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Primordial helium reombination II: two-photon proesses
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Interpretation of preision measurements of the osmi mirowave bakground (CMB) will require

a detailed understanding of the reombination era, whih determines suh quantities as the aousti

osillation sale and the Silk damping sale. This paper is the seond in a series devoted to the

subjet of helium reombination, with a fous on two-photon proesses in He i. The standard

treatment of these proesses inludes only the spontaneous two-photon deay from the 21S level.

We extend this treatment by inluding �ve additional e�ets, some of whih have been suggested in

reent papers but whose impat on He i reombination has not been fully quanti�ed. These are: (i)

stimulated two-photon deays; (ii) two-photon absorption of redshifted He i line radiation; (iii) two-

photon deays from highly exited levels in He i (n1S and n1D, with n ≥ 3); (iv) Raman sattering;

and (v) the �nite width of the 21P o
resonane. We �nd that e�et (iii) is highly suppressed when

one takes into aount destrutive interferene between di�erent intermediate states ontributing to

the two-photon deay amplitude. Overall, these e�ets are found to be insigni�ant: they modify

the reombination history at the level of several parts in 104.

PACS numbers: 98.70.V, 95.30.Jx

I. INTRODUCTION

The anisotropy of the osmi mirowave bakground

(CMB) has proven to be one of the most versatile and

robust osmologial probes. The Wilkinson Mirowave

Anisotropy Probe (WMAP) satellite has reently mea-

sured these anisotropies at the perent level on de-

gree sales [1, 2℄, and several experiments are ongoing

or planned to make preise measurements of the po-

larization and the sub-degree temperature �utuations

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16℄. The

CMB data, whose preision and robustness are so far

unmathed by low-redshift observations, have provided

some of the strongest tests of the standard osmologi-

al model, inluding the adiabatiity and Gaussianity of

the primordial perturbations and the spatial �atness of

the universe. Most reently, the CMB has provided in-

triguing evidene for departure of the spetrum of the

primordial perturbations from sale invariane (ns < 1),
as predited by many models of in�ation [17℄.

The robustness of the CMB stems from the fat that

the primary anisotropy an be alulated from �rst prin-

iples with reasonable omputing time to a numerial a-

uray of ∼ 0.1% (i.e. good enough that this is not a lim-

iting fator) [18℄. The major exeption to this statement

is reombination, whih a�ets the CMB anisotropy be-

ause it determines the Thomson opaity and the visibil-

ity funtion. The subjet of osmologial reombination

has a long history, with the early simple approximations
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[19, 20℄ being replaed by more sophistoated radiative

transfer and multi-level atom analyses [21, 22, 23, 24, 25℄.

Several papers have appeared reently suggesting that

the treatment of reombination in the urrent gener-

ation of CMB anisotropy odes [24, 25℄ is inomplete

[26, 27, 28, 29, 30℄ and that the remaining errors may

be large enough to be relevant for next-generation exper-

iments suh as Plank [31℄. It is espeially worrisome that

some of the errors in the standard reombination history,

in partiular helium reombination, are partially degen-

erate with the salar spetral index ns, a key parameter

for onstraining models of in�ation [32, 33℄. It is there-

fore neessary to take a fresh look at the reombination

problem.

This paper (�Paper II�) is the seond in a series devoted

to osmologial helium reombination. The �rst of these

is Switzer & Hirata astro-ph/0702143, hereafter �Paper

I,� whih re-examined helium reombination, taking into

aount the e�ets of semiforbidden and forbidden tran-

sitions, spetral distortion feedbak, and H i bound-free

ontinuum opaity. We believe these are the major ef-

fets in helium reombination that are not inluded in

the standard treatment. This paper onsiders several re-

visions to the standard treatment of two-photon transi-

tions; these revisions do not have a major in�uene on

helium reombination, but need to be inluded in order

to establish that they are not important. The emphasis

is on helium although some of the disussion (partiu-

larly that in Ses. II and III) also applies to hydrogen.

The third paper of the series (Switzer & Hirata astro-

ph/0702145, hereafter �Paper III�) will onsider the ef-

fets of

3
He sattering, eletron sattering, rare deays,

ollsions, and peuliar veloities and summarize the ma-

jor results.

http://arxiv.org/abs/astro-ph/0702144v1
mailto:chirata@sns.ias.edu
mailto:switzer@princeton.edu
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The standard treatment of two-photon transitions in

helium inludes only the spontaneous two-photon deays

from He i 21S to the ground level 11S, and their in-

verse proess, two-photon absorption. The �rst orre-

tion onsidered in this paper is stimulated two-photon

deay of 21S to 11S, whih was �rst analyzed by Chluba

& Sunyaev [26℄ in the ontext of H i reombination. We

reanalyze the e�et here and also inlude two-photon ab-

sorption of the spetral distortion as suggested by Kholu-

penko & Ivanhik [30℄, whih delays reombination by re-

exiting atoms. The stimulated two-photon transitions

and absorption of the spetral distortion are found to

play no signi�ant role in He i or He ii reombination,

produing orretions to xe of the order of a few times

10−5
.

The seond orretion onsidered is the two-photon de-

ay from highly exited levels (n1L, where n ≥ 3 and

L = 0, 2), whih was responsible for the largest orre-

tion to reombination in the reent paper by Dubrovih

& Grahev [27℄, hereafter DG05. The treatment of suh

deays is a subtle issue beause the two-photon spetrum

from (for example) 31D → 11S ontains a resonane as-

soiated with the allowed sequene of one-photon tran-

sitions 31D → 21P o → 11S. Sine these �1+1� deays

are already inluded in the level ode one must be are-

ful to distinguish whih parts of the two-photon spe-

trum should be added into the level ode and whih

parts should be left out to avoid double-ounting the rate.

DG05 irumvented this di�ulty by exluding the inter-

mediate states assoiated with energetially allowed 1+1

deays. This learly avoids the double-ounting prob-

lem, but of ourse it a�ets the auray of the omputed

two-photon spetrum: in Se. III we will see that, parti-

ularly for large n, DG05 overestimated the two-photon

rate beause they neglet destrutive interferene from

the various intermediate states.

In order to orretly implement two-photon rates from

n ≥ 3 in a level ode, we must reall why they ould be

important even though they are muh slower than the

1+1 deays. The physial reason is that in a 1+1 de-

ay, the higher photon is emitted in a He i n′1P o
�11S

line, and is likely to immediately re-exite another atom.

There is no net prodution of the ground state He(11S)
exept in the unlikely irumstane that the photon red-

shifts out of the line or is absorbed by H i before it exites

a He i atom. In ontrast, the nonresonant two-photon

deays in whih neither photon is emitted within a He i

line will produe a net gain of one ground state helium

atom (exept for the subtlety that one of the photons

ould later redshift into a He i line). Therefore, for the

purposes of the level ode, the way to distinguish �res-

onant� (1+1) from �nonresonant� deays is not to make

the distintion based on whih intermediate state appears

in the deay amplitude, but rather to impose a uto� in

frequeny spae: deays in whih one of the photons is

within ∆νcut of a He i n′1P o
�11S line are treated as res-

onant (1+1), and the rest are nonresonant. The hoie

of ∆νcut (desribed in Se. IV) is arbitrary, re�eting the

fat that the 1+1 deay is not a distint physial proess

from two-photon deay � rather, the damping tails of the

He i n′1P o
�11S line merge smoothly with the two-photon

ontinua from all initial states that an deay to n′1P o
.

Our approah to onsidering two-photon deays in this

paper is to �rst onsider the nonresonant deays for our

hoie of ∆νcut, and set an upper bound on how muh

they an speed up He i reombination by negleting re-

absorption of the nonresonant photons. The resonant

two-photon deays (and the related proesses of resonant

two-photon absorption and resonant Raman sattering)

an be onsidered as an alteration to the line pro�le of

He i n′1P o
�11S, whih is no longer well-desribed by a

Voigt pro�le if one goes far enough out into the damping

wings. Further, the 21P o
�11S line now has a signi�ant

linewidth: for our hoie of∆νcut, it requires∼ 0.02Hub-
ble times for a photon to redshift through the line (i.e.

to redshift from frequeny νline+∆νcut to νline−∆νcut).
Beause of this, one must be areful about assuming the

radiation �eld within the line is in steady state. All of

these issues will be onsidered in Se. V.

The outline in this paper is as follows. In Se. II, we

onsider the e�et of stimulated two-photon deays from

the n = 2 level (21S) in He i and a related proess, two-

photon absorption of the spetral distortion. In Se. III,

we disuss the two-photon deay rates from highly ex-

ited levels in He i (n ≥ 3) and show that they were

signi�antly overestimated by DG05. In order to evalu-

ate the importane of the two-photon rates, we separate

the two-photon spetrum into �nonresonant� and �reso-

nant� piees. The nonresonant ontribution is onsidered

in Se. IV, and the resonant ontribution in Se. V. We

onlude in Se. VI.

The notation in this paper is onsistent with that in

Paper I, but there are several new additions. Here we

will denote the Rydberg onstant by R. The redued

matrix element of a spin k tensor operator 〈j′||T (k)||j〉 is
de�ned in aordane with Ref. [34℄. (This di�ers by a

fator of ik from Ref. [35℄, but is more onvenient for our

purposes beause it makes the matrix elements real.) We

will also use the symbol L> ≡ max(L, 1), whih makes

many appearanes in our matrix elements. Spontaneous

two-photon deay rates will be denoted by Λ, while the
�nite-temperature rates will be denoted Γ2γ . Di�erential

rates as a funtion of photon frequeny or energy will be

written dΓ2γ/dν or dΓ2γ/dE.

II. TWO-PHOTON DECAYS FROM n = 2

The two-photon transitions from the metastable H i

2s and He i 21S levels are an important ontribution

to the reombination rates. It is usually assumed that

stimulated two-photon emission plays a negligible role

in the deay of the n = 2 states in H i and He i [25℄.

