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Gaps below strange star crusts
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The gap caused by a strong electric field between the quark surface and nuclear crust of a strange
star is studied in an improved model including gravity and pressure as well as electrostatic forces.
The transition from gap to crust is followed in detail. The properties of the gap are investigated for
a wide range of parameters assuming both color-flavor locked and non color-flavor locked strange
star cores. The maximally allowed crust density is generally lower than that of neutron drip. Finite
temperature is shown to increase the gap width, but the effect is significant only at extreme tem-
peratures. Analytical approximations are derived and shown to provide useful fits to the numerical
results.

PACS numbers: 97.60.Jd, 12.38.Mh, 12.39.Ba, 25.75.Nq

I. INTRODUCTION

Strange stars are stars made of absolutely stable quark
matter [1, 2, 3, 4]. Their existence (i.e., the stability
of strange quark matter) depends on poorly constrained
strong interaction properties, and remains to be decided
by observation or experiment (see [5, 6] for reviews). If
strange stars are stable, they contain roughly equal num-
bers of up, down, and strange quarks, but due to the
higher mass of the s-quark, they will normally contain a
slight deficit of strange quarks with negative charge, and
thus have an overall positive quark charge to be compen-
sated by electrons. Even color-flavor locked quark mat-
ter, which is electrically neutral in bulk [7], has an overall
positive quark charge due to surface effects [8, 9, 10]. The
quark surface of a strange star is very sharp (the density
drops from above nuclear matter density to zero within a
few fm), and since the electrostatic force is weaker than
the strong force, some of the electrons necessary to cre-
ate an overall charge neutral object will form a thin at-
mosphere with a huge electric field (up to 1018 V/cm)
outside the quark phase. This field is capable of sus-
taining a nuclear matter crust decoupled from the quark
phase by an electron-filled gap. The maximum mass of
such a crust is approximately 2 × 10−5M⊙, correspond-
ing to the situation where the inner boundary of the crust
reaches the neutron drip density, 4× 1011 g cm−3, where
neutrons drip out of crust nuclei and get dissolved in the
quark phase. Smaller crust mass limits would occur if the
gap is sufficiently narrow to allow direct contact with the
crust or if the rate of quantum tunneling of nuclei into
the quark core of the star is large. The crust mass and
moment of inertia as well as the coupling between core
and crust play important roles in the understanding of
strange star properties, and therefore the properties of
the gap are very important. The width of this gap is the
main topic of the present investigation.

The properties of the electron atmosphere and the im-
pact on a nuclear matter crust have been studied by many
authors, including [4, 10, 11, 12, 13, 14, 15, 16, 17]. These
studies have involved solutions to the Poisson equation

for the electrostatic potential with the boundary condi-
tion of electric neutrality deep within the strange star,
as well as a condition for the potential at large distances.
For bare strange stars, i.e., stars without a nuclear crust,
the potential goes to zero at infinity. For strange stars
accreting nuclear matter on the surface, the condition
has been taken to be a matching of the electric potential
from the electrons to the value of the potential required
in the bulk of the nuclear matter crust (typically several
MeV, depending on the crust density). This leads to a
typical gap size (distance from quark surface to the inner
surface of the nuclear crust) of 102− 103 fm, comparable
to the distance over which the potential drops by a factor
of a few.
The approaches just described do not account however

for the detailed balance between electrical and gravita-
tional forces and pressure in the transition from gap to
crust. The potential and its derivative are taken to be
continuous across the crust boundary while gravitational
forces and pressure in the crust are assumed insignificant
(though see [12] for an approximate inclusion of gravity).
In this work we expand earlier treatments, investigate
the effects of including the Newtonian gravitational field,
and find the detailed structure of the gap and the tran-
sition to the crust. This leads to more narrow gaps than
previously found and thus constrains the density at the
base of the crust below the neutron drip density. As the
temperature increases, the additional thermal reservoir
of electrons initially widens the gap then narrows it, but
even for temperatures as high as 107 K in the gap region
this effect is small and the width remains constant up to
temperatures in the range 108−1010 K depending on the
crust density.

II. EQUILIBRIUM OF THE CRUST

The effective chemical potential of species i, µeff
i , is de-

fined as the change in energy for a unit change in number
density of species i, while the volume, entropy, and other
number densities are kept constant. In a steady state as-
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suming the crust to be isothermal the effective chemical
potentials of electrons and nuclei should be constant to
avoid migration. They must therefore be equal to their
values at the top of the crust, at radius r = R, where
the electric potential is zero and the chemical potentials
are equal to the particle masses. Therefore we take the
effective chemical potentials for electrons and nuclei to
be

µeff
e =µe(r) − eφe(r) +meφg(r) = me +meφg(R)

µe(r) = me +me[φg(R)− φg(r)] + eφe(r)

µeff
N =µN (r) + Zeφe(r) +mNφg(r) = mN +mNφg(R)

µN (r) = mN +mN [φg(R)− φg(r)] − Zeφe(r).

(1)

For simplicity we describe electrons as well as nuclei as
Fermi gases characterized by thermodynamic chemical
potentials µe and µN . me is the electron mass, mN is the
mass of the dominant nucleus at the base of the crust,
Z is its charge, φe(r) is the electric potential and φg(r)
is the gravitational potential for which we will use the
Newtonian value to get tractable expressions. eφe is typ-
ically of the order of 20 MeV at the strange core surface,
r = RS , and φg(RS) = −GMS/RS ∼ −0.2, where MS is
the mass of the strange core.

