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ABSTRACT

We report Swift Burst Alert Telescope (BAT) observations of the X-ray Flash

(XRF) XRF 050416A. The fluence ratio between the 15-25 keV and 25-50 keV

energy bands of this event is 1.5, thus making it the softest gamma-ray burst

(GRB) observed by BAT so far. The spectrum is well fitted by the Band function

with Eobs
peak of 15.0

+2.3
−2.7 keV. Assuming the redshift of the host galaxy (z = 0.6535),

the isotropic- equivalent radiated energy Eiso and the peak energy at the GRB

rest frame (Esrc
peak) of XRF 050416A are not only consistent with the correlation

found by Amati et al. and extended to XRFs by Sakamoto et al., but also fill-

in the gap of this relation around the 30 – 80 keV range of Esrc
peak. This result

tightens the validity of the Esrc
peak – Eiso relation from XRFs to GRBs.

We also find that the jet break time estimated using the empirical relation

between Esrc
peak and the collimation corrected energy Eγ is inconsistent with the

afterglow observation by Swift X-ray Telescope. This could be due to the extra

external shock emission overlaid around the jet break time or to the non existence

of a jet break feature for XRF, which might be a further challenging for GRB jet

emission, models and XRF/GRB unification scenarios.
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1. Introduction

The observations of X-ray flashes (XRF) are providing important information for under-

standing the nature of Gamma-Ray Bursts (GRB). The detailed studies of XRFs started few

years ago based on BeppoSAX observations (Heise et al. 2000; Kippen et al. 2002), but X-ray

rich events had already been detected by the Ginga satellite. Yoshida et al. (1989) reported

that soft X-ray emission below 10 keV co-exists with γ-ray emission of GRBs. About 36% of

the bright bursts observed by Ginga have Eobs
peak energy, which is the photon energy at which

the νFν spectrum peaks, around a few keV and also show large X-ray to γ-ray fluence ratios

(Strohmayer et al. 1998).

The Wide Field Cameras (WFC) on-board the BeppoSAX satellite observed 17 XRFs

in five years (Heise et al. 2000). Kippen et al. (2002) searched for GRBs and XRFs which

were observed in both WFC and BATSE. The WFC and BATSE joint spectral analysis of

XRFs shows that their Eobs
peak energies are significantly lower than those of the BATSE Eobs

peak

distribution (Preece et al. 2000). The systematic study of the spectral properties of XRFs

observed by HETE-2 also supports this result (Sakamoto et al. 2005a).

The afterglow detection and the redshift measurement from the host galaxy of XRF

020903, which is one of the softest XRF observed byHETE-2, shows the dramatic progress in

understanding the nature of XRFs. The prompt emission of XRF 020903 has Eobs
peak < 5.0 keV

which is two orders of magnitude smaller than that of typical GRBs. The optical transient

and the host galaxy of XRF 020903 were detected. Further spectroscopic observation of the

host galaxy suggests that the redshift is 0.25 ± 0.01 (Soderberg et al. 2004). Sakamoto et

al. (2004) calculated the isotropic-equivalent energy Eiso and the peak energy at the source

frame Esrc
peak using the redshift of the host galaxy, and found that XRF 020903 follows an

extension of the empirical relationship between Eiso and Esrc
peak found by Amati et al. (2002)

for GRBs (a.k.a. Amati relation). This result provides the observational evidence that XRFs

and GRBs form a continuum and are a single phenomenon.

In this paper, we report the prompt emission properties of XRF 050416A observed by

Burst Alert Telescope (BAT) on-board the Swift satellite. The X-ray flash, XRF 050416A,

was detected and localized by the Swift (Gehrels et al. 2004) Burst Alert Telescope (BAT;

Barthelmy et al. (2005)) at 11:04:44.5 UTC on 2005 April 16 (Sakamoto et al. 2005b,c).

