit vectors in equation (30) as derivatives and taking derivatives in front

of the integral sign, all integrations are performed over integrands that are combinations of powers

of r1 and r2 only. Such integrals can be evaluated by the use of the formula (see Damour & Schäfer

(1985))

I(α, β) =

∫
d3x

4π
rαAr

β
B =

√
π

4

Γ
(
α+3
2

)
Γ
(
β+3
2

)

Γ
(

−α+β+3
2

)

Γ
(
−α

2

)
Γ
(

−β
2

)

Γ
(
α+β+6

2

) rα+β+3
AB . (36)

After performing integrations, differentiations with respect to body trajectories RA have to be

performed. Integrations yield results that depend on RA as powers of rNAB = |RA −RB |N and in

order to calculate U
(10,12)
TT , we need to perform up to five consecutive differentiations with respect

to RA:

∂

∂Ri
A

1

rNAB

= −N
ni
AB

rN+1
AB

, (37)

∂

∂Ri
A

∂

∂Rj
A

1

rNAB

=
N

rN+2
AB

(

(N + 2)ni
ABn

j
AB − δij

)

, (38)

∂

∂Ri
A

∂

∂Rj
A

∂

∂Rk
A

1

rNAB

=
N(N + 2)

rN+3
AB

(

δijnk
AB + δkinj

AB + δjkni
AB

−(N + 4)ni
ABn

j
ABn

k
AB

)

, (39)

∂

∂Ri
A

∂

∂Rj
A

∂

∂Rk
A

∂

∂Rl
A

1

rNAB

=
N(N + 2)

rN+4
AB

[

δijδkl + δikδjl + δilδjk + (N + 4)(N + 6)nijkl
AB
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−(N + 4)
(

δijnkl
AB + δiknjl

AB + δilnjk
AB + δjknil

AB

+ δjlnik
AB + δklnij

AB

)
]

, (40)

∂

∂Ri
A

∂

∂Rj
A

∂

∂Rk
A

∂

∂Rl
A

∂

∂Rm
A

1

rNAB

= −N(N + 2)(N + 4)

rN+5
AB

{
(

δijδkl + δikδjl + δilδjk
)

nm
AB

+
(

δmjδkl + δmkδjl + δmlδjk
)

ni
AB

+
(

δimδkl + δikδml + δilδmk
)

nj
AB

+
(

δijδml + δimδjl + δilδjm
)

nk
AB

+
(

δijδkm + δikδjm + δimδjk
)

nl
AB

−(N + 6)
[

δijnklm
AB + δiknjlm

AB + δilnjkm
AB + δimnjkl

AB

+δjknilm
AB + δjlnikm

AB + δjmnikl
AB

+δklnijm
AB + δkmnijl

AB + δlmnijk
AB

]

+(N + 6)(N + 8)nijklm
AB

}

, (41)

where nij...m
AB ≡ ni

ABn
j
AB . . . nm

AB. We also note that differentiations with respect to Ri
1 and Ri

2 can

be related through the identity

∂

∂Ri
B

1

rNAB

= − ∂

∂Ri
A

1

rNAB

. (42)

We now assemble these results. Firstly, after rewriting the unit vectors as derivatives through

equations (31) and (32), we perform the necessary integrations by employing equation (36):

2

r01

(
ni
01n

j
01 − δij

)
∫

d3x

4π

ni
1

r31

nj
2

r22
=

lim
α,β→0

[

2

r01

(
ni
01n

j
01 − δij

) 1

2− α

1

1− β

∂

∂Ri
1

∂

∂Rj
2

I(α− 2, β − 1)

]

, (43)

(
ni
01n

j
01 − δij

)
nk
01

∫
d3x

4π

ni
1n

k
1

r41

nj
2

r22
=

lim
α,β→0

[

(
ni
01n

j
01 − δij

)
nk
01

(

1

4− α

1

2− α

1

1− β

∂

∂Ri
1

∂

∂Rj
2

∂

∂Rk
1

I(α− 2, β − 1)