We note at this point that keeping the effective chem-
ical potentials constant corresponds to hydrostatic equi-
librium which may be seen explicitly by taking the gra-
dient of the above expressions and using the zero tem-
perature identity dPi = nidµi, where Pi is the pressure
and ni the number density of the i’th component.

dPe

dr
− ne

d(eφe)

dr
+ neme

dφg

dr
= 0

dPN

dr
+ ZnN

d(eφe)

dr
+ nNmN

dφg

dr
= 0

The total pressure is P = Pe +PN so the sum then gives
the usual force balance

dP

dr
+ nq

d(eφe)

dr
+ ρ

dφg

dr
= 0 (2)

with nq = ZnN − ne the charge density and ρ = mene +
mNnN the mass density. We show later that Eq. (2) is
convenient when approximating thin crusts.

To solve for the chemical potentials we take the Lapla-
cian of Eq. (1) and use Poisson’s equation in Newtonian
gravity to get a system of coupled differential equations
in the chemical potentials and their derivatives. With
the understanding that the core at r < RS is comprised
of quarks and electrons while only electrons are present
in the gap at RS < r < RC , and that nuclei do not ap-
pear until µN > mN at r > RC this gives in a compact

notation

∇2µe(r) =
d2µe

dr2
+

2

r

dµe

dr

=∇2[eφe(r) −meφg(r)]

=− 4πe2(n+
q + ZnN − ne)

− 4πGme(ρq +mNnN +mene)

(3)

∇2µN (r) =
d2µN

dr2
+

2

r

dµN

dr

=∇2[−Zeφe(r) −mNφg(r)]

=4πe2Z(n+
q + ZnN − ne)

− 4πGmN (ρq +mNnN +mene)

(4)

Here ρq is the approximately constant mass density of
the quark matter and n+

q is its positive charge density
– we assume that the quark distribution is not signifi-
cantly affected by the crust (see however the recent work
by Jaikumar et al. [16]). In these equations we have used
rest mass times number density for the matter density in
Poissons equation. This is a very rough approximation
for the electrons as they are relativistic except for very
thin crusts, but in all the calculations below we will ne-
glect the electron contribution to the density completely
by taking me = 0. The densities of electrons and nuclei
are found from

ni =

∫

d3pi
gi
h3

f(pi) , f(pi) =
1

e((Ei−µi)/T ) + 1
(5)

where p is the particle momentum, gi the statistical
weight, Ei =

√

p2i −m2
i the energy and f(p) the Fermi-

Dirac distribution. For a cold Fermi gas with gi = 2 this
gives

ni =
(µ2

i −m2
i )

3/2

3π2
. (6)

while for finite temperatures there will be additional ther-
mal electrons and working in the approximation me = 0
the net electron density (electrons minus positrons) will
be

ne =
µ3
e

3π2
+

µeT
2

3
(7)

Equations (3) and (4) can thus be transformed into four
first order coupled differential equations in the four un-
knowns µe, µN , dµe

dr , dµN

dr . Given appropriate boundary
conditions at some point – usually either in the charge
neutral bulk of the strange star core or at the core sur-
face – the system can be solved to find the structure of
the gap and the transition to the crust. In principle we
could extend the model to include the entire crust, but
it should be noted that we have not included the inter-
actions between nuclei (apart from the mean electric po-
tential and gravity) and that the global properties of the
crust should be described using relativistic gravity and
a more advanced equation of state – such as the BPS
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equation of state. Here we restrict ourselves to modeling
the gap and the lower crust until the point where charge
neutrality is achieved. The density at this point can then
be taken as the inner crust density used to parametrize
the crust models in e.g. [17].

III. APPROXIMATIVE MODELS

Before we get into the detailed numerical models it is
worth noticing that a number of illustrative approximate
models can be calculated analytically, and that as it turns
out these models reproduce the behavior of the system
accurately.
First of all it should be noted that we can get a very

useful relation from Eq. (1) by taking the sum

µN (r) + Zµe(r) = (mN + Zme)[1 + φg(R)− φg(r)]
(8)

and its derivative

dµN (r)

dr
+ Z

dµe(r)

dr
= −(mN + Zme)

dφg(r)

dr
. (9)

From this and equations (3, 4) we can get a qualita-
tive idea of the form of the solutions. For example we
know that just above the strange core surface the elec-
tric potential should be large and positive and its gra-
dient should be large and negative while the gravita-
tional potential and its gradient can be approximated
by their Newtonian values. Only electrons are present
at this point so the charge density is negative, and µe

will be large and decreasing rapidly but with a positive
curvature. Since the right hand side of equation (8) is
almost constant across the gap µN must increase as µe

decreases. Thus we also see that µe must decrease mono-
tonically since µe and µN would diverge in opposite di-
rections if µe started increasing while the charge density
was still negative and µe(r) was curving upwards. Once
µN > mN we enter the crust and at some point achieve
charge neutrality. µN (r) curves downwards only if the
charge density is negative and since we expect the crust
to be charge neutral in bulk µN must start decreasing
along with µe at this point for the crust to remain charge
neutral. The right hand side of equation (9) is of the or-

der of ∼ −10−15 MeV/fm so for both dµe

dr and dµN

dr to
be negative they must both be numerically smaller than
10−15 MeV/fm. Since dµe

dr will generally be of the order
of 0.1 MeV/fm close to the surface of the strange star
core this places high demands on the numerical proce-
dure as it must be accurate across these many orders of
magnitude. This difficulty stems from the fact that we
are trying to model the transition from the gap where
the strong electrical force is dominant to a charge neu-
tral crust held down by the much weaker gravitational
force – a very stiff set of equations.
To get something more quantitative than these heuris-

tic arguments we will use the approximation me = 0.