Swift autonomously slewed to the BAT on-board position, and both Swift X-Ray Tele-

scope (XRT; Burrows et al. (2005)) and UV-Optical Telescope (UVOT; Roming et al. (2005))

detected the afterglow (Cusumano et al. (2005) in preparation, Holland et al. (2005) in

preparation). The afterglow emission of XRF 050416A was also observed by ground obser-

vatories at various wavelengths (Cenko et al. 2005a; Anderson et al. 2005; Li et al. 2005;

Kahharov et al. 2005; Price et al. 2005; Cenko et al. 2005b; Soderberg et al. 2005). Cenko
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et al. (2005c) reported that the host galaxy is faint and blue with large amount of the star

formation and its redshift is z = 0.6535 ± 0.0002. Throughout this paper, the quoted errors

are the 90% confidence level and the sky coordinates in J2000 unless we state otherwise in

the text.

2. BAT data analysis

The BAT data analysis was performed using the Swift software package (HEAsoft

6.0). The background was subtracted using the modulations of the coded aperture (mask-

weighting technique). In this technique, photons with energies higher than 150 keV become

transparent to the coded mask and these photons are treated as a background. Thus, in this

mask-weighted technique the effective BAT energy range is from 14 keV to 150 keV.

Figure 1 shows the energy resolved BAT light curves of XRF 050416A. It is clear that

the signal of the burst is only visible below 50 keV. The burst signal is composed of two

peaks. The first peak has a triangular shape with the rise time longer than the decay time.

When we calculate the spectral lag (Norris et al. 2000) between the 25–50 keV and 15-25 keV

band, the cross-correlation function lag is −0.066+0.014
−0.018 second (1σ error). These temporal

characteristics are very unusual for the typical GRBs (e.g. Mitrofanov et al. (1996); Norris et

al. (2000)), thus, it is difficult to understand them in the frame work of the standard internal

shocks models in which the rise time is always shorter than the decay time and the hard

emission always exceeds the soft emission (e.g. Piran (1999), Kobayashi et al. (1997)). The

t90 and t50 in the 15-150 keV band are 2.4 and 0.8 seconds, respectively. This t90 belongs to

the shortest part of the “long GRB” classification based on the BATSE duration distribution

(Paciesas et al. 1999). The fluence ratio between the 15-25 keV band and the 25-50 keV

band of 1.5 makes this burst one of the softest GRBs observed by BAT so far. The bottom

panel of figure 1 shows the count ratio between the 25-50 keV and 15-25 keV bands. The

spectral softening is clearly visible during the first and the second peak.

As reported by the BAT team1, we applied the energy-dependent systematic error vector

in the spectral files before doing any fitting procedure. The background subtracted (mask-

weighted) spectral data were used in the analysis. The XSPEC v11.3.1 software package was

used for fitting the data from 14 keV to 150 keV to the model spectrum.

Table 1 shows the fluences and the peak photon fluxes in the various energy bands. These

fluences and peak photon fluxes were derived directly from fitting the time-averaged and 1-s

1http://legacy.gsfc.nasa.gov/docs/swift/analysis/bat digest.html
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peak spectra respectively assuming the Band function with α = −1. Table 2 summarizes the

spectral parameters of the BAT time-averaged spectrum2. Figure 2 shows the time-averaged

spectrum, accumulated over the time interval from −0.5 seconds to 3 seconds since the BAT

trigger time, was fitted with a simple power-law model. The photon index β which is much

steeper than −2 strongly indicates that the BAT observed the higher energy part of the Band

function (Band et al. 1993). Motivated by this result, and also by the fact that almost all of

GRB and XRF spectra are well described by the Band function (Preece et al. 2000; Kippen

et al. 2002), we tried to fit the spectrum with the Band function assuming the low energy

photon index α to be fixed at −1, which is the typical value for both GRBs (Preece et al.