+
1

4− α
δik

∂

∂Rj
2

I(α− 4, β − 1)

)]

. (44)
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Finally, the application of differentiations in equations (37) through (41) yields the result

2

∫
d3x

4π

ni
1

r21

nj
2

r22

(

∂

∂Ri
1

∂

∂Rj
0

+
∂

∂Rj
1

∂

∂Ri
0

)

ln (r1 + r0 + r01) ≈

−2
(n01 · n12)

2

r01r212
− 1

2

(n01 · n12)

r312
+

(n01 · n12)
3

r312
. (45)

In order perform the full calculation for U
(10,12)
TT , we need to compute the remaining terms in

equation (29). They can be calculated by applying the technique described above on the following

expressions:

∂i∂j ln (r0 + r1 + r01) ≈ −2
ni
1n

j
1

r21
+

δij

r21
, (46)

∂i∂j

(

−r0 + r1
r01

)

≈ 2
ni
1n

j
1 − δij

r1r01
+

3ni
1n

j
1 − δij

r21
(n1 · n01)

−ni
1n

j
01

r21
− nj

1n
i
01

r21
, (47)

∂i∂j

(
r1(r1 · r01)

2r301
− r0(r0 · r01)

2r301

)

≈ 1

2r1r01

{

− 2
(

ni
1n

j
01 + nj

1n
i
01

)

(n1 · n01)

+δij
(

1− (n1 · n01)
2
)

+2ni
01n

j
01 + ni

1n
j
1

(

3(n1 · n01)
2 − 1

)
}

+
1

2r21

{

3

2

(

ni
1n

j
01 + nj

1n
i
01

)(

1− 3(n1 · n01)
2
)

+3ni
01n

j
01(n1 · n01)

+
3

2
δij(n1 · n01)

(

1− (n1 · n01)
2
)

+
3

2
ni
1n

j
1(n1 · n01)

(

5(n1 · n01)
2 − 3

)
}

(48)

ni
0n

j
01

r201
≈ ni

1n
j
01

r201
+

ni
1n

j
01

r1r01
(n1 · n01) +

ni
1n

j
01

2r21

(

3(n1 · n01)
2 − 1

)

−ni
01n

j
01

r01r1
− ni

01n
j
01

r21
(n1 · n01) . (49)

A straightforward, but somewhat lengthy, calculation yields the following approximate result

2

∫
d3x

4π

ni
1

r21

nj
2

r22

{

− δij
8

(
2

r1r0
− 2

r1r01
− 2

r0r01
+ 2

n0 · n01

r201
− 2

n1 · n01

r201

)
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−
∂2
ij

8

(

2 ln (r1 + r0 + r01)−
r1 + r0
r01

+
r20(n0 · n01)

2r201
− r21(n1 · n01)

2r201

)

+
1

2r201

(

ni
0 n

j
01 + nj

0 n
i
01 − ni

1 n
j
01 − nj

1 n
i
01

)}

≈ 11

16

1

r01r212
− (n01 · n12)

2

r01r212
− 9

32

(n01 · n12)

r312
− 7

48

(n01 · n12)
3

r312
. (50)

The final result for the transverse–traceless term is

UTT ≈ U
(12,12)
TT + U

(10,12)
TT + U

(12,02)
TT

≈ −1

2

m2
1m

2
2

r312
− 1

2

m0m1m
2
2

r312

+m0m
2
1m2

[11

16

1

r01r212
− 3

(n01 · n12)
2

r01r212
− 25

32

(n01 · n12)

r312
+

41

48

(n01 · n12)
3

r312

]

. (51)

3. Roche Lobes for 2PN

We are now ready to find the equipotential surfaces that correspond to the Roche lobes and

to compute volumes that are contained inside the lobes. We employ equations (11) through (21),

supplemented with equation (51). After setting the three bodies on quasicircular orbits around

the center of mass, we obtain the potential that gives rise to forces that act on the point–particle

of mass m0. In Figure 2, we show the potential for y = 0 (we position the three bodies on the

x–y plane so z = 0 automatically) and the corresponding Roche lobes for mass ratios q = 0.1, 0.2,

0.5, and 1.0, respectively. Cusps on equipotential lines correspond to the first Lagrange points L1.