This allows us to solve for µe in the case of a pure elec-
tron atmosphere with no crust. This can then be used
to find approximate expressions for the gap width. For
more realistic solutions it should be taken into account
that some of the electrons from the crust will spill into
the gap shielding the strange star core surface charge and
affecting the gap width. We study the full solutions nu-
merically in a later section, but these are much easier to
understand (and find) with the insight from the qualita-
tive models below.

A. The pure electron atmosphere around a bare

strange star

For a pure electron atmosphere with me = 0 we have
µe(r) = eφe(r) and in general

ne =
(eφe)

3

3π2
+

(eφe)T
2

3
. (10)

Following [14, 15] we define y = d(eφe)/dz where z is the
height above the strange core surface. Assuming a flat
strange core surface Eq. (3) then takes the form

d(y2)

d(eφe)
= 4C−2((eφe)

3 + π2T 2(eφe)) (11)

where C =
√

3π/2/e = 5013 MeV fm. This may be
solved directly for the electric field and potential using
the fact that both should go to zero at large z:

− d(eφe)

dz
= C−1((eφe)

4 + 2π2T 2(eφe))
1/2 (12)

z =
C√
2πT

[

sinh−1

(√
2πT

eφe(r)

)

− sinh−1

( √
2πT

eφe(RS)

)]

(13)

where we give z(eφ) as this is what we will need later.
It may be noted that in the limit T → 0 equation (13)
reduces to the expression found by Alcock et al. in [4]
since sinh−1 x ∼ x for x → 0

eφe(r) =
C

z + C/eφe(RS)
for T = 0 . (14)

A plot of this behavior can be found in Fig. 1. Note
that we have included the case eφe(RS) = 30 MeV. In
the models below this just allows a crust at neutron drip
density to remain out of direct contact with the strange
core surface making it an illustrative case, though the
choice is difficult to realize for non color-flavor locked
quark matter equations of state [18].

B. Thin crusts and test particles

Sufficiently thin crusts should not be expected to
change the electric potential or the distribution of elec-
trons in the gap from that of a pure electron atmosphere.
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FIG. 1: Electric potential above the surface of a bare strange
star. From the top eφe(RS) = 30, 20, 10 MeV. We show the
variation with temperature for eφe(RS) = 10 MeV so from
the top T = 0, 1, 5, 10, 20 MeV for these.

We can then use the solution found in the previous sub-
section and demand that equation (2) is obeyed at the
crust boundary. Since we are working in the approxima-
tion me = 0 the electronic part of the force balance is

simply dPe

dr −ne
d(eφe)

dr = 0 which is trivially fulfilled since
µe = eφe and dPe = nedµe. For a thin crust we should
be able to ignore the pressure gradient from the nuclei
and the remainder of the force balance equation involves
only the equilibrium between electrostatic repulsion and
gravitational attraction of positively charged nuclei:

ZnN
d(eφe)

dr
+

GMSnNmN

r2
= 0 (15)

The number density of nuclei then cancels and the equa-
tion simply expresses that each individual nucleus feels
a balance between the gravitational attraction from the
strange star core and the electrostatic repulsion from the
net positive charge below it as described by d(eφe)/dr.
This is the same equation as would be obtained by bal-
ancing a single positively charged test particle above the
strange star surface. In the case of a cold atmosphere we
use the derivative of equation (14) for the electric field
which leads to the relation

− C

(zgap + C/eφe(RS))2
= −GMSmN

ZR2
C

, (16)

or zgap ≡ RC − RS ≃ RS(CZ/GMSmN )1/2 ≃ 1010 fm.
The gap width of very thin crusts is therefore almost
macroscopic in size as might be expected since the lower
layer does not have to support the bulk of the crust. If we
assume that equation (15) is obeyed identically through-
out the entire crust as it should be if the pressure gra-
dient from the nuclei remains negligible we can solve for
the potential

eφe(r > RC) =
GMmN

Zr
+K , (17)

where K is a constant. This potential is a solution to
Poisson’s equation without a source term,

∇2(eφe) =
d2(eφe)

dr2
+

2

r

d(eφe)

dr
= 0 (18)

showing that the crust is locally charge neutral in this
approximation.

C. Cold charge neutral crusts

In heavy dense crusts the pressure from the nuclei can
not be ignored, and we would need the precise density
profile to solve equation (2). The crust would still be
expected to be charge neutral beyond some point not very
far from the crust boundary however, so by assuming
charge neutrality and using equation (8) it is possible
to estimate µe at the crust boundary. The gap width
can then be found assuming that the potential in the
gap can be described by the solution for a pure electron
atmosphere.
For a cold crust charge neutrality in the Fermi gas

approximation is described by the requirement

(µ2
e −m2

e)
3/2

3π2
= Z

(µ2
N −m2

N )3/2

3π2
. (19)

Solving for µe and using relation (8) this gives

µe =

(

(mN + Zme)[1 + φg(R)− φg(r)]−
[

(m2
N − Z−2/3m2

e)(1 − Z−8/3)+

Z−8/3
[

(mN + Zme)

(1 + φg(R)− φg(r))
]2
]1/2

)

(Z(1− Z−8/3))−1.