Chluba & Sunyaev [26℄ found that stimulated emission

in H i 2s → 1s modi�es TT and TE anisotropies at the

perent level on small sales. We use a similar method to
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inlude He i and He ii stimulated two photon emission in

addition to H i. We also inlude the re-absorption of the

spetral distortion via two-photon exitation [30℄. We do

not �nd any signi�ant e�ets in He i or He ii.

In this setion, we present a general treatment of the

two-photon deays from n = 2 levels, inluding stimu-

lated emission and the e�ets of absorption of the spe-

tral distortion. For He i n = 2 states, we onsider �rst

the usual two-photon deay:

He(21S) → He(11S) + γspon + γspon (1)

and the two-photon exitation

He(11S) + γbb + γbb → He(21S), (2)

where γspon refers to a spontaneously emitted photon and

γbb refers to a photon drawn from the blakbody radia-

tion. These two equations are the only ones onsidered in

standard reombination odes, and they are typially in-

luded with a rate oe�ient of ΛHeI = 51 s−1
for Eq. (1)

and the detailed balane rate ΛHeIe
−∆E/kBTr

for Eq. (2),

where ∆E = E(21S) − E(11S). As pointed out for H i

by Chluba & Sunyaev [26℄, one should also onsider the

analogous stimulated deays in He i:

He(21S) → He(11S) + γspon + γstim (3)

and

He(21S) → He(11S) + γstim + γstim, (4)

where γstim means that the photon's emission is stimu-

lated. [Chluba & Sunyaev [26℄ replaed ΛHI in their level

ode with the sum of rates for Eqs. (1), (3), and (4).℄

Note that it is not self-onsistent to leave out these re-

ations, sine the reverse reation of Eq. (2) is not just

Eq. (1) but rather the ombination of Eqs. (1), (3), and

(4).

If there is a spetral distortion from redshifted He i line

photons, one should also onsider the possibility of two-

photon absorption of a thermal photon and a distortion

photon [30℄:

He(11S) + γbb + γdist → He(21S), (5)

where γdist refers to a spetral distortion photon. In prin-
iple, there is an additional ontribution where both ab-

sorbed photons ome from the spetral distortion. This is

negligible sine the blakbody spetrum dominates over

the spetral distortion for photons with hν < ∆E(21S)/2
exept at z < 1400 when He i reombination is �nished

(xHeII < 10−14
). All of these equations have analogues

in H i and He ii.

The two-photon deay rate is

ẋ21S→11S = ΛHeI

∫ ν
11S−21S/2

0

φ(ν)

×
{

x21S [1 +N (ν)][1 +N (ν′)]

−x11SN (ν)N (ν′)

}

dν, (6)

where φ(ν) is the two-photon emission pro�le, normalized

to

∫ ν
11S−21S/2

0

φ(ν) dν = 1, (7)

and the frequeny of the higher-frequeny photon is ν′ =
ν11S−21S−ν. Note that deay term [1+N (ν)][1+N (ν′)]
an be expanded to give a spontaneous piee, a singly

stimulated piee N (ν) +N (ν′), and a doubly stimulated

pieeN (ν)N (ν′). The phase spae density for the higher-
energy photon is muh less than unity: at z = 2600 it is

2× 10−4
at the midpoint of the H i spetrum, ν1s−2s/2,

and it is even less above the midpoint, for He i, or for

lower redshifts). Therefore we make the replaement in

the downward rate 1 +N (ν′) → 1, i.e. we neglet stim-

ulated emission of the higher-energy photon. Similarly

sine the spetral distortion phase spae density is ≪ 1,
we may replae 1+N (ν) → 1+Nbb(ν). This enables us
to write Eq. (6) as

ẋ21S→11S = ẋ
(thermal)
21S→11S + ẋ

(nonthermal)
21S→11S , (8)

where

ẋ
(thermal)
21S→11S = ΛHeI

∫ ν
11S−21S/2

0

φ(ν) dν

1− e−hν/kBTr

×
(

x21S − x11Se
−hν

11S−21S/kTr

)

(9)

and

ẋ
(nonthermal)
21S→11S = −ΛHeI

∫ ν
11S−21S/2

0

φ(ν) dν

ehν/kTr − 1

×Ndist(ν
′)x11S . (10)

[Here Ndist(ν
′) is the distortion phase spae density de-

�ned by taking the atual phase spae density and sub-

trating the blakbody ontribution.℄

In the level ode, the pro�les for H i and He ii are based

on the �ts by Nussbaumer and Shmutz [36℄, and for He i

we use the �t to Drake [37℄ desribed in Appendix A of

Paper I.

The results of inluding Eqs. (9) and (10) in the level

ode are shown in Fig. 1. We an see that for He i and

He ii the e�et is very small � only a few times 10−5
. A

larger e�et in ∆xe during hydrogen reombination was

found by [30℄, for several reasons. First, the absolute

abundane of hydrogen is greater, so a similar frational

hange in its reombination history leads to a larger ef-

fet. Seond, the 2s and 2p levels in H i are essentially

degenerate, whereas in He i the 21P o
level lies 0.6 eV

above the 21S level. This hanges the shape of the two-

photon spetrum at low frequenies, where φ(ν) ∝ ν3 in

He i (due purely to the available phase spae for emit-

ting a low energy photon) as opposed to φ(ν) ∝ ν in

H i (where there is a pole orresponding to the 2p inter-
mediate state in the matrix element at zero frequeny).

Stimulated emission and re-absorption of the spetral dis-

tortion will play a larger role in the ase of H i where the
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FIG. 1: A omparison of the e�et of stimulated two-photon

emission and nonthermal two-photon absorption relative to

the referene model. The net e�et is a delay in reombi-

nation, ∆xe > 0. The two peaks orrespond to the e�et

on He ii reombination (z ∼ 5500) and He i reombination

(z ∼ 2500). Note that in both ases the e�et on the reom-

bination history is small, i.e. a few parts in 105.

two-photon spetrum has more probability at the ends

of the spetrum. A third reason is that, due largely

to the lower abundane of helium versus hydrogen, the

He i 21P o
�11S optial depth during He i reombination

is muh less than that of Lyα during H i reombination;

therefore the importane of two-photon deays relative

to resonane esape is less for He i than for H i.

III. TWO-PHOTON RATES FROM n ≥ 3

In this setion, we onsider the e�et of two-photon de-

ays from the higher exited levels of He i (n ≥ 3). Suh
deays were disussed by DG05 as a potential means to

dramatially speed up He i reombination. The inlusion

of these deays introdues a new subtlety, however, whih

is not present for the n = 2 two-photon deay 21S → 11S.
The 21S level does not have any allowed deay routes, so

it is orret to take a multilevel atom ode and add in a

new rate Λ21S→11S for this deay. In ontrast, the higher

levels in He i (n1L, n ≥ 3, L ∈ {0, 2}) that an un-

dergo two-photon deay to 11S all have �1+1� deays in

whih the atom �rst undergoes an allowed single-photon

emission to an intermediate level, and then undergoes a

seond allowed one-photon emission to reah the ground

level: n1L → n′1P o → 11S (where 2 ≤ n′ < n). These

1+1 deays are automatially inluded in the alulation

of the two-photon spetrum using Fermi's Golden Rule

[we will see this expliitly in Eq. (13)℄ and they turn out

to dominate the net two-photon rate. In order to in-

lude two-photon transitions from n ≥ 3 levels in the

multilevel atom ode, we need to distinguish �true� two-

photon deays from 1+1 deays. It is sometimes said

that in a two-photon deay the two photons are emitted

�simultaneously,� but one must be areful in making this

statement beause the unertainty priniple ditates that

one annot measure the time of emission of the photons

more aurately than the reiproal of the frequeny res-

olution. Rather, one must return to the physial piture

of reombination and remember that rare proesses suh

as two-photon deay are potentially important beause

the He i resonane lines have a high optial depth and

hene a high probability of re-absorption of any radia-

tion emitted in those lines. In ontrast, photons emitted

outside of the resonane lines have a low probability of

re-absorption (unless they later redshift into a line).

Based on this piture, we an onstrut a �pratial�

de�nition for two-photon deays as follows: radiation

emitted farther than some arbitrarily spei�ed distane

∆νcut from the nearest He i resonane line will be said

to originate from a �nonresonant two-photon deay,� and

radiation emitted within ∆νcut of a resonane will be

said to originate from a �resonant� or �1+1 deay.� The

nonresonant deays exhibit a ontinuous spetrum and

an be treated in the same way as two-photon deays

from 21S. The full emission spetrum of the resonant

deays is not idential to the usual Voigt pro�le, and

the di�erenes will have to be treated by modifying the

line radiative transfer analysis. We will onsider nonres-

onant two-photon deays in Se. IV and resonant deays

in Se. V; the orretions to the reombination history

turn out to be small in both ases. This setion will be

onerned exlusively with obtaining the rate oe�ients

for two-photon deay, whih we will �nd to be muh less

than estimated by DG05 aross most of the two-photon

spetrum. This is the reason why we �nd only a small

orretion from the n ≥ 3 two-photon deays whereas

DG05 found an e�et of several perent in xe.
We will also onsider Raman sattering from the ex-

ited levels to the ground level; the two proesses, while

physially distint, are related by rossing symmetry and

hene share many harateristis, inluding the existene

of 1+1 resonanes and the assoiated subtleties.

The outline of this setion is as follows. The formu-

las for two-photon deay and Raman sattering in quan-

tum eletrodynamis are introdued and summarized in

Se. III A. The DG05 estimate for the rate oe�ients

is realled in Se. III B, and in Se. III C we explain why

their rates are too large for the high n levels. Finally,

Se. III D presents our alulation of the two-photon de-

ay rates, whih are muh less than those of DG05, exept

near resonane.