All distances are scaled by the stellar radial separation a ≡ r12. Note that we only show the lobe

around the first star, since our approximation (r01 ≪ r12) is valid only in this region.

As in the Newtonian case, the volume within the equipotential surface (Roche volume) grows

with q for fixed a. However, the potential and the equipotential surfaces acquire an additional

dependence. Unlike for the Newtonian case, the total mass modifies the result: for low q, the

Roche volumes become smaller as the total mass increases, whereas for q greater than about 0.7

the volumes increase. As for coordinate positions, where we have eliminated the separation a, we

can introduce a new dimensionless parameter

z ≡ 2M

a
, (52)

involving the ratio of the total mass M and the separation a. This parameter also corresponds to

the ratio of Schwarzschild radius for M and the separation distance a.

Integration of volumes enclosed by equipotential surfaces is straightforward; we utilize a

Newton–Cotes type algorithm to find the enclosed volumes. Our results are shown in Figure 3

for q ∈ [0, 1], and z = 0, z = 0.2, and z = 0.4, respectively.
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Fig. 2.— Roche lobes and the corresponding potentials for y = 0. Coordinates x and y are scaled

by the stellar separation a and are shown for q = 0.1, 0.2, 0.5, and 1.0, respectively. Results shown

are for values of z = 0, z = 0.2, and z = 0.4, respectively.
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Fig. 3.— Effective Roche lobe radii rRoche scaled by the stellar separation a versus q for z = 0,

z = 0.2, and z = 0.4, respectively.

In Figure 3, we also show results for the fitting function. Following Eggleton (1982), we choose

the parametrization in which the scaled effective Roche radius is

rRoche/a = Q(q)C(q, z) , (53)

where

Q(q) =
αQ q2/3

βQ q2/3 + ln(1 + q1/3)
(54)
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is the fitting function previously given by Eggleton (1982) and

C(q, z) = 1 + z (αC q1/5 − βC) (55)

is the correction function that stems from post-Newtonian effects. Fitting parameters of Q(q) are

identical to the ones obtained by Eggleton (1982) (αQ = 0.49 and βQ = 0.57) and values of

αC = 1.951 , and βC = 1.812 (56)

refer to the fitting function for C(q, z). This functional form describes extremely well the depen-

dence of q for q < 1.0. We note that the crossover of reduced versus enlarged Roche lobes with

respect to the Newtonian (z = 0) case occurs at q = (βC/αC)
5 ≈ 0.69, in which case the Roche

radius is virtually z–independent.

3.1. Lagrange points and the center of mass

While performing the computation of the effective Roche volumes and radii, it is necessary to

find the first Lagrange point L1. In addition, there are two more extrema of the potential along the

x–axis that correspond to the second and third Lagrange points, L2 and L3, respectively. Moreover,

it is necessary to find the position of the center of mass of the system while setting the particles

onto quasicircular orbits. We briefly outline below how the positions of these points depend on the

mass ratio and how the results get modified compared to the Newtonian case. We consider only

the first three out of five Lagrange points (L1, L2, and L3) as L4 and L5 become local extrema

only for nonvanishing velocity vrot
0 .

3.1.1. Lagrange points

In the Newtonian case, the positions of the Lagrange points can be fully described in terms of

the mass ratio q = M1/M2. As the mass ratio drops towards 0, the position of the first Lagrange

point quickly shifts away from the center of mass and in the direction of the lighter star. The

positions of Lagrange points L2 and L3 show a much weaker q–dependence as can be seen in Figure

4, where the center of mass is positioned at x = 0. The second point L2 shifts towards the lighter

mass for q < 0.2 after it passes through the maximum of its distance from the center of mass at

q ≈ 0.22. The third Lagrange point is slowly, but steadily, pulled toward the center of mass as

q → 0.