(20)

Taking me = 0 and using φg(R)− φg(r) ≪ 1 this simpli-
fies to

µe =
mN

Z

[

(φg(R)− φg(r))

− 1

2
(Z8/3 − 1)[φg(R)− φg(r)]

2)
]

.
(21)

Using equation (8) again and ρ = nNmN this leads to a
relation between the size, mass, density and composition
of the crust

φg(R)− φg(r) =
[

2
µN −mN

mN
(Z8/3 − 1)

]1/2

(22)

= 1.9× 10−4

(

ρ

ρD

)1/3(
56

A

)4/3
(

Z8/3 − 1
)1/2

, (23)

where ρD = 4 × 1011 g/cm
3
is the neutron drip den-

sity. Assuming that charge neutrality occurs shortly af-
ter the crust boundary at RC , φg(r) will not change
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much between these two points and we can use this
to estimate µe(RC). The crust boundary is defined
by µN = mN and from equation (8) we then have
µe(RC) =

mN

Z (φg(R)− φg(RC)) which can be used with
the potential (14) to find the gap width

zgap =
C

µe(RC)
− C

eφe(RS)

=505

(

ρ

ρD

)−1/3(
A

56

)1/3

Z(Z8/3 − 1)−1/2 fm

− 167 fm

eφe(RS)/30MeV

=170.5

(

ρ

ρD

)−1/3

fm− 167

(

eφe(RS)

30 MeV

)−1

fm.

(24)

The last equality assumes a crust composed of electrons
and 56Fe nuclei. In this approximation the gap width is
very small near neutron drip density, and for a realistic
value of eφe(RS) ∼ 20 MeV it would be impossible for a
crust to reach neutron drip density while remaining out
of contact with the strange star core. If the more strin-
gent limit of zgap > 200 fm from [4] for the crust to re-
main secure against strong interactions with the strange
star core is used, the maximum crust density is ∼ 0.1ρD.
We will see later that this simple relation describes the
outcome of the numerical calculations very well.

D. Charge neutral crust at finite temperatures

At finite temperatures the electron density is given by
equation (7), and we will approximate the electric po-
tential in the gap by equation (13). As before the crust
boundary is given by µN (RC) = mN so µe(RC) = eφe =
mN

Z ∆φg by equation (8) with ∆φg = φg(R) − φg(RC),
and we will again assume that charge neutrality oc-
curs shortly after the crust boundary so we can solve
ne = ZnN for ∆φg. Because of the extra electrons this
can not be done analytically since the equation for ∆φg

now becomes

0 =Z(µ2
N −m2

N)3/2 − (mN [1 + ∆φg]− µN )3Z−3

− 3π2(mN [1 + ∆φg]− µN )T 2/3Z
(25)

with

µN = ((3π3ρ/mN )2/3 +m2
N )1/2 . (26)

These equations can however be solved numerically for
∆φg(ρ, T ) which gives µe(RC) and zgap as shown in
Fig. 6. Qualitatively we note that changes from the cold
case are negligible until temperatures around 1 MeV or
1010 K are reached – that is until the temperature is com-
parable to µe in the bulk of the crust. For lower densities
the effect occurs at somewhat lower temperatures, but by
then the gap is already very large and the temperature

does not really change this. The bump in the gap size
seen at high temperatures can be understood from equa-
tions (13) and (25). The temperature dependent part of
equation (25) shows that ∆φg and thus eφe(RC) will be
constant for low temperatures, T ≪ µe (r ≫ RC), and
smaller for higher temperatures. Since sinh−1 x ∼ x for
|x| < 1 and sinh−1 x ∼ log 2x for x > 1 this can produce
the bump. Physically the thermal electrons in the crust
means that µe does not have to be as large to reach a
certain density, which moves the crust boundary further
out, while the thermal electrons in the gap screens the
strange star surface charge and reduces the gap.

IV. NUMERICAL SOLUTIONS

A. Numerical procedure and boundary conditions

To solve equations (3) and (4) numerically we employ a
shooting method which integrates the equations from the
quark core to the point of charge neutrality in the crust
using a standard Runge-Kutta routine. We then vary
dµe/dr at the starting point until equation (9) is fulfilled
at charge neutrality so the crust remains charge neutral
beyond this point. Equations (1) would seem to produce
many more free parameters at the starting point than
just dµe/dr, but since eφe(r) at the quark core depends
on unknown details of the quark matter equation of state
we keep it free and explore the solutions for a wide range
of this parameter. Furthermore it was shown in the pre-
ceding sections that the quantity ∆φg = φg(R)−φg(RC)
is related to the density of the crust in the charge neutral
bulk through equations (23) and (25) – and as it turns
out these relations are fulfilled for the numerical solu-
tions as well. Since dµN/dr may be determined at the
starting point by equation (9) this leaves dµe/dr as the
only parameter to be determined. With this method we
can thus choose eφe(r) at the starting point (this corre-
sponds to choosing parameters for the equation of state
for the strange matter core) and a crust – described by
its density (∆φg) and temperature at charge neutrality –
and find the solution to equations (3) and (4) describing
the transition between the core and crust.
We have so far not specified the exact location of the