A. Rates

On aount of the eletri dipole seletion rules, two-

photon transitions to the ground state of He i are al-

lowed only from spin-singlet levels with even parity and

L ∈ {0, 1, 2}. In two-eletron atoms only doubly exited

levels an have L = 1 and even parity, and these are
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inaessible at reombination-era temperatures (they lie

∼ 60 eV above the ground state, whereas the ionization

energy is 24.6 eV); thus we restrit our attention to the

n1L levels with L ∈ {0, 2}. Also, the two photons emerge

with frequenies ν and ν′ that satisfy the energy onser-

vation ondition

ν + ν′ =
E(n1L)− E(11S)

h
≡ ∆E(n1L)

h
. (11)

The two-photon deay rate from the n1L level to the 11S
level of helium is then given by

dΓ

dν
=

α6ν3ν′
3

108(2L+ 1)R6
[1 +N (ν)][1 +N (ν′)]|M2γ |2,

(12)

where R = 3.29 × 1015Hz is the Rydberg in frequeny

units, and the dimensionless amplitude is

M2γ = a−3
0

∑

n′

〈11S||d||n′1P o〉〈n′1P o||d||n1L〉

×
(

1

∆E(n′1P o)− hν

+
1

∆E(n′1P o)− hν′

)

, (13)

where d is the eletri dipole moment operator and we

have used gs units. [Eq. (12) is equivalent to Eq. (59.28)

of Ref. [35℄ after appropriate manipulation of redued

matrix elements.℄ Note that the summation here is over

ontinuum levels with

1P o
symmetry as well as disrete

levels. The total two-photon deay rate is

Γ2γ(n
1L→ 11S) =

1

2

∫ ∆E(n1L)/h

0

dΓ

dν
dν, (14)

where the fator of 1/2 ours beause we ount eah

deay twie by integrating over the whole spetrum.

One an see that the amplitude M posesses a pole at

eah frequeny ν orresponding to an intermediate n′1P o

level. Correspondingly, there is a branh ut (i.e. a on-

tinuous distribution of poles) for frequenies orrespond-

ing to the n′1P o
ontinuum. Sine the rate Γ ∝ |M|2, the

poles give rise to resonanes in the ross setion, whih

have the harateristi ∝ ν−2
struture. As is usual

in quantum mehanis (e.g. Se. V�18 of Ref. [38℄),

the total rate is rendered �nite by giving the energies

E(n′1P o) a small imaginary part E → E + iΓ/2, where
Γ is the width of the state. The imaginary part hanges

the ross setion in the resonane to the harateristi

Lorentz form (whih beomes a Voigt pro�le in the o-

moving frame due to thermal motion of the atoms). The

resonanes at 0 < hν < ∆E(n1L) give rise to the al-

lowed deays where the atom deays from n1L to n′1P o

by emission of a single eletri dipole photon, and then

proeeds to deay to 11S by emitting a seond photon.

These �1+1� deays are in fat not distint physial pro-

esses from two-photon emission. Rather, the damping

wings of the lines from 1+1 deays merge ontinuously

into the two-photon ontinuum.

A phenomenon related to two-photon deay is Ra-

man sattering from n1L to 11S through an intermediate

n′1P o
state. This has the same seletion rules as two-

photon deay. If the inoming photon frequeny is ν and

the outgoing frequeny is ν′, we have

ν′ = ν +
∆E(n1L)

h
, (15)

and the sattering rate (in number of satterings per

atom in the n1L level per seond) is

dΓ

dν
=

α6ν3ν′
3

108(2L+ 1)R6
N (ν)[1 +N (ν′)]|MRaman|2. (16)

Beause of rossing symmetry, we may obtain the Ra-

man sattering matrix element by analyti ontinuation

of Eq. (13) to negative frequenies:

MRaman = a−3
0

∑

n′

〈11S||d||n′1P o〉〈n′1P o||d||n1L〉

×
(

1

∆E(n′1P o) + hν

+
1

∆E(n′1P o)− hν′

)

. (17)

The total Raman sattering rate is

ΓRaman =

∫ ∞

0

dΓ

dν
dν. (18)

The summations in Eq. (13) and Eq. (17) are in gen-

eral nontrivial as they depend on the helium wave fun-

tions. Aurate alulations are available only for the

21S level, whih is the only singlet level for whih two-

photon transitions are the dominant mode of deay. In

the ase of osmi reombination however, the �blok-

ing� of allowed one-photon eletri dipole deays by high

line optial depth means that subdominant deay modes

of highly exited states an beome signi�ant, and es-

timates of their rates are required. DG05 was the �rst

paper to onsider these two-photon deays in the on-

text of the osmi reombination, and they introdued a

simple saling argument for the rates. We revisit the is-

sue here and onlude that the deay rate is signi�antly

smaller.

B. DG05 estimate

This setion reviews the derivation by DG05 of the

two-photon rate from highly exited states in He i. We

present the key points of the derivation in the notation

of this paper in order to highlight the most important

assumptions in their paper and how they di�er from a

more detailed treatment.
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DG05 noted that the dipole matrix elements of the

form 〈n′1P o||d||n1L〉 are largest for n′ = n. In partiular,
in the limit of hydrogeni wavefuntions they show that

for large n,

∣

∣〈n1L||d||n1P o〉
∣

∣

2 ∼ 9

10

∑

n′

∣

∣

∣
〈n1L||d||n′1P o〉

∣

∣

∣

2

. (19)

Therefore DG05 argued that far from the 1+1 resonanes

in the two-photon rate, the matrix element M2γ should

be dominated by the n′ = n term. They also noted

the near-degeneray of the n1P o
and n1L levels. If one

treates this degeneray as exat, and keeps only the n′ =
n term in the sum, one an show that the vauum deay

rate is

dΛ(DG)

dν
=
α6ν3ν′3

∣

∣〈n1P o||d||n1L〉
∣

∣

2 ∣
∣〈n1P o||d||11S〉

∣

∣

2

108(2L+ 1)a60R6

×
(

1

∆E(n′1P o)− hν

+
1

∆E(n′1P o)− hν′

)2

, (20)

where the

(DG)
supersript indiates that the DG05 ap-

proximation is being used. The frequeny integral is a

polynomial, and hene is trivially performed. It results

in a total deay rate of

Λ(DG) ∝ (2L+ 1)−1

(

∆E(n1L)

hR

)5

×
∣

∣〈n1P o||d||n1L〉
∣

∣

2 ∣
∣〈n1P o||d||11S〉

∣

∣

2
. (21)

Note that within the DG05 approximation all the two-

photon spetra are saled versions of eah other. DG05

thus used Eq. (21) to re-sale the H i 2s→ 1s deay rate
of 8.2 s

−1
to the highly exited levels in hydrogen and

helium, i.e. they re-saled Λ in proportion to the squares

of the dipole matrix elements and the �fth power of the

energy di�erene. This leads to the result (using hydro-

geni values for the 〈n1P o||d||n1L〉 matrix elements)

∑

L=0,2

(2L+ 1)Λ(DG)(n1L) = 10540

(

n− 1

n+ 1

)2n

×11n2 − 41

n
s−1. (22)

The most important result of this is the saling for

large values of n. At large values of n, ∆E(n1L) ap-

proahes the ionization energy χHeI, whereas the dipole

matrix elements sale as 〈n1P o||d||n1L〉 ∝ n2
and

〈n1P o||d||11S〉 ∝ n−3/2
. This explains the large-n sal-

ing of Eq. (22):

Γ
(DG)
2γ (n1L) ∝ n. (23)

This results in a very large ontribution to the two-

photon rate from large values of n. In fat, sine the

oupation probability of the large-n states approahes a

onstant as n→ ∞, the total 2-photon deay rate to the

ground state from highly exited helium atoms diverges

as∝∑n ∝ n2
in the DG05 approximation. DG05 ut o�

the sum at n ∼ 40, sine for larger n the �size� (∼ a0n
2
) of

the exited atom is omparable to the wavelength of the

photon and hene the dipole emission formula is no longer

valid. This nevertheless leads to a very large speed-up of

He i reombination.

C. Large n behavior

Unfortunately, the simple approximation of taking

only the n′ = n term in the summation fails for large

n. Indeed, it has been found for the highly exited states

of hydrogen that the atual saling of the two-photon de-

ay rate is dΛ/dν ∝ n−3
[39℄. Here we reall the physial

argument why the saling is n−3
, and then show that

this arises due to a near-exat anellation of matrix el-

ements for large n. The argument has been given in a

rather ompliated and general form in Refs. [40, 41℄,

however we present a simpli�ed version here in order to

highlight the key piees of physis required, and see that

the same argument applies to helium.

Suppose we re-write the analogue of Eq. (13) for H i

in the form

M2γ = a−3
0 [〈Ψ(ν)||d||nl〉+ 〈Ψ(ν′)||d||nl〉] , (24)

where the states |Ψm(ν)〉 are de�ned by [42℄

|Ψm(ν)〉 = [H − E(1s)− hν]−1dm|1s〉. (25)

(Sine the dipole operator dm is spin 1 it has three om-

ponents m = −1, 0,+1 and hene |Ψm(ν)〉 atually on-

sists of three states.) Now the wave funtion of the |1s〉
state is loalized near the nuleus, with an exponential

fallo� in the lassially forbidden region. The dipole op-

erator dm simply multiplies this wave funtion by a poly-

nomial whih does not a�et the fat that there is an ex-

ponential fallo�. The state |Ψm(ν)〉 is then determined

by solution of the inhomogeneous Shrödinger equation,

[

− h̄2

2me
∇2 − e2

r
− E(1s)− hν

]

Ψm(ν; r) = dmψ1s(r).

(26)

This equation has been extensively studied in the ontext

of the response of a hydrogen atom to eletromagneti

radiation (e.g. Ref. [43℄). At large r, the soure falls o�
exponentially. Sine E(1s)+hν < 0, the operator on the

left-hand side of this equation takes the form of a wave

equation with imaginary wave number (�k2 < 0�) at large
r. Therefore its solution is exponentially deaying with

r. Now we know that as n → ∞, the wave funtions of

|nl〉 states near the origin approah the solution of the

Shrödinger equation at zero energy:

(

− h̄2

2me
∇2 − e2

r

)

ψnl(r) ≈ 0 (small r), (27)
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is largest for small Ω, implying that 〈n1L||d||n′1P o〉 is largest
for small n′ − n. The points mark integer values of Ω.

so that the ψnl(r)'s near the origin are all solutions to

the same linear homogeneous di�erential equation with

regular boundary onditions at r = 0. Therefore they

are saled versions of eah other, with the normalization

determined by the ondition

∫

|ψnl|2 d3r = 1. The nor-

malization integral is dominated by regions with r ≫ a0
and it is well-known that it enfores ψnl ∝ n−3/2

in the

large n limit. Given that ψnl ∝ n−3/2
near the origin,

and that Ψm(ν; r) is only signi�antly di�erent from zero

near the origin, it follows that M2γ ∝ n−3/2
and that

dΓ2γ/dν ∝ n−3
.