As we might expect from the Roche lobe analysis, effects of post–Newtonian corrections give

rise to an additional (M1 +M2)/r12 = M/a dependence. In our model, this can be parametrized

with the quantity z = 2M/a. In Figure 4, we show two additional sets of lines for z = 0.2 and 0.4

(z = 0 corresponds to the Newtonian case). For all values of q given in Figure 4, the positions of L1

and L2 are slightly pulled towards the lighter mass compared to the Newtonian case. The position

of L3 is, however, pulled towards the center of mass for q & 0.45 and away from it for q . 0.4.
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Fig. 4.— The positions of the Lagrange points L1, L2, and L3 as a function of the mass ratio

q = M1/M2. Results are for z = 0, 0.2, and 0.4, respectively.

3.1.2. Position of the center of mass

In order to find the Roche lobes, we set the two stars on quasicircular orbits and set the center

of mass at the origin. The post–Newtonian approximation modifies the position of the center of

mass compared to the Newtonian result since the conservation of total momentum results in a

slight shift of the position from the Newtonian case. In this section, we show how important these

corrections are and parametrize them in terms of z = 2M/a.

We denote the ratio of the distance between m1 and the center of mass by a1. The separation
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between the two stars is a, and their ratio is

a1
a

= β , and
a2
a

= 1− β . (57)

Setting the center of mass at the origin yields the condition (de Andrade et al. 2001)

βm1

{

1 +
p1

2

2m1
2
− m2

2a
− p1

4

8m1
4
+

m2

4a

(

−5
p1

2

m1
2
− p2

2

m2
2
+ 7

p1 · p2

m1m2

)

+
m2 (m1 +m2)

a2

}

=

(1− β)m2

{

1 +
p2

2

2m2
2
− m1

2a
− p2

4

8m2
4
+

m1

4a

(

−5
p2

2

m2
2
− p1

2

m1
2
+ 7

p1 · p2

m1m2

)

+
m1(m1 +m2)

a2

}

,

(58)

which contains an implicit dependence on β, since for quasicircular motion we can write the veloc-

ities of the two stars as

v1
2 = β2a2w2 , and v2

2 = (1− β)2a2w2 , (59)

and their product as

v1 · v2 = −β(1− β)a2w2 , (60)

where at the 2PN level (Blanchet & Iyer 2003)

ω2 =
M

a3

(

1 +
M

a
(ν − 3) +

(
M

a

)2

(
21

4
− 5

8
ν + ν2)

)

, (61)

with ν = q/(1 + q)2. Squares of the two momenta are

p1
2 = m1

2β4a4ω4 +
1

2
m1

2aω2 (2a+ 5m2)β
2 +

7

2
m1

2aω2m2β , (62)

p2
2 = m2

2a4ω4β4 − 4m2
2a4ω4β3 +

(

3m2
2a4ω4 +

1

2
m2

2aω2
(
2a+ 6a3ω2 + 5m1

)
)

β2

+

(

−1

2
m2

2aω2
(
2a+ 6a3ω2 + 5m1

)
+

1

2
m2

2aω2
(
−2a− 2a3ω2 − 12m1

)
)

β

−1

2
m2

2aω2
(
−2a− 2a3ω2 − 12m1

)
. (63)

The product of the two momenta can be computed to be

p1 · p2 = m1m2a
4ω4β4 − 2m1m2β

3a4ω4 +
1

4
m1m2aω

2
(
6a3ω2 + 4a+ 5m1 + 5m2

)
β2

+
1

4
m1m2aω

2
(
−4a− 2a3ω2 + 2m2 − 12m1

)
β − 7

4
m1m2

2aω2 , (64)

and their fourth powers (up to 2PN order) are

p1
4 = m1

4v1
4 , (65)
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p2
4 = m2

4v2
4 . (66)