starting point for the integration because the discussion
above does not depend on this, and because the assump-
tion of a color-flavor locked quark core places the starting
point at the core surface, whereas for a non color-flavor
locked core it should be taken in the charge neutral bulk
of the core. Color-flavor locked strange quark matter is
charge neutral in bulk because the pairing minimizes the
energy for equal quark Fermi momenta leading to equal
numbers of u-, d-, and s-quarks. However as discussed
in [9] when surface effects are taken into account there
will be a deficit of s-quarks near the surface producing
an overall positive surface charge. As shown in [10] this
gives a Coulomb barrier at the surface of the order of
eφe(Rs) ∼ 36 MeV. For color-flavor locked stars we thus
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take the starting point at the surface of the quark core
and find solutions for different values of eφe(Rs) and dif-
ferent crusts.
In non color-flavor locked stars the deficit of s-quarks

is global and compensated by electrons in the bulk. The
surface charge here arises because some electrons near the
surface leave the core and create an atmosphere outside
the quark phase. We therefore take the starting point
“deep” in the core (1000 fm below the surface; our results
are insensitive to this choice) where we assume charge
neutrality, n+

q (µ
+
q ) = ne(µe, T ),

µ+3

q

3π2
=

µ3
e

3π2
+

µeT
2

3
. (27)

The chemical potential for the quark charge, µ+
q , de-

fined by this relation, was explored in eg. [4, 11, 18]
and found to be of the order of µ+

q ≃ 25 MeV. However
the same surface effect which gives rise to the strange
quark deficit in color-flavor locked stars will reduce the
number of strange quarks further. We do not explicitly
include this effect in our calculations.

B. Chemical composition of the crust

The chemical composition of the crust depends on its
origin and the accretion history of the strange star. If the
crust was created in the supernova along with the strange
star and has not changed since, it will consist of cold cat-
alyzed matter as described by the BPS equation of state
in [19]. If the crust was accreted from a companion star
temperatures do not become high enough for the matter
to reach the equilibrium described by the BPS equation
of state. Instead hydrogen is burned at the surface to he-
lium which is in turn burned explosively in X-ray bursts
and leaves a layer of heavy ashes at densities exceed-
ing 108 g/cm

3
. The ashes then sink under the weight

of accreted matter and under the increasing pressure its
composition changes in a series of electron captures until
neutron drip sets in. This process has been investigated
by Haensel & Zdunik, and the chemical composition as
a function of density was given in [20], assuming that
the ashes left by the X-ray bursts are composed of 56Fe.
The composition of the X-ray burst ashes is a matter of
some debate however, and as it was shown by Schatz et
al. in [21] that rp-processes in the X-ray bursts may lead
to a composition dominated by much heavier nuclei with
A ∼ 106, Haensel & Zdunik recently revised the resulting
chemical composition in [22]. However it was also sug-
gested by Schatz et al. [23] that the X-ray burst ashes

may burn explosively at densities around ∼ 109 g/cm3

powering X-ray superbursts in which case photodisinte-
gration will lead to a composition similar to that found
in [20].
For our purpose we chose the relevant nucleus from

these articles based on the density in the crust at the
point of charge neutrality – the transition from gap to

crust takes place over just a few fm so there is no rea-
son to assume any other nucleus will play a role. As
discussed the actual composition is rather uncertain, so
we include calculations for each of the three scenarios.
The charge to mass ratios are very similar, so the only
significant difference turns out to be related to the dif-
ferent values for the neutron drip density. The chemical
compositions used are shown at densities below neutron
drip in Table I. We hereafter refer to the compositions
in [19, 20, 22] as BPS, HZ1990 and HZ2003 respectively.
For the HZ1990 and HZ2003 compositions which arise
from explosive helium burning we assume a composition
of pure 4He below 108 g/cm

3
. This transition should be

more smooth, but it hardly matters as the gap width is
already very large at these densities and small corrections
from the composition will not affect this.

Ref. [19] – BPS Ref. [20] – HZ1990 Ref. [22] – HZ2003

ρmax Nucleus ρmax Nucleus ρmax Nucleus

[g/cm3] [g/cm3] [g/cm3]

8.1× 106 56Fe 1.494 × 109 56Fe 3.517× 108 106Pd

2.7× 108 62Ni 1.115× 1010 56Cr 5.621× 109 106Ru

1.2× 109 64Ni 7.848× 1010 56Ti 2.413 × 1010 106Mo

8.2× 109 84Se 2.496× 1011 56Ca 6.639 × 1010 106Zr

2.2× 1010 82Ge 6.110× 1011 56Ar 1.455 × 1011 106Sr

4.8× 1010 80Zn 2.774 × 1011 106Kr

1.6× 1011 78Ni 4.811 × 1011 106Se

1.8× 1011 76Fe 7.785 × 1011 106Ge

1.9× 1011 124Mo

2.7× 1011 122Zr

3.7× 1011 120Sr

4.3× 1011 118Kr

TABLE I: Chemical composition of the crust as a function of
density for the three scenarios discussed in the text. ρmax is
the maximum density at which a nucleus is present before it
undergoes electron capture.