Essentially the same argument applies to helium. Like

the |1s〉 state of hydrogen, the |11S〉 state of helium is

onentrated near the origin with an exponential fallo�

as either eletron is moved to large distanes from the

nuleus.

Mathematially, the only way to reonile the M2γ ∝
n−3/2

saling from the above argument with the ∝ n1/2

saling obtained by inluding only the n′ = n intermedi-

ate state is that there must be a near-exat anellation

of ontributions to M2γ . We an show that this will hap-

pen by examining the behavior of the matrix elements for

large n and small s ≡ n′ − n. This is onsidered in Ap-

pendix A, where it is shown that

〈n1L||d||n′1P o〉 ≈ (−1)L>L
1/2
> (−1)sea0n

2fcyc(s+ δ1L)
(28)

(.f. Eq. A17), where δ1L is the di�erential quantum de-

fet (δ10 = 0.152 and δ12 = 0.014) and fcyc is the Fourier
transform of the yloid funtion (Eq. A18). [The ex-

istene of an asymptoti limit of the form in Eq. (28)

appears to have been notied by Refs. [44, 45℄, and the

analyti expression for fcyc was derived, albeit in a dif-

ferent form, by Ref. [46℄.℄ The funtion fcyc is plotted

in Fig. 2. What is of note here is that the matrix el-

ements with s equal to a few are of the same order of

magnitude as those with s = 0 (n′ = n). Therefore one

should inlude them when obtaining the matrix element

M2γ . Sine the matrix element 〈11S||d||n′1P o〉 sales

asymptotially as n′−3/2
, and the energy ∆E(n′1P o) ap-

proahes a onstant at large n′
, these an be onsidered

onstant for |s| ≪ n. We may thus inlude the values

with smin ≤ s ≤ smax by writing

M2γ ≈ en2

a0
〈11S||d||n1P o〉(−1)L>L

1/2
>

×
smax
∑

s=smin

(−1)sfcyc(s+ δ1L)

×
(

1

∆E(n1P o)− hν

+
1

∆E(n1P o)− hν′

)

. (29)

The �rst line in this equation sales as n1/2
, whih when

squared gives the DG05 saling dΛ2γ/dν ∝ n. One must
be mindful of the seond line however, whih modi�es the

prefator of n1/2
in the asymptoti saling of M2γ . One

would expet to get a better estimate of the asymptoti

saling by taking the limits smin → −∞ and smax → ∞.

However we show in Appendix A that (see Eq. A19)

∞
∑

s=−∞

(−1)sfcyc(s+ δ1L) = 0. (30)

Therefore for large n one expets the ontribution toM2γ

from states with n′
near n to be n1/2

times something

approahing 0. This of ourse implies that one annot

�nd the large-n behavior of M2γ by the DG05 argument

(exept possibly by onsidering higher-order orretions

to Eq. 28) � one an only say that it sales slower than

n1/2
. The near-anellation is illustrated graphially in

Fig. 3 for the 251S → 11S deay.

In summary, we onlude that (i) the atual large-n
behavior of the two-photon deay rate is dΛ/dν ∝ n−3

,

and (ii) the apparent disrepany between this and DG05

is due to a anellation of the matrix elements as sum-

marized by Eq. (30).

D. Rate estimates

We have estimated the two-photon transition rates for

small n by diret summation of the matrix element prod-

uts in Eq. (13). We note that suh a alulation does

not require a detailed re-analysis of the atomi physis,

at least to a �rst approximation, beause all one needs

to know are the energies and dipole matrix elements for

the

1S, 1P o
, and

1D levels, whih have already been al-

ulated. (The exeptions are the ontinuum levels, for

whih the information available is more sparse, neverthe-

less as we argue below there are detailed alulations for

the �rst several eV of the ontinuum, whih are domi-

nant.) We have obtained these as follows:

1. For the n1S�n′1P o
with n, n′ ≤ 9, we use the os-

illator strengths from Ref. [48℄.
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Note that there are no resonanes in the spetrum sine there

are no energetially allowed 1+1 eletri dipole deays from

21S. The points are the more detailed alulations by Drake

[37℄.

2. The 11S − 101P o
osillator strength is from

Ref. [49℄. For 11S�n′1P o
transitions with n′ > 10,

we have used the asymptoti formula for the osil-

lator strength from Ref. [47℄.

3. For the n1S�n′1P o
transitions with n, n′ ≥ 10, we

used the Coulomb approximation [44℄.

4. For transitions from n1S to the

1P o
ontinuum,

we used the TOPBase photoionization ross se-

tions [50℄ onverted to matrix elements in aor-

dane with

σ =
4α

3e2
hν
dn′

dE

∣

∣

∣
〈n1S||d||n′1P o〉

∣

∣

∣

2

, (31)

where dn′/dE is the density of ontinuum states.

This turns the ontinuum ontribution to Eq. (13)

into an integral over energy.

5. Dipole matrix elements for S�P o
transitions are ob-

tained from the standard formula,

∣

∣

∣
〈n1S||d||n′1P o〉

∣

∣

∣

2

=
3e2a20Rfn1S→n′1P o

E(n′1P o)− E(n1S)
. (32)

The helium atom wavefuntions for m = 0 are all

real and hene 〈n1S||d||n′1P o〉 is purely real, how-

ever a sign ambiguity exists. We have taken the

sign for S�P o
to be negative for n 6= n′

and posi-

tive for n = n′
, as this is what is found using the

Coulomb approximation or hydrogeni wavefun-

tions.

6. The P o
�D dipole matrix elements are taken to be

hydrogeni.

Note that this approah is expeted to break down for

ontinuum

1P o
levels with very large energies. In parti-

ular the ontinuum

1P o
wave funtions beome less hy-

drogeni at higher energies where the outer eletron pen-

etrates deeper into the He

+
�ore,� and it beomes very

non-hydrogeni as one approahes the double-exitation

resonane region 60 eV above the ground state. At still

higher energies there are multiple ontinua, so it is no

longer valid to ompute bound-free matrix elements us-

ing Eq. (31) � the matrix elements atually ontain in-

formation that is not ontained in the ross setion. For-

tunately, these subtleties have little e�et at the level of

auray required here: we �nd that negleting ontin-

uum levels with energies more than 0.5R (6.8 eV) above

threshold makes at most a hange of 30% (31S → 11S)
or 1% (31D → 11S) to dΛ/dν, exept in the immediate

viinity of the nulls (whose positions are slightly shifted).

Sine we will �nd that the total orretion to the reom-

bination history due to nonresonant two-photon deays

is ∼ 4 × 10−4
, we believe that our basi onlusion that

nonresonant two-photon deays are unimportant is ro-

bust even if the rate estimates are o� by several tens of

perents.

We show the two-photon deay rates we obtain for the

He i 21S level in Fig. 4. The total deay rate we obtain

is 49 s−1
, in omparison with the more detailed atomi

physis alulations, whih give 51 s−1
[37℄. This provides

a hek on the auray of our method.

Also of interest are the two-photon rates from the

n = 3 (Fig. 5) and n = 4 (Fig. 6) levels. These two-

photon spetra show resonanes at the positions of al-

lowed 1+1 transitions. We have shown the results using

only the n′ = n terms as a series of points in eah plot;

one an see that this is a poor approximation aross most

of the spetrum. In partiular, far from the resonanes,

this substantially overestimates the rate beause it ne-

glets destrutive interferene between di�erent interme-

diate levels.
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IV. EFFECT OF NONRESONANT

TWO-PHOTON TRANSITIONS

Now that we have obtained the two-photon rates, we

would like to understand how muh He i reombination

is modi�ed by inluding them. The main ontribution

omes from the lower values of n, both beause of their

faster rates and beause the lower-n states have higher

oupation probabilities. This setion onsiders the ad-

dition of nonresonant two-photon deays from 3 ≤ n ≤ 5
and nonresonant Raman sattering from 2 ≤ n ≤ 5, and
�nds a negligible e�et.

There is one subtlety involved in inluding higher-order

two-photon transitions, whih was reognized already in

DG05. It is the existene of the 1 + 1 resonanes, whih

ause the two-photon rate to be very large when the pho-

tons are emitted in allowed eletri dipole lines. Photons

emitted in these lines (i) have a high probability of being

re-absorbed, and (ii) are in any ase already inluded in

the treatment of Paper I, whih inluded all of the one-

photon transitions. In this paper, we will handle this

issue by dividing the two-photon spetrum into nonres-

onant and resonant piees, whih are treated separately.

Here �nonresonant� simply means that the emitted pho-

tons are detuned from the 1+1 resonane by some mini-

mum frequeny o�set ∆νcut. The idea is to show in this

setion that the nonresonant transitions have no signi�-

ant e�et on He i reombination, and then in the next

setion onsider whether the approximations made in Pa-

per I about resonant two-photon transitions are valid.

The o�set ∆νcut is arbitrary and was hosen so as to

make both the arguments in this setion and the follow-

ing setion valid. Preisely the same subtlety arises in

onsidering Raman sattering, whih has resonanes suh

as 21S → 21P o → 11S, and we handle the problem in

preisely the same way. The hoie of the frequeny o�-

set that we use is 0.14n−3R = 460n−3
THz for the o�set

from the He i n1P o
�11S line; the motivation is that we do

not want our de�nition of �resonant� photons to overlap

with the interombination line He i℄ n3P o
�11S. (There

is an overlap with the quadrupole lines [He i℄ n1D�11S,
however as we argue in Paper III, these lines do not mat-

ter anyway.)