Inserting these results into equation (58), the position of the center of mass can be obtained

by solving the 5th order polynomial

0 = a0 + a1β + a2β
2 + a3β

3 + a4β
4 + a5β

5 , (67)

with coefficients ai given by

a0 = −16m1
2m2 − 16m2

2m1 − 8m2a
4ω2 + 49m1m2

2a2ω2 − 6m2a
6ω4 − 16m2a

2

+8m2m1a− 28m2a
3ω2m1 + 120m1

2m2a
2ω2 + 20m1m2a

5ω4 , (68)

a1 = 32m2
2m1 + 16m2a

2 + 16m1a
2 + 24m2a

4ω2 + 30m2a
6ω4 + 80m2a

3ω2m1

−90m1m2a
5ω4 + 32m1

2m2 − 98m1m2
2a2ω2 − 16m2m1a− 230m1

2m2a
2ω2 , (69)

a2 = 51m1
2m2a

2ω2 + 146m1m2a
5ω4 − 24m2a

4ω2 − 81m1m2
2a2ω2

−72m2a
3ω2m1 − 60m2a

6ω4 , (70)

a3 = 48m2a
3ω2m1 + 8a4ω2m1 + 60m2a

6ω4 + 10m1m2
2a2ω2 + 10m1

2m2a
2ω2

+8m2a
4ω2 − 84m1m2a

5ω4 , (71)

a4 = −30m2a
6ω4 − 20m1m2a

5ω4 , (72)

a5 = 6m2a
6ω4 + 8m1m2a

5ω4 + 6a6ω4m1 . (73)

The results obtained by numerical root-finding are shown in Figure 5, in which we show the

relative change of β compared to the Newtonian case:

∆β

β
=

β − βN
β

, (74)

where βN = m2/M . The dependence on the total mass M and on the separation a is entirely

through their ratio and is parametrized in Figure 5 through the parameter z.

The post–Newtonian analysis can be expected to be reliable up to moderate values of z (z <

0.4 − 0.5). We note that in this regiont post–Newtonian corrections to β are less than about 4%.

Moreover, in all cases of interest (q < 1.0), corrections to β are smaller than 0.5%. As expected,

deviations from the Newtonian case increase for close or massive configurations, whereas for large

separations or low masses the results converge toward the Newtonian case. Whereas for the more

massive star (q > 1.0) the distance to the center of mass increases with z compared to the Newtonian

case, the shift of the less massive star (q < 1.0) does not have a monotonic dependence on q. As

expected from the symmetry of the problem, corrections vanish for q = 1.0.

4. Conclusion

We have utilized the second order post–Newtonian approximation in the Arnowitt–Deser–

Misner gauge to calculate Roche lobe volumes. These results are an improvement over the Newto-
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Fig. 5.— The position of the center of mass as a function of the relativity parameter z shown in the

form of the ratio ∆β/β for q = 0.1 . . . 10.0. We note an increase of β compared to the Newtonian

case for q > 1.0. For q > 1.0, β decreases compared to the Newtonian case.

nian case in that post–Newtonian gravity introduces corrections in the case of moderately strong

gravitational field.

In the course of our calculations, we have derived an approximate three–body Lagrangian that

is valid in the case when one of the bodies is a point particle. This calculation requires an evaluation

of the transverse–traceless term UTT of the Lagrangian for which an exact result is not available.

However, as shown in this work, utilization of an approximation valid in the vicinity of the less

massive star enables this problem to be circumvented.

Using these results, we calculated Roche lobes in the 2PN effective potential in the co–rotating
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frame and computed effective Roche lobe radii that can be used to model mass transfer through

Roche lobe overflow. In addition, we computed changes to the positions of the Lagrange points

and to the center of mass due to post–Newtonian effects. We find that corrections to Newtonian

results for Roche lobe radii can be as significant as 20–30% at low mass ratio q . 0.1. Whereas for

q & 0.7 the Roche lobe radius increases (≈ 15% for q = 1.0), for low q’s the Roche lobe is smaller

than in the Newtonian case. We have provided our results in the form of a simple fitting formula

that depends on two physical parameters: the mass ratio and the ratio of the total mass and the

separation.
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