V. RESULTS FOR COLOR-FLAVOR LOCKED

STRANGE STAR CORES

We have found solutions for a range of densities, com-
positions and temperatures of the crust as well as for
different electric potentials at the quark core surface.
The basic features of one such solution with ρcrust =
4 × 1011 g/cm

3
, T = 0, eφ(Rs) = 30 MeV and the crust

composition in HZ2003 are shown in Figs. 2, 3, and 4.
The numerical solution conforms with the general be-
havior discussed previously, but it should be noted that
the actual transition to the crust takes place over less
than a fm; smaller than the radius of the relevant nu-
clei. A model based on statistical physics should hardly
be trusted on such scales and the most reasonable con-
clusion would probably be that the density is essentially
discontinuous at the crust boundary.
The dependence of the gap width on density, composi-

tion and electric potential at the quark surface is explored
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FIG. 2: Electric potential and field for a typical solution.
Note how the field dies out in the charge neutral bulk of the
crust. The inset focuses on the electric potential.

FIG. 3: Electron, nucleon and charge density for the solution
in Fig. 2. The transition to the crust is shown in Fig. 4.

FIG. 4: Electron, nucleon and charge density during the tran-
sition to the crust for the solution in Figs. 2 and 3. Nucleons
appear over a few fm and charge neutrality is attained in the
crust.

at zero temperature in Fig. 5 and compared to the ana-
lytical approximation in Eq. (24). In each case we plot
(close) to the highest possible density, which is either the
neutron drip density given in Table I or the density at
which zgap ∼ 0. The gap width is insensitive to the choice
of chemical composition, but it may be noted that only
for high eφe(Rs) is it possible to reach neutron drip den-
sity before the gap width goes to zero. In particular the
BPS and HZ1990 compositions are limited by neutron
drip at eφe(RS) = 30 MeV whereas the gap width goes
to zero before neutron drip for the HZ2003 composition.
As noted previously this choice of eφe(RS) is therefore
quite illustrative and we will often use it below.

FIG. 5: Gap width dependence on density, crust composi-
tion and electric potential at the quark surface for color-flavor
locked cores. From left to right eφe(RS) is 1, 5, 10, 20 and
30 MeV. Curves for different composition are almost indis-
tinguishable. The analytical approximations are based on
Eq. (24) using the crust composition from the BPS equation
of state. The dashed line shows the solution of Eq. (24) with
zgap = 0 – i.e. the density at which the gap width goes to
zero for a specific eφe(RS).

Figure 6 shows the temperature dependence of zgap
with eφe(RS) = 30 MeV. Temperatures up to 100 MeV
are shown to illustrate the full range of solutions, but one
should keep in mind that the Coulomb barrier is only 30
MeV or less, and so can not hold the nuclei at these tem-
peratures. eφe(Rs) is set very high to allow high den-
sities, and for simplicity we only vary the composition
for the maximum density curves discussed above. We
recover the qualitative features of the analytical approx-
imation. Except perhaps for the very early stages after
formation in a supernova explosion crust temperatures
of isolated strange stars are expected to be much smaller
than 0.1 − 1 MeV where the temperature effects for the
gap width become noticeable. Interesting temperatures
may be reached in accreting binary systems to which we
return in a later section. It may also be relevant that
the increase in gap width allows a strange star to sus-
tain a crust shortly after its formation in the supernova
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even when temperatures are very high – whether a crust
would actually form at that stage is a different matter.

FIG. 6: Gap width dependence on temperature, density and
crust composition for color-flavor locked cores with eφe(RS) =
30 MeV. Densities increase from top to bottom and curves
without points show analytical approximations based on
Eq. (25). For simplicity we only vary the composition for
the maximum density crusts. The HZ2003 curve has a very
low gap width because its density is not limited by neutron
drip.

Perhaps a better measure of the stability of the crust
is the transmission coefficient for ions through the gap,
τ , which following Alcock et al. [4], can be found in the
WKB approximation by

τ = exp

[

−2

∫ z=zg

z=0

|k|dz
]

(28)

where k = (µ2
N − m2

N )1/2 is the wave number, and the
chemical potentials are known from the numerical solu-
tions. A few examples are shown in Fig. 7. Here we again
choose eφe(RS) = 30 MeV and plot the dependence on
density at zero temperature, and the dependence on tem-
perature for the maximum density crust of each compo-
sition.

The integral in Eq. (28) can be approximated at T = 0
by

log τ ≃ −2
√
2mN

∫ zg

0

(

Z

mN
eφe(r) −∆φg

)1/2

dz (29)

= −2
√
2CZ

∫ x(RC)

x(RS)

x−3(x2 −∆φg)
1/2dx, (30)

where

x =

(

Z

mN
eφe(r)

)1/2

, (31)

using Eq. (1) for µN and Eq. (14) for eφe(r). Remem-

FIG. 7: Dependence of the transmission coefficient on den-
sity at T = 0, and on temperature at maximum density with
eφe(RS) = 30 MeV. The kink in the HZ2003 density depen-
dence is at the assumed transition to a hydrogen crust. The
horizontal line marks the break even estimate for accreting
stars in the text.

bering that eφe(RC) =
mN

Z ∆φg this gives

log(τ) =

− 2
√
2CZ

∆φ
1/2
g






cos−1

(

mN∆φg

Zeφe(RS)

)1/2

−





1− mN∆φg

Zeφe(RS)