2000) and XRFs (Kippen et al. 2002; Sakamoto et al. 2005a). The fitting shows a significant

improvement from a simple power-law model to the Band function of ∆χ2 of 7.75 for 1

degree of freedom. To quantify the significance of this improvement, we performed 10,000

spectral simulations assuming our best fit spectral parameters in a simple power-law model,

and determined in how many cases the Band function fit gives χ2 improvements of equal or

greater than 7.75 over the simple power-law. We found equal or higher improvements in χ2

in 62 simulated spectra out of 10,000. Thus, the chance probability of having an equal or

higher ∆χ2 of 7.75 with the Band function, when the parent distribution is a case of a simple

power-law model is 0.6%. The observed Epeak energy, Eobs
peak, is well constrained at 15.6+2.3

−2.7

keV, and it confirms the soft nature of this burst. We also applied a constrained Band

function fit (Sakamoto et al. 2004) to the BAT spectrum to estimate Eobs
peak. The calculated

Eobs
peak is consistent with the Band function fit of the fixed α to −1: 9.9 keV < Eobs

peak < 20.0

keV at the 68% confidence level, 5.1 keV < Eobs
peak < 21.8 keV at the 90% confidence level,

and Eobs
peak < 23.0 keV at the 99% confidence level.

The low energy response is crucial for the determination of the spectral parameters of an

XRF and also, as reported by the BAT team 3, there is a known problem of ∼ 15% smaller

effective area in the Crab spectrum below 20 keV when fitting with a pre-launch response

matrix. Since the post-launch response matrix which we used in the analysis was applying

a correction to force the Crab spectrum to fit a canonical model from 14 keV to 150 keV,

and because we were also also applying the systematic error vectors before performing the

spectral analysis, the systematic effect of this low energy problem is very limited. However,

we investigated the spectrum of XRF 050416A ignoring the spectral bins below 20 keV. Even

2The spectral models which we used throughout this paper are following; a simple power-law model

(PL): f(E) = K30(E/30)β and the Band function (Band): f(E) = K30(E/30)α exp(−E(2 + α)/Epeak),

if E < (α − β)Epeak/(2 + α) and f(E) = K30{(α − β)Epeak/[30(2 + α)]}α−β exp(β − α)(E/30)β , if E ≥

(α− β)Epeak/(2 + α).

3Section “Corrections to Response” of the BATDigest (http://legacy.gsfc.nasa.gov/docs/swift/analysis/bat digest.html)
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without using spectral bins below 20 keV, the photon index of XRF 050416A is −3.4± 0.4,

much steeper than −2 (α < −2 at the > 99.99% confidence level). Furthermore, we took

the ratio of the spectral data of XRF 050416A and the Crab nebula observed at a similar

incident angle to XRF 050416A. The result is shown in figure 3. The flattening trend of the

photon index below 25 keV is also clear in this figure. Thus, we conclude that the deviation

from a simple power-law model below 25 keV is a real features of the spectrum of XRF

050416A.

3. Discussion

One of the most important discoveries related to XRF 050416A is the confirmation of

the Esrc
peak – Eiso relation (Amati et al. 2002). We calculate the Epeak energy at the GRB

rest frame, Esrc
peak, and the isotropic-equivalent energy (1 – 104 keV at the rest frame), Eiso,

using the redshift of the host galaxy (z=0.6535). Assuming α = −1, Esrc
peak and Eiso of XRF

050416A are 25.1+4.4
−3.7 keV and (1.2 ± 0.2)× 1051 erg, respectively. Figure 4 shows the data

point of XRF 050416A with the known redshift GRBs of BeppoSAX and HETE−2 sample

(Amati 2003; Lamb et al. 2004; Sakamoto et al. 2004). XRF 050416A not only follows the

Esrc
peak ∝ E0.5

iso relation, but also fills in the gap of the relation around Esrc
peak of 30 – 80 keV.

This result tightens the validity of this relation at five orders of magnitude in Eiso and at

three orders of magnitude in Esrc
peak. XRF 050416A bridges the gap between XRFs which

have Esrc
peak of less than 10 keV and GRBs in the Esrc

peak – Eiso relation.