In the absene of the spetral distortion, nonresonant

two-photon transitions and Raman satterings an be

trivially inluded in a level ode as an additional rate,

ẋ|n1L→11S = [Γ2γ(n
1L) + ΓRaman(n

1L)]

×
(

xn1L − gn1L

g11S
x11Se

−En1L/kBTr

)

, (33)

where the term with x11S aounts for thermal re-

exitations of ground-state helium atoms determined via

the priniple of detailed balane. The two-photon and

Raman sattering rates, Γ2γ(n
1L) and ΓRaman(n

1L), are
obtained by integration of Eqs. (14) and (18) with blak-

body radiation pro�les, exept that regions in the integral

where the higher-energy photon lies within ∆νcut of an
allowed resonane are exluded. We have obtained �t-

ting formulas for the two-photon rates, whih are given

in Table I. We have also inluded nonresonant Raman

sattering from the 21S level, whih is well �tted by

ΓRaman(2
1S) = 12.8t1.5e−2.125/t s−1, (34)

where t = Tr/4000K is in the range 1 ≤ t ≤ 2. For

1 ≤ t ≤ 2, Eq. (34) and the formulas in Table I agree

with our numerial alulations to within 1%, whih is

probably better than the auray of our rates.

Fig. 7 shows the hange in the eletron abundane due

to nonresonant two-photon transitions. The e�et is at

the level of a few times 10−4
and an be negleted.
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TABLE I: Fitting formulas for the two-photon rates

Γ2γ(n
1L)+ΓRaman(n

1L) appearing in Eq. (33) for the n = 3,
4, and 5 levels of helium. The rate in units of s

−1
is written

as a+ bt, where t = Tr/4000K. The formulas are valid in the

range 1 < t < 2 of interest to helium reombination. Note

that these numbers inlude only the nonresonant ontribu-

tion, de�ned as having the emitted photon at least 0.14n′−3R
from the He i n′1P o

�11S line.

Upper level a b Upper level a b

31S 20.5 16.0 31D 94.0 8.0

41S 10.2 12.5 41D 42.3 6.0

51S 6.1 9.2 51D 21.5 5.0

0

-10-4

-2x10-4

-3x10-4

-4x10-4

-5x10-4

32002800240020001600

∆x
e

z

∆xe from nonresonant 2γ decays from n>2 levels     

FIG. 7: The ontribution of the non-resonant part of the two

photon rate in He i for n > 2 produes a maximum hange in

the free eletron fration of several×10−4
.

V. THE 1 + 1 RESONANCES AND FINITE

LINEWIDTH

In Se. IV, we onsidered the in�uene of the non-

resonant two-photon transitions on He i reombination.

We know however that the total two-photon transition

rate is dominated by the 1 + 1 resonanes (exept in the

ase of the 21S level, whih has no suh resonanes). If

this additional rate is naïvely added to the reombination

equations in the manner of Eq. (33), He i reombination

beomes desribed by the Saha equation. However we

know that this naïve addition is inorret beause pho-

tons emitted within resonane lines with lower level 11S
will likely be re-absorbed. In order to understand the ef-

fet of resonant two-photon transitions, we must under-

stand the transport of radiation within the He i n1P o
�

11S lines. We presented a simpli�ed analysis of this in

Paper I, where photons were injeted into the line by res-

onant two-photon emission and H i reombination, trans-

ported by oherent (Rayleigh) sattering and Hubble red-

shifting, and �nally removed by resonant two-photon ab-

sorption and H i photoionization. The analysis in Paper

I makes the approximation that the He i line is in�nites-

imally thin relative to variation in the radiation phase

spae density and phase spae fators. The purpose of

this setion is to test the validity of these assumptions

in ertain speial ases and understand the errors intro-

dued. The basi method here is to reonsider the 21P o
�

11S line inluding the deviation from Voigt pro�le in the

far damping wings, and inluding the deviation of the

radiation pro�le from steady state. We inorporate these

orretions into the level ode and show that the modi�-

ation to reombination is small (|∆xe| ∼ 3× 10−4
).

The spei� assumptions made in Paper I that we

would like to test are:

1. The two-photon emission pro�le an be desribed

by a Voigt distribution, i.e. we negleted the

possible interferene with neighboring 1+1 reso-

nanes, and the variation of the photon phase spae

fator ν3ν′
3
and the phase spae density fator

[1 + N (ν)][1 + N (ν′)] (f. Eq. 12) aross the line

width. (A similar assumption applies to our treat-

ment of Raman sattering and two-photon absorp-

tion.)

2. The He i line was treated as being in steady state,

i.e. we assumed that the rate of injetion of photons

equaled the loss rate. In reality, there are always

a few photons within the line, and as this num-

ber of photons inreases (or dereases) there is a

orresponding speed-up (or slow-down) of He i re-

ombination.

We will examine these assumptions here in the on-

text of the 21P o
�11S line, whih was found in Paper I to

produe the most important e�et. To simplify the alu-

lation, we will also assume when alulating line shapes

that the exited levels in He i are in equilibrium. (This

was found in Paper I to be a good approximation and

is desribed quantitatively in Paper III.) We will intro-

due the notation ν− and ν+ to denote the minimum and

maximum frequenies of the resonane, i.e.

ν± = ν11S−n1P o ± 0.14n−3R, (35)

where here n = 2.

A. Finite linewidth

The alulations involving transport and inoherent

sattering in Paper I made use of an approximate sym-

metry of the thermal radiation �eld in the neighborhood

of the line. Here, so long as the linewidth is negligible

ompared to kBTr/h, di�erenes in the thermal radiation

�eld on either side of the line an be negleted. In this

setion we will elaborate on this and argue that: 1) a

linewidth of muh less than kBTr/h means that a pho-

tons are just as likely to be absorbed on either the red or

the blue side of the line, and 2) that introduing a �nite

width to the line means that photons will be sattered

di�erentially depending on whether they are on the red
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FIG. 8: An example of an inoherent sattering proess in

He i onsidered in Se. VA.

or the blue side of the line. This will result in photons be-

ing �pumped� redward by the asymmetry in the thermal

radiation �eld aross the line.

Inoherent sattering is inherently a multi-photon pro-

ess. Here, a photon is sattered and another is re-

emitted and distributed over the line's pro�le, with no

memory of the inoming energy. The only way for this

reation to proeed is for some number of other parti-

les to reoup the hange in energy (as ompared to o-

herent sattering, where the photon's energy is exatly

onserved in the atom's rest frame).

Consider the ase of inoherent sattering o� He i 11S
through 21P o

with an exursion to 31D. Here the inom-

ing photon (A) in the He i λ584 line exites the atom to

the 21P o
level. This exited atom resonantly satters a

seond photon (B→C) in the He i λ6678 line via the 31D
resonane. Finally the atom deays bak to the ground

state, emitting a photon in the λ584 line (D). This pro-

ess an be viewed as a resonant two-photon absorption

of photons A and B, followed by two-photon deay emit-

ting C and D.

In priniple photon B ould be any photon drawn from

the blakbody radiation �eld, however beause of the nar-

row 31D resonane in helium, the photon absorbed will

almost always have energy EB = ∆E(31D) − EA. The

exited He i 31D atom then undergoes two-photon deay

to the ground state via the 21P o
intermediate level (i.e.

it emits photons C and D). To a very good approxima-

tion, the energy distribution of D is independent of EA

� hene the term �omplete redistribution� � and in the

viinity of resonane it has the form of a Lorentz pro-

�le (or a Voigt pro�le in the omoving instead of atom

frame).

Now, suppose that the atom absorbs photon A on the

blue side of the λ584 line. Then it an be absorbed in

ombination with a photon B on the red side of λ6678,
whereas if photon A is on the red side of the λ584 line

then it requires B to be on the blue side of λ6678. Sine
in a blakbody distribution for photon B there are more

photons on the red side of the line, this means that there

is an enhanement in the ross setion for absorbing pho-

ton A from the blue side of λ584, and a suppression for

absorbing it from the red side of λ584. This means that

(even in the absene of Hubble redshifting) λ584 photons
spend on average more time on the red side of the line,

so that N is greater there.

The same onlusion ould also have been reahed by

a thermodynami argument: sine inoherent sattering

bb

bb

2
1P o

3
1D

1So

FIG. 9: Representation of omplete redistribution as a two

photon proess, with one photon from the thermal distribu-

tion. In the left frame, a photon is absorbed on the red side

of the line, then assisted to 31D by a blak-body photon. In

the right frame, a photon is absorbed on the blue side of the

line and assisted by a lower energy blak-body photon. The

virtual levels have energies o�set from E(21P o); the frational
di�erene between the forward and bakward sattering rates

is of order the frequeny di�erene times h/kBTr. Beause

there are more low-energy thermal photons, sattering to the

blue side of the line is slightly preferred.

hanges the energy of the λ584 line photons by exhang-

ing their energy with that of the λ6678 photons (and with
other low-energy photons if we onsider the other lines

onneting He i 21P o
to other exited levels), and the

radiation in these lines is essentially blakbody, it follows

that photons near the λ584 line will then be driven to-

ward a Bose-Einstein distribution with temperature Tr
and some hemial potential determined by the total

number of suh photons. Sine N ≪ 1, this is equivalent
to a Boltzmann distribution, N ∝ e−h∆ν/kBTr

. We will

see this behavior mathematially from Eq. (39). (Note

that whether N ∝ e−h∆ν/kBTr
is atually ahieved de-

pends on whether inoherent sattering an operate e�-

iently before Hubble redshifting moves the photons out

of the line, a question that an only be settled by solving

the equations.)

In summary, we have argued that inoherent satter-

ing through a �nite linewidth enhanes the phase spae

density on the red side of the λ584 line. In the limit that

the width of a line is taken to be negligible ompared to

kBTr/h, inoherent sattering redistributes photons and

pushes the radiation phase spae density near line enter

to some onstant NL, in equilibrium with the line. This

�attening tendeny is impliit in the analysis of Paper I,

and has been noted several times in the reombination

literature [21, 22℄.