Zeφe(RS)
mN∆φg





1/2





,

(32)

where ∆φg can be approximated by Eq. (23). As seen
from Fig. 7 Eq. (32) is a very reasonable approximation.
Assuming the HZ2003 crust composition at drip density,
the low density limit of Eq. (32) is given as

log(τ) ≈ −2.5× 104

[

π

2

(

ρ

ρD

)−1/6

− 1.84

]

. (33)

The transmission coefficient may be better appreciated
by estimating its value when transmission of ions into
the core through the barrier breaks even with typical
accretion rates in binary systems. That is, we require
the balance:

Ṁ

mN
≤ Nion × f × τ , (34)

where Ṁ is the mass accretion rate onto the strange star
from a companion, Nion is the number of ions, whose mo-
tion about their lattice position allows them to strike the
barrier, and f is the oscillation frequency of this motion.
Nion may be taken as roughly the number of ions within
one lattice distance, a ∼ 200 fm, from the crust bound-
ary, and following again Alcock et al. [4], the oscillation
frequency should be less than 1 MeV. For a strange star
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accreting 10−10M⊙yr
−1 we then arrive at the condition

− log τ ≥ 44.6− log

(

Ṁ

10−10M⊙yr−1

)

+ log

(

f

MeV

)

+ log

(

ρ

4.3× 1011 g/cm
3

)

+ log
( a

200 fm

)

+ 2 log

(

RS

10 km

)

(35)

as indicated in Fig. 7 (all logarithms are base e). It may
then be noted that the maximum density models shown
in Fig. 7 – except the one using the BPS chemical com-
position – will interact with the core at low temperature
and are not stable at these densities. Only the BPS equa-
tion of state is thus able to remain stable at neutron drip
density even with eφe(RS) = 30 MeV. For other compo-
sitions and lower eφe(RS) stable crust densities are lower
depending on the temperature, see Fig. 14.

VI. RESULTS FOR NON COLOR-FLAVOR

LOCKED STRANGE STAR CORES

We have performed similar calculations for the case of
non color-flavor locked cores (“ordinary” strange stars),
and the structure of a solution with ρcrust = 4 ×
1011 g/cm

3
, T = 0, µ+

q = 30 MeV and the HZ2003 crust
composition is shown in Figs. 8, 9, and 10. Charge neu-
trality is imposed at the starting point 1000 fm into the
core and as we approach the surface electrons become
scarcer and consequently the charge density and electric
field rises. At the surface the quarks and their posi-
tive charge vanish, the charge density becomes negative
and the field starts decreasing. The solution from the
surface out looks like the color flavor-locked case with
eφe(Rs) = µe(Rs).

FIG. 8: Electric potential and field for a solution in the non
color-flavor locked case. The inset focuses on the electrical
potential.

FIG. 9: Electron, nucleon, quark charge density and total
charge density for the same solution as in Fig. 8. The transi-
tion to the crust is shown in Fig. 10.

FIG. 10: Electron, nucleon, quark charge and total charge
density during the transition from gap to crust for the same
solution as in Figs. 8 and 9.

We again calculate the dependence of the gap width on
density shown in Fig. 11 for T = 0 and different choices
of µ+

q = 10, 20, 30, 40 MeV from left to right. We
only show models using the HZ2003 crust composition,
since the gap width is in this case so insensitive to the
choice of composition that the curves would be indistin-
guishable. Note again that only for the highest choice of
µ+
q = 40 MeV does the crust reach neutron drip density

before the gap goes to zero. The gap width is approxi-
mated by Eq. (24) using eφe(RS) = µ+

q = 10 MeV. For

a bare strange star we would have eφe(RS) = 3µ+
q /4 [4],

whereas for dense crusts eφe(RS) ≃ µ+
q , but since large

gap widths are insensitive to eφe(RS) we use eφe(RS) =
µ+
q in all analytical approximations.

The temperature dependence of the gap width is ex-
plored in Fig. 12 for the case of µ+

q = 30 MeV with
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FIG. 11: Dependence of the gap width on density using
the HZ2003 crust composition. From left to right µ+

q =
10, 20, 30, 40 MeV. The analytical approximation explained
in the text assumes µ+

q = 10 MeV.

the HZ2003 crust composition. We note that the gap
width declines steeply at T ∼ 10 MeV and reaches zero
at T ∼ 30 MeV in contrast to the color-flavor locked
case. This behavior is caused by the condition of charge
neutrality at the starting point in the core (Eq. (27)),
which reduces µe significantly at temperatures compara-
ble to µ+

q . Other that that we note again the bump in the
gap width caused by the condition of charge neutrality
in the crust. The lowering of µe entirely suppresses the
bump at high densities. The gap width is approximated
in Fig. 12 by Eq. (13) using eφe(RS) = µe(z = −1000 fm)
found from Eq. (27). eφe(RC) is estimated as before from
Eq. (8) and (25).

FIG. 12: Gap width dependence on temperature and density
for non color-flavor locked cores with µ+

q = 30 MeV. The
maximum density is taken to be the density at which zgap ≃ 1
fm as this is as close to zero gap width as is numerically
reasonable – note that variations in the numerical results are
significant only at this scale. The analytical estimate assumes
ρ = ρmax/10.

The variation of transmission coefficient with density
and temperature is shown in Fig. 13. We again note
that the bump is suppressed compared to the color-flavor
locked case and that only crusts with the BPS composi-
tion can reach neutron drip before they become unstable
against transmission through the Coulomb barrier.