The confirmation of Esrc
peak – Eiso relation from XRFs to GRBs gives us a clear indication

that XRFs and GRBs form a continuum and are a single phenomenon. There are several jet

models to explain a unified picture of XRFs and GRBs. The off-axis jet model (Yamazaki et

al. 2004; Toma et al. 2005), the structured jet model (Rossi et al. 2002; Zhang & Mészáros

2002; Zhang et al. 2004), and the variable jet opening angle model (Lamb, Donaghy &

Graziani 2005) are the most popular models in this aspect. On the other hand, there are

theoretical models to explain XRFs in the frame work of the internal shock model (Mészáros

et al. 2002; Mochkovitch et al. 2003) and of the external shock model (Dermer et al. 1999;

Huang et al. 2002; Dermer and Mitman 2003). The cited jet models and internal/external

shock models not only explain the existences of XRFs, under certain assumptions, but also,

in some of their realizations or for some values of their parameters, they can predict the

Esrc
peak – Eiso correlation.

According to the XRT afterglow observation of XRF 050416A, the decay slope of the

afterglow emission is ∼ −0.9 from 0.015 days to ∼ 34.7 days after the GRB trigger without

any signature of a jet break (Cusumano et al. (2005) in preparation; Nousek et al. (2005)).
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Using Esrc
peak and Eiso of XRF 050416A measured by BAT, we can estimate the jet

break time using the relation between Esrc
peak and the jet collimation-corrected energy Eγ

found by Ghirlanda et al. (2004) (Ghirlanda relation). However, there is a debate about

the assumption of the jet model used by Ghirlanda et al. (2004) to derive the relationship

between Esrc
peak and Eγ (Xu 2005; Liang & Zhang 2005). Based on this argument, we use the

empirical relation between Eiso, E
src
peak, and the jet break time at the rest frame, tsrcjet , derived

by Liang & Zhang (2005). Note that there is no assumption of a jet model in the formula

found by Liang & Zhang (2005), and thus their relation is purely based on observational

properties. When we use the equation (5) in Liang & Zhang (2005), (Eiso/10
52 erg) =

0.85 × (Esrc
peak/100 keV)

1.94 × (tsrcjet/1 day)
−1.24, the jet break time in the observer’s frame is

estimated to be ∼ 1.5 days after the GRB on-set time. Note that this estimated jet break

time is consistent with the estimation using the Ghirlanda relation assuming the circum-

burst density of 3 cm−3. Thus, the estimated jet break time using the empirical Esrc
peak-Eiso-

tsrcjet relation is inconsistent with the null detection of a jet break until more than 34.3 days

after the trigger by XRT.

In the off-axis jet model (Yamazaki et al. 2004; Toma et al. 2005), the null detection

of the jet break in the XRT data of XRF 050416A could be difficult to explain. When we

assume a bulk Lorentz factor of 100, Esrc
peak of 300 keV for an on-axis observer, and a jet

opening angle of 2 degrees, the viewing angle from the jet on-axis is estimated to be ∼ 4

degrees from the observed Esrc
peak of 25 keV. According to Granot et al. (2002), when observing

the jet from an angle two times larger than the jet opening angle, we would expect to see

a rise in the flux around one day after the burst. It is possible to increase the bulk Lorentz

factor and to reduce the off-axis viewing angle to achieve the same Doppler factor. However,

in this case, the afterglow light curve should be close to the on-axis case, thus, we would

expect to see the jet break around the time we estimated.

On the other hand, the variable jet opening angle model (Lamb, Donaghy & Graziani

2005) might work for XRF 050416A if Eγ is a constant value. If we assume the values typical

for GRBs (Esrc
peak = 300 keV and the jet opening angle of 5 degrees), the jet opening angle of

XRF 050416A is calculated to be 52 degrees because of the inverse relation between Esrc
peak and

the jet opening angle in the case in which Eγ is a constant. When we used the formulation

of Sari et al. (1999) applying the estimated jet opening angle, the jet break time will be 64

days in the case of the circum-burst density of 10 cm−3. Both properties of the low Esrc
peak

and the null detection of the jet break could be explained in the variable jet opening angle

model if Eγ is constant. However, as Ghirlanda et al. (2004) showed, Eγ is not a constant

parameter, but has a good correlation with Esrc
peak. When we applied the Ghirlanda relation,

Esrc
peak ∝ E0.7

γ
, in the variable opening angle model, and re-calculated the jet break time, the

break time will be 0.7 days assuming the circum-burst density of 10 cm−3. In the variable
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jet opening angle model, there is no way to explain both the Ghirlanda relation and the null

detection of the jet break by XRT simultaneously.