Viewed in this way, inoherent sattering is the sum

of two-photon sattering proesses for whih the exited

level is an intermediate state (resonane) in the full two-

photon rate. The goal, then, is to onsider the full ex-

pression for all two photon proesses, and separate the
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transport physis around one of the intermediate state

resonanes, e.g. 21P o
. It is possible, then, to write an

e�etive one-photon transport equation (where the other

photon is drawn from the blak body) for inoherent sat-

tering to this intermediate state. Aside from the hange

in the line pro�le, the �nite linewidth introdues two new

piees of physis: the tendeny to drive the radiation

spetrum to N ∝ e−hν/kBTr
instead of a onstant, and

the fat that the line is not exatly in steady state (i.e.

there is a ∂N/∂t term in the transport equation). This

setion onsiders these issues and introdues a rude or-

retion to the rate equations. We inorporate this in the

level ode and �nd only a small orretion (a few times

10−4
). This orretion is not inluded in the �nal version

of the reombination history presented in Paper III.

B. Line transport with omplete redistribution and

no H i opaity

The ase we onsider here is that where the H i

opaity within the line and frequeny di�usion due to

Doppler shift in repeated resonant satterings an be ne-

gleted. This is useful for testing assumption #1 on our

list (Se. V). The assumption of negligible H i opaity

is valid in the early stages of He i reombination, i.e.

2200 < z < 2800. The frequeny di�usion was inluded

in Paper I and negleting it was found to introdue no

signi�ant error: |∆xe| < 2× 10−4
.

The resonanes in onsideration are optially thik

and the radiation rapidly approahes equilibrium around

their line enters. Beause of this, Doppler broaden-

ing an be negleted to a good approximation and we

an onsider the radiative proesses as ourring in the

atom's rest frame. The di�erential equation desribing

the radiation �eld is

∂N
∂t

= Hν
∂N
∂ν

+
c3nH

8πν2

∑

i

xi
dΓi

dν

−nHc
∑

i

σ
(2γ+Raman)
i (ν)N , (36)

where the sum is over exited levels of He i that an

undergo two-photon deay or Raman sattering to the

ground state, dΓi/dν is their rate of produing line pho-

tons per unit frequeny, and σ
(2γ+Raman)
i is the ross se-

tion for removing line photons via two-photon absorption

or Raman sattering to level i. This is a strong funtion

of ν, but we will drop the expliit argument to stay on-

ise. (Though o�ially a three-body proess, it is pos-

sible to de�ne a ross setion for two-photon absorption

of a 21P o
�11S line photon sine the other photon omes

from muh lower energies where the CMB an be treated

as a blakbody.) By detailed balaning of the level i
ontributions to the seond and third terms on the right

hand side, we �nd

c3nH

8πν2
dΓi

dν

gi
g11S

e−∆Ei/kBTr = nHcσ
(2γ+Raman)
i e−hν/kBTr ,

(37)

whih allows us to derive the ross setions for two-

photon absorption to eah level. Then sine the exited

levels are in equilibrium with eah other we have

xi =
gi

g21P o

x21P oe−[Ei−E(21P o)]/kBTr . (38)

Combining Eqs. (36), (37), and (38), we get

∂N
∂t

= Hν
∂N
∂ν

−nHcx11Sσ
(2γ+Raman)

×
(

N − x21P o

3x11S
e−h∆ν/kBTr

)

. (39)

There are several approahes available for solving

Eq. (39). We will take an approah that allows us to

separate the e�ets of the line pro�le from the steady

state approximation. The method is to multiply the left

hand side of Eq. (39) by an arti�ial expansion parame-

ter ǫ, whih will eventually be taken to equal 1. We may

then expand

N = N0 + ǫN1 + ǫ2N2 + ...; (40)

equating oe�ients of ǫj in Eq. (39) then leads to the

following situation. For j = 0, we �nd

0 = Hν
∂N0

∂ν

−nHcx11Sσ
(2γ+Raman)

×
(

N0 −NLe
−h∆ν/kBTr

)

, (41)

where NL = x21P o/3x11S . That is, N0 satis�es the

steady-state equation. The higher-order terms satisfy

∂Nj−1

∂t
= Hν

∂Nj

∂ν
− nHcx11Sσ

(2γ+Raman)Nj (42)

for j ≥ 1. Sine photons enter from the blue side of

the line, the boundary ondition N (ν+) is satis�ed; the
Taylor expansion of this ondition in ǫ is that N0(ν+) =
N (ν+), and Nj(ν+) = 0 for j ≥ 1. We may think of

the Nj for j ≥ 1 as suessive orretions to the steady-

state solution. For eah j, a numerial solution may be

obtained by starting at ν = ν+ and using a sti� ODE

integrator in the redward diretion until we reah ν−.
In order to translate our results for the line pro�le into

e�ets on reombination, we need two numbers. One of

these is the photon phase spae density N (ν−) emerging

from the red side of the line, neessary to ompute feed-

bak. The other is the net deay rate to the ground state,

whih is obtained by subtrating the downward from the



13

upward rates:

ẋ↓ =

∫ ν+

ν−

[

∑

i

xi
dΓi

dν

−8πν2

c2
x11S

∑

i

σ
(2γ+Raman)
i N

]

dν. (43)

The downard and upward rates nearly anel, so numer-

ially the best way to ompute this is not to evaluate

Eq. (43) diretly from the solution, but rather to use

Eq. (36) to re-write it as

ẋ↓ = −
∫ ν+

ν−

8πν2

nHc3

(

Hν
∂N
∂ν

− ǫ
∂N
∂t

)

dν. (44)

The steady-state solution is obtained in Eq. (44) by set-

ting N = N0 and ǫ = 0 (i.e. dropping the time derivative

term). The �rst-order solution in ǫ is

ẋ↓ = −
∫ ν+

ν−

8πν2

nHc3

[

Hν
∂(N0 +N1)

∂ν
− ∂N0

∂t

]

dν. (45)

The line pro�le is shown in Fig. 10 for a typial set

of parameters, and is ompared with the in�nitesimal

linewidth approximation, the steady state solution, and

the analyti model of Appendix B. The most important

property of the solution, whih is generi, is thatN > NL

for ∆ν < 0. That is, the e�et of using the full N0 +N1

in Eq. (45) instead of just a step funtion at the line is

to enhane the deay rate and aelerate reombination.

On the other hand, ∂N0/∂t < 0, so the orretion due

to the line not being exatly in steady state is of the

opposite sign: it delays reombination.

C. Inlusion in the level ode and the e�et on

reombination

The basi strategy in inluding the �nite linewidth ef-

fets in the level ode is to determine the orretions to

the phase spae density N (ν−) on the red side of the

line and the net downward transition rate ẋ↓. This se-
tion desribes how we do this, and the results when the

orretion is inorporated in the level ode.

The reombination level ode depends on

N (ν−) and the reation rates implied by �nite

linewidth. In general these depend on the parame-

ters {z, xHeI, ẋHeI,NL, ṄL,N (ν+), Ṅ (ν+)}. Sine the

equation for N is linear, N0 depends linearly on the

parameters {NL,N (ν+)}, and N1 depends linearly on

the parameters {NL, ṄL,N (ν+), Ṅ (ν+)}. Also ẋHeI

enters only via Ṅ0, whih is the soure for N1 (.f.

Eq. 42). From this one an see that the phase spae

density may be written as

N (ν) = c0(ν)NL + c1(ν)ṄL

+c2(ν)N (ν+) + c3(ν)Ṅ (ν+)

+ẋHeI [c4(ν)NL + c5(ν)N (ν+)] , (46)
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FIG. 10: The phase spae density in the 21P o
�11S line

using the parameters z = 2175, xHeI = 0.02825, NL =
6.307 × 10−16

, N (ν+) = 5.277 × 10−19
, ẋHeI = 0.1596H ,

ṄL = −2.444 × 10−15H , and Ṅ (ν+) = −4.073 × 10−17H .

These parameters ourred during the �rst feedbak iteration

of the reombination history. The solid line shows the steady-

state solution N0, while the long-dashed line is the �rst-order

orretion N0 +N1. The short-dashed line is the analyti ap-

proximation to the steady-state solution from Eq. (B17); note

that it is plotted only for ∆ν < 0.

where the ci(ν) depend on z, xHeI, and osmologial pa-

rameters. Thus if we want N (ν−), then for eah os-

mology an interpolation grid an be onstruted to give

ci(ν−) in terms of the independent variables z and xHeI.

A similar result holds for ẋ↓ sine it is a linear funtion

of N0, Ṅ0, and N1.

The easiest way to inorporate the new e�et in the

level ode is atually to alulate the orretion to N (ν−)
and ẋ↓. In the ase of in�nitesimal linewidth, no on-

tinuum opaity, and high optial depth (literally, neg-

ligible probability of a photon redshifting through the

line without undergoing an inoherent sattering � see

Appendix D of Paper I), we have Pesc = τ−1
S . In this

ase, the photon phase spae density on the red side

of the line is NL and the downward transition rate is

8πHν3line(NL − N+)/nHc
3
. If we ask about the photon

phase spae density at ν− < νline, and speify the inom-

ing (blue-side) phase spae density at ν+ > νline, this
beomes

N (ν−, z−) → NL(z) and

ẋ↓(z) → 8πHν3line
nHc3

[NL(z)−N (ν+, z+)], (47)

where

1 + z± =
ν±
νline

(1 + z) (48)
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sine it takes a �nite amount of time for photons to red-

shift through the line. One may thus de�ne a ��nite

linewidth orretion�

δN (ν−, z−) ≡ N (ν−, z−)−NL(z) (49)

for the phase spae density on the red side of the line

(used for feedbak), and a similar orretion

δẋ↓(z) ≡ ẋ↓(z)−
8πHν3line
nHc3

[NL(z)−N (ν+, z+)] (50)

for the transition rate.

We have re-run the level ode with Eqs. (49) and (50)

inorporated and �turned on� from z = 1500 to 3400. The
hange in xe is shown in Fig. 11. The orretion is be-

lieved to be most aurate for z ≥ 2200 when ontinuum

opaity is negligible. At lower redshifts, the orretions

of Eqs. (49) and (50) are not reliable. For Eq. (49) this is

not a major de�ieny beause at these redshifts feedbak

[the only proess a�eted by N (ν−, z−)℄ is unimportant.