FIG. 13: Dependence of the transmission coefficient on den-
sity at zero temperature and temperature at maximum den-
sity for non color-flavor locked strange star cores with µ+

q =
30 MeV. The kink in the HZ1990 and HZ2003 dependence
corresponds to the assumed transition to a hydrogen crust.
The break even estimate is explained in the text and the an-
alytical approximation is based on Eq. (32) with the HZ2003
crust composition at drip density and eφe(RS) = µ+

q .

VII. DISCUSSION

We have expanded the treatment of gaps below strange
star crusts to include effects of pressure and gravity on
the crust nuclei and found the structure of the transition
from gap to crust. Overall our results are as one would
expect with a very sharp transition from gap to crust, gap
widths ranging from a few fm at densities near neutron
drip over a few thousand fm at densities close to the
maximum to 1010 fm for very thin crusts. Crust densities
are consequently limited below neutron drip unless one
assumes an extreme Coulomb barrier height. If the gap
width must be at least a crust lattice distance (∼ 200
fm) and a reasonable value of eφe(RS) ≃ 20MeV (or
eφe(z = −1000 fm) ≃ 20 MeV) is assumed then the crust

density is limited to a few times 1010 g/cm3.
The variation of the gap width with temperature is

noteworthy in that it initially increases with tempera-
ture which is a qualitatively new feature. However this
increase only takes place at temperatures below 1 MeV
(1010 K) for crust densities which give very small gap
widths of the order of 1 fm such as in the case of the
HZ2003 crust at maximum density in Figs. 6 and 7. A
realistic crust should have a sufficient gap width to be
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stable against strong interaction with the core, and exam-
ples of such crusts could be the HZ1990 and BPS crusts
in Figs. 6 and 7 – the HZ1990 crust is almost stable,
and lowering the density a little to make it so would not
change the dependence on temperature much. If we ap-
ply the criterion in Eq. (35) for crust stability we can
find the highest stable density at given temperature and
Coulomb barrier height, eφe(RS). Numerical results for
this are shown in Fig. 14 and we see that temperature ef-
fects are then not important below 1010 K. If we demand
at least a crust lattice distance in non accreting systems
the crust becomes even more stable against variations in
the temperature.

FIG. 14: Highest stable density according to Eq. (35) at given
temperature and eφe(RS) = 1, 5, 10, 20, 30 MeV from below.
The crust composition is from HZ2003 and we stop at the
temperature corresponding to neutron drip density.

The thermal structure of accreting strange stars was
investigated by Miralda-Escudé et al. [24] who found
temperatures around 107 K at the crust boundary for
strange stars accreting 10−11 to 10−9.83 M⊙ yr−1 assum-
ing that 10 MeV is released per nucleon converted to
strange quark matter (bag constant B = 103 MeV/fm

3
).

In this case the gap width would not be affected at all,
and one might as well use the zero temperature results.
Superbursters however are known to have much higher
accretion rates around 0.1-0.3 times the Eddington ac-
cretion rate, MEdd ∼ 10−8 M⊙ yr−1, and in a recent in-
vestigation Page and Cumming [26] found temperatures
for such stars in the range 108−109 K at the crust bound-
ary. This work was motivated by the difficulties in achiev-
ing carbon ignition at observed column depths in super-
burst models on neutron stars – see Cumming et al. 2005
[25] for a recent review – and it was found that super-
bursts may ignite at the right column density on strange
stars provided that neutrino emission in the core is slower

than direct Urca which implies that strange quark matter
should be a color superconductor. During the superburst
itself temperatures in the range 2−7×109 K are reached
for a few hours [23, 27]. This is again too low for signif-
icant temperature effects and for stable crusts one may
as well use the zero temperature expressions.

The present treatment could be improved by includ-
ing general relativity instead of Newtonian gravity, and
by using a less simplistic model for the equation of state
for the crust. Such improvements are necessary to calcu-
late the properties of the whole star, but we expect the
changes in the gap properties to be minor compared to
the results presented here. The same can be said about
a more detailed treatment of the quark phase, which has
here merely been treated as a source of a given total mass
and starting value for the electron chemical potential.
However, as pointed out in [16], the electric potential in
the outer layers of the strange core could be qualitatively
different from the behavior assumed here if a mixed phase
of quark nuggets and electrons can be realized.

Another important oversimplification involves the as-
sumption of a constant pairing gap all the way to the
quark core surface in the treatment of quark matter in
the CFL-phase. In fact the pairing gap ∆CFL may be
envisaged to vanish within a surface distance of order
1/∆CFL ≈ 2–20 fm for gap energies between 100 and
10 MeV. Possibly a range of phases appear in the extreme
uppermost layers, including the possibility that the very
surface resembles the ungapped ordinary quark phase
also discussed above. A detailed treatment of gapped
phases near a surface remains to be performed.

In conclusion the results of our expanded treatment,
while quantitatively somewhat different, are qualitatively
consistent with previous work in the literature with re-
gards to gap width, transmission coefficient and possible
crust densities. The increase in gap width with tempera-
ture is new but significant only at very high temperatures
not likely realized. Perhaps the most useful results of the
investigation are the various analytical approximations
which have been derived and shown to fit the full numer-
ical solutions very well, since these provide better phys-
ical insight and can be easily used in models for strange
star rotation, glitches, accretion and instabilities.
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