One natural way to explain the non-detection of the jet break feature is that extra

components are overlaid around a jet break time period. According to the afterglow calcu-

lations in the X-ray band by Zhang et al. (2005), there are several possibilities to hide a jet

break feature due to some kinds of emission by the external shock. These are the external

shock emission from 1) the dense clouds surrounding a GRB progenitor (e.g. Lazzati et al.

(2002)), 2) a moderately relativistic cocoon component of a two-component jet (e.g. Granot

(2005)) , and 3) a jet with large fluctuations in angular direction (patchy jets; Kumar &

Piran (2000)). On the other hand, it might be the case that XRFs indeed do not show

the signature of a jet break in the afterglow. Indeed although the numbers in the sample

are limited, there is no clear observational indication of a jet break in any XRF afterglow

light curve so far. If the later case is true, we need to change our view of XRFs completely.

Thus, the multi-wavelength observations of the XRF afterglows will be crucial to investigate

whether a jet break feature exists in XRFs or not.
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Table 1: Energy fluences and the peak photon fluxes of XRF 050416A assuming the Band

function with α = −1

Energy band Energy fluence Peak photon flux

[keV] [erg cm−2] [ph cm−2 s−1]

15 – 25 (1.7± 0.2)× 10−7 2.9+0.4
−0.3

25 – 50 (1.5± 0.2)× 10−7 1.7± 0.2

50 – 100 3.4+1.0
−0.6 × 10−8 3.2+0.8

−0.4 × 10−1

100 – 150 4.2+11.8
−3.2 × 10−9 2.5+3.6

−1.2 × 10−2

15 – 150 (3.5± 0.3)× 10−7 5.0± 0.5
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Table 2: The time-averaged spectral parameters of XRF 050416A

Model α β Epeak K30 χ2/d.o.f.

[keV] [ph cm−2 s−1 keV−1]

PL −3.1± 0.2 (4.3± 0.3) ×10−2 50.74 / 57

PLa −3.4± 0.4 (4.7± 0.5) ×10−2 43.88 / 53

Band −1 (fixed) < -3.4 15.6+2.3
−2.7 3.5+1.7

−0.8 ×10−1 42.99 / 56

aFitting result using only spectral bins above 20 keV.
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Fig. 1.— Light curve of XRF 050416a in five energy bands: 15–25 keV, 25–50 keV, 50–100

keV, 100–150 keV, and 15–150 keV. The bottom panel shows the hardness ratio between the

25–50 keV and 15–25 keV band.
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Fig. 2.— BAT spectrum of XRF 050416A with a simple power-law model. The spectral bins

in the figure are binned at least 3 sigma, or are grouped in sets of 13 bins.
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Fig. 3.— The ratio between the spectral data of XRF 050416A and the Crab nebula.

The numerator and denumerator of the ratio are the XRF 050416A and the Crab nabula

spectrum, respectively. The solid line shows the best fit power-law slope of −1.9 derived

from fitting the data above 25 keV. The bottom panel shows the residuals from this best fit

power-law slope. The reduced χ2 is 7.72 in 20 degree of freedom.
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Fig. 4.— The isotropic-equivalent energy, Eiso, versus the peak energy at the GRB rest

frame, Esrc
peak, for XRF 050416A (red square) and the known redshift GRBs from BeppoSAX

(circle) and HETE-2 (triangle). The BeppoSAX GRB sample is from Amati et al. (2002)

and the HETE-2 GRB sample is from Lamb et al. The dotted line is the relation of Esrc
peak

= 89 (Eiso/10
52 erg)0.5 (Amati et al. 2002).