For Eq. (50) there is an error introdued, however we

expet that the hange in xe at z < 2200 (when ontin-

uum opaity is signi�ant) is small beause it is only in

the far damping wings that the orretions desribed in

this setion are signi�ant, and ontinuum opaity makes

the line enter more important relative to the damping

wings. (This is beause ontinuum opaity allows pho-

tons to be removed from the line enter, whereas without

ontinuum opaity photons an only esape the line by

redshifting out of the red damping wing.)

The modi�ation to the reombination history result-

ing from these hanges is shown in Fig. 11. We see that

the total e�et reahes a maximum of 0.03% in the free

eletron fration. This is muh smaller than the other

e�ets and omparable to other errors in the ode, so we

have made no attempt to orret for the deviation from

Voigt pro�le or hange in e−hν/kBTr
aross the line in

the rest of this series of papers. Sine the orretion is

of order the numerial auray of the ode and involved

suh a major hange to the treatment of the all-important

21P o
�11S resonane line, we do not laim that the de-

tails of Fig. 11 are robust; rather we view the results only

as on�rmation that the e�ets onsidered are small.

VI. DISCUSSION

This was the seond paper in a series devoted to os-

mologial helium reombination. Here, we examined

the problem of two-photon deays in He i, extending

the standard treatment whih only aounts for the de-

ay from the 21S level and ignores the e�et of stimu-

lated transitions and absorption of the spetral distor-

tion. We also onsidered Raman sattering from exited

levels in He i to the ground level (11S), an e�et that is

distint from, but losely related to, two-photon deay.

All of these e�ets hange the eletron abundane xe at

the level of several hundredths of a perent at redshifts

4x10-4

2x10-4

0

-2x10-4

-4x10-4

32002800240020001600

∆x
e

z

∆xe from modified treatment of 21Po-11S resonance

FIG. 11: The hange in the reombination history from the

modi�ed treatment of the 21P o
�11S resonane. Note that the

e�et on the eletron abundane is very small: a few parts in

104. This �gure should only be interpreted as an estimate of

the magnitude of the orretion (see text).

z ≥ 1800. This results in a hange of similar magnitude

in the Cls (the preise relation will be quanti�ed in more

detail in Paper III), whih is negligible for osmi He i

reombination studies.

Our �ndings regarding the signi�ane of two-photon

deays from the n ≥ 3 levels of He i di�er from some re-

ent statements in the literature, most notably Dubrovih

& Grahev [27℄, who found a muh larger e�et. The

main reason for the di�erene is that we �nd smaller two-

photon rates dA2γ/dν beause of destrutive interferene
among di�erent intermediate states in the two-photon

amplitude (Eq. 13) in most parts of the two-photon on-

tinuum. An exeption ours in ases where the two pho-

tons emitted in a two-photon deay are near an allowed

�1+1� sequene of deays suh as 31S → 21P o → 11S.
These 1+1 deays orrespond to resonanes in the two-

photon deay rate at the frequenies orresponding to the

one-photon lines (in our example, the 31S → 21P o
and

21P o → 11S lines). This results in the total (frequeny-

integrated) rate being very large. This does not lead

to a rapid speed-up of reombination however, beause

the photons emitted in the optially thik resonane lines

have a very high probability of re-absorption. In order to

omplete the reombination alulation it is neessary to

split the photons into resonant and nonresonant regions.

The nonresonant regions are handled in the usual way for

two-photon deays, i.e. they lead to an additional rate

that is inluded in the rate equations. The two-photon

deays in the resonant regions are treated as sequenes of

one-photon deays, with the two-photon e�ets leading

to a modi�ed line pro�le sine with multiple intermediate

states the Lorentz urve no longer aurately desribes

the line pro�le (in the atom's rest frame). It is essential

in this analysis that the treatment of the resonant re-

gion takes into aount the fat that the line is optially
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thik, otherwise unrealistially fast reombination would

be obtained.

The analysis presented in this paper was aimed pri-

marily at helium reombination, however most of the un-

derlying physis is the same for hydrogen reombination.

There are two-photon deays from the n ≥ 3 levels in H i,

and their rates dA2γ/dν sale as n−3
[39℄ for the same

reasons desribed here. These rates also possess reso-

nanes at the frequenies orresponding to 1+1 deays

suh as 3s → 2p → 1s. In general hydrogen reombi-

nation matters more for the CMB power spetrum than

helium reombination, and in partiular Wong & Sott

[29℄ have found hanges in the Cls of several tenths of a

perent using rates muh smaller than those of DG05. A

full alulation for hydrogen would use the two-photon

spetra dA2γ/dν, whih ould be omputed by the same

methods used here, and take into aount the modi�a-

tion of the Lyman line pro�les due to two-photon or-

retions. Suh a alulation is beyond the sope of this

series of papers, but should be a high priority for the

CMB ommunity.
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APPENDIX A: DIPOLE MATRIX ELEMENTS

FOR LARGE n

This Appendix evaluates the dipole matrix elements of

the form 〈n1L||d||n′1P o〉 for large n and small s = n′−n
using the Wentzel-Kramers-Brillouin (WKB) method.

This approah is useful sine the dipole matrix elements

of this form are dominated by large radii where the WKB

method works (it breaks down at radii of order a0 or less).
Our goal is to demonstrate the near-exat anellation

of ontributions to M2γ in Eq. (13) that we mentioned

in Se. III C. We note that WKB-type solutions to the

Coulomb approximation wave funtion have been previ-

ously used for several other appliations [46, 51℄. The

formula presented here is atually equivalent to the spe-

ial ase of Ref. [46℄ in whih the eentriity of the or-

bit goes to 1, however we provide a simpli�ed derivation

here in order to show the fastest route to the key result

(Eq. A19).

For large n, the helium atom an be treated by the

Coulomb approximation in whih the outer eletron (of

harge −e) moves in the Coulomb potential de�ned by

the ombination of the inner eletron and nuleus (of

harge +e). Exept at small r, its radial wave fun-

tion R(r) thus satis�es the Shrödinger equation R′′(r) =
−k2(r)R(r), where

k2(r) =
2me

h̄2

[

E +
e2

r
− h̄2L(L+ 1)

2mer2

]

. (A1)

For E < 0, this equation possesses a lassially forbidden

region r > rmax, where rmax is the solution to k
2(rmax) =

0. In the lassially allowed region, the WKB solution for

R(r) is

R(r) = (−1)n−L−1 N
√

k(r)
cosϕ(r), (A2)

where the (−1)n−L−1
fator is hosen by onvention to

make the wave funtion positive near the origin forN > 0
(it has n− L− 1 radial nodes) and the radial phase is

ϕ(r) = −π
4
+

∫ rmax

r

k(r) dr. (A3)

The normalization onstant is taken to be positive, and

to enfore the ondition

∫

|R(r)|2 dr = 1. For small L,
we have rmax ≈ e2/(−E), the lassially allowed region

extends down to r ≪ rmax, and then (for small L)

k(r) =
e

h̄

√

2me(r−1 − r−1
max). (A4)

From this we �nd

∫ ∞

0

|R(r)|2 dr ≈ N2

2

∫ rmax

0

dr

k(r)
=

πh̄r
3/2
max

4
√
2me e

N2, (A5)

where we have replaed cos2 ϕ(r) with 1/2 sine we in-

tegrate over many osillations of the wave funtion. This

gives

R(r) =
(−1)n−L−12

(πrmax)1/2(rmax/r − 1)1/4
cosϕ(r). (A6)

In order to ompute radial matrix elements with these

wave funtions for small s, we need to onsider the e�et

on the wave funtion of small hanges in k2(r) resulting
from hanges in E and L. In general there will be a very

small hange in k(r), and hene a small hange in the

amplitude of the solution, but if s is of order a few then

we may get a signi�ant hange in the phase ϕ(r). Indeed
the phase di�erene an be written as

∆ϕ(r) =

∫ rmax

r

∆k(r) dr + k(rmax)∆rmax

=

∫ rmax

r

∆[k2(r)]

2k(r)
dr. (A7)

(The seond term goes away beause rmax is a zero of k
2
.)

The hange in k2(r) has a ontribution 2me∆E/h̄
2
if we

hange the energy, and another ontribution −∆[L(L +
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1)]/r2 if we hange the angular momentum. Thus we

have

∆ϕ(r) =
m

1/2
e ∆E√
2 eh̄

∫ rmax

r

dr
√

r−1 − r−1
max

− h̄∆[L(L+ 1)]

2
√
2me e

∫ rmax

r

dr

r2
√

r−1 − r−1
max

. (A8)

It is easy to verify that for ∆[L(L+1)] of order unity (it

is 2 for S�P transitions and 4 for P�D transitions) and

r/a0 greater than a few, the seond integral produes a

phase shift of ∆ϕ(r) ≪ 1. Therefore we drop it. The

funtion ∆ϕ(r) an be solved analytially but is most

easily expressed through the following parametri form.

Let us de�ne the dimensionless funtion

τ = 2r−3/2
max

∫ rmax

r

dr
√

r−1 − r−1
max

(A9)

so that ∆ϕ(r) = (m
1/2
e r

3/2
max∆E/2

√
2 eh̄)τ . Then by the

substitution r = rmax(1 + cos η)/2 we an derive τ =
η + sin η, i.e. the relation between r and τ is a yloid

funtion. Note that τ = 0 at r = rmax and τ = π at

r = 0.
The matrix elements between two levels n1L and n′1P o

depend on the integral

Rn,n′,L =

∫

R∗
n1L(r)Rn′1P o(r)r dr; (A10)

noting that L hanges by 1 between the initial and �nal

states, and that for small s = n′ − n the normalizations

of the wave funtions are very similar, we may write

Rn,n′,L ≈ (−1)s−14

πrmax

×
∫ rmax

0

cosϕ(r) cos[ϕ(r) + ∆ϕ(r)]
√

rmax/r − 1
r dr. (A11)

If we note that ϕ(r) is rapidly varying but ∆ϕ(r) is not,
then the produt of osines an be averaged over several

yles to get

Rn,n′,L ≈ (−1)s−12

πrmax

∫ rmax

0

r
cos∆ϕ(r)
√

rmax/r − 1
dr. (A12)

Changing variables to τ gives

Rn,n′,L ≈ (−1)s−1

2π
rmax

∫ π

0

(1 + cos η) cos∆ϕdτ. (A13)

The integrand is even in τ so we may extend the range

of integration down to −π and divide by 2. We may

also replae the osine by a omplex exponential sine

the imaginary part is odd in τ and hene vanishes. This

gives

Rn,n′,L ≈ (−1)s−1

4π
rmax

∫ π

−π

(1 + cos η)eiΩτ dτ, (A14)

where Ω = m
1/2
e r

3/2
max∆E/2

√
2 eh̄. Now for large n, the

energies are given by

E ≈ − e2

2a0(n+ δL)2
, (A15)

where δL is the quantum defet for angular momentum

L [52℄. Note that δL = 0 for the hydrogeni ase, but in

helium there is a nonzero value due to the ompliated

physis ouring at small r (of order a0). The quantum
defets for He i singlets are −0.1397 (1S), 0.0121 (

1P o
),

and −0.0021 (

1D) [52, 53℄. Therefore we have ∆E ≈
(e2/a0n

3)(s+ δ1 − δL) and rmax ≈ 2a0n
2
, whih implies

Ω ≈ s+ δ1 − δL. Thus

Rn,n′,L ≈ (−1)s−1

2π
a0n

2

∫ π

−π

(1 + cos η)ei(s+δ1−δL)τ dτ.

(A16)

Thus we see that the radial matrix element is simply the

Fourier transform of the yloid funtion. This is onsis-

tent with semilassial intuition sine the yloid is the

lassial trajetory of a partile in a Coulombi potential

with very small angular momentum. The redued ma-

trix element required to ompute Eq. (13) is obtained by

multiplying by the relevant angular fators:

〈n1L||d||n′1P o〉 ≈ (−1)L>+s−1L
1/2
> ea0n

2fcyc(s+ δ1L),
(A17)

where we have introdued the shorthand δ1L ≡ δ1 − δL
and

fcyc(Ω) =
1

2π

∫ π

−π

(1 + cos η)eiΩτ dτ. (A18)

The key result � the anellation of ontributions to

M2γ for large n � omes from the following identity:

∞
∑

s=−∞

(−1)sfcyc(s+ δ)

=

∫ π

−π

(1 + cos η)

[

∞
∑

s=−∞

(−1)sei(s+δ)τ

]

dτ

2π

=

∫ π

−π

(1 + cos η)eiδτX

(

τ

2π
+

1

2

)

dτ

2π
= 0, (A19)

sine 1+ cos η = 0 when τ is an odd multiple of π. (Here
X is the sampling funtion.)

APPENDIX B: STEADY-STATE LINE WITH

FINITE LINEWIDTH

In this Appendix we onsider a simple analyti model

for the steady-state line pro�le in the viinity of a res-

onane, i.e. an approximate solution to Eq. (41). This

approximation is valid when the half-width of the �reso-

nant� part of the spetrum, ∆νcut, is small ompared to

the frequeny diferene between neighboring resonanes
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as well as ompared to the thermal sale kBTr/h. As

an example, for the He i 21P o
�11S line, we have used

∆νcut = 58THz; the frequeny distane to the next al-

lowed resonane (31P o
�11S) is 452 THz; and the thermal

sale is 110[(1 + z)/2000]THz.
It is easily seen that the matrix element M2γ for the

i → 11S two-photon proess possesses a simple pole at

eah resonane ν, ν′ = ∆E(n′1P o)/h. Therefore the two-
photon deay rate, whih is the square of the matrix ele-

ment times phase spae fators, an be written in a power

series

dΓ2γ

dν
=

∞
∑

µ=−2

qi,µ∆ν
µ, (B1)

where ∆ν = ν − ν11S−n′1P o . The power series uts o� at

µ = −2 beause the square of a funtion with a simple

pole an have a pole of no higher than the seond order.

It is easy to read o� from Eqs. (12) and (13) that the

leading term for the i→ n′1P o → 11S pole is

qi,−2 =
α6ν311S−n′1P oν

3
n′1P o−i

108(2L+ 1)a60R6
[1 +N (νn′1P o−i)]

×
∣

∣

∣
〈11S||d||n′1P o〉〈n′1P o||d||i〉

∣

∣

∣

2

, (B2)

where we have taken N (ν11S−n′1P o) ≪ 1 in the Wien

tail of the CMB. Using the onversion from dipole matrix

element to Einstein oe�ient, and replaing the phase

spae density with its blakbody value, this an be re-

written as

qi,−2 =
Ai→n′1P oAn′1P o→11S

4π2(1− e−hν
n′1Po

−i
/kBTr)

. (B3)

It follows from this and Eq. (37) that the absorption ross

setion to level i is

σ
(2γ)
i =

∞
∑

µ=−2

Qi,µ∆ν
µ, (B4)

where the leading order term is

Qi,−2 =
c2gi

32π3ν2
11S−n′1P o

Ai→n′1P oAn′1P o→11S

ehνn′1Po
−i

/kBTr − 1
. (B5)

This ould alternatively be written as

Qi,−2 =
c2gi

32π3ν2
11S−n′1P o

An′1P o→11SΓn′1P o→i. (B6)

A similar argument shows that Eq. (B6) applies to the

resonane in the Raman sattering ross setion orre-

sponding to 11S → n′1P o → i as well.
Equation (41) thus beomes

∂N0

∂ν
= κ

[

N0 −NLe
−h∆ν/kBTr

]

, (B7)

where NL = xn′1P o/3x11S and

κ =
nHcx11Sσ

(2γ+Raman)

Hν
. (B8)

Expanding κ as a power series, κ =
∑∞

µ=−2 κµ∆ν
µ
, we

�nd that the lowest-order term is

κ−2 =
∑

i

nHcx11S
Hν11S−n′1P o

Qi,−2

=
nHcx11SAn′1P o→11S

32π3Hν3
11S−n′1P o

∑

i

Γn′1P o→i. (B9)

In the �nal expression, the prefator outside the sum is

easily reognized as τS/4π
2
, where τS is the Sobolev depth

through the line. The sum is the total width of the n′1P o

level (whih is the line width Γline of n′1P o
�11S sine

the 11S level has negligible width) times the fration of

transitions from n′1P o
that go to other exited states.

Therefore the sum is Γlinefinc and we may write

κ−2 =
τSΓlinefinc

4π2
= ∆νline. (B10)

Note that the oe�ient κ goes to in�nity on resonane.

In priniple this should be ut o� by the Lorentzian width

of the line (i.e. the pole displaement in M2γ), and the

resonane will also be widened by the Doppler width of

the line. In pratie as long as the line enter is optially

thik this subtelety does not matter: we will have N =
NL at ∆ν = 0.
Our next objetive is to solve Eq. (B7) for small ∆ν.

Here we take �small� to mean that we an work to �rst

order in h∆ν/kBTr and the orretion terms {κµ}∞µ=−1.

We may begin by writing the solution,

N0 = −X
∫

X−1κNLe
−h∆ν/kBTr dν, (B11)

where X = exp
∫

κ dν. The onstant of integration in

X is arbitrary (it trivially anels out in obtaining N0),

while that of the integral in Eq. (B11) is determined by

boundary onditions. We will separately solve for the

∆ν > 0 and ∆ν < 0 regions sine X is singular at ∆ν =
0. The solution for X is

X = exp

(

−∆νline
∆ν

+ κ−1 ln
∆ν

∆νcut
+

∞
∑

µ=0

κµ
∆νµ+1

µ

)

,

(B12)

where the hoie of denominator in the logarithm is

arbitrary (but ∆ν+ is onvenient). Substitution into

Eq. (B11) gives

N0 = −NLe
−∆νline/∆ν

(

∆ν

∆ν+

)κ−1

e
P

∞

µ=0
κµ∆νµ+1/µ

×
∫

e∆νline/∆ν

(

∆ν

∆νcut

)−κ−1

e−
P

∞

µ=0
κµ∆νµ+1/µ

×
(

∆νline
∆ν2

+

∞
∑

µ=−1

κµ∆ν
µ

)

e−h∆ν/kBTr dν. (B13)
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Expanding this to �rst order in h∆ν/kBTr and {κµ}∞µ=−1

gives

N0 = −NLe
−∆νline/∆ν

×
(

1 + κ−1 ln
∆ν

∆νcut
+

∞
∑

µ=0

κµ
∆νµ+1

µ

)

×
∫

e∆νline/∆ν ∆νline
∆ν2

(

1− h∆ν

kBTr
− κ−1 ln

∆ν

∆νcut

−
∞
∑

µ=0

κµ
∆νµ+1

µ
+

∞
∑

µ=−1

κµ∆ν
µ+2

∆νline

)

dν. (B14)

The integral an be shown by diret di�erentiation to

evaluate to

−e∆νline/∆ν

(

1− κ−1 ln
∆ν

∆νcut
−

∞
∑

µ=0

κµ
∆νµ+1

µ

)

−h∆νline
kTr

E1

(−∆νline
∆ν

)

+ C, (B15)

where C is a onstant of integration and E1 is the ex-

ponential integral funtion. Therefore, to �rst order in

{κµ}∞µ=−1 and h∆ν/kBTr,

N0 = NL

[

1 +
h∆νline
kBTr

e−∆νline/∆νE1

(

−∆νline
∆ν

)

+Ce−∆νline/∆ν

×
(

1 + κ−1 ln
∆ν

∆νcut
+

∞
∑

µ=0

κµ
∆νµ+1

µ

)]

.(B16)

The photon phase spae density on the red side of the

line is easiest to obtain: sine the term multiplying C in

Eq. (B16) goes to in�nity as ∆ν → 0−, we must have

C = 0. We thus have

N0(ν−) = NL

[

1 +
h∆νline
kBTr

e∆νline/∆νcutE1

(

∆νline
∆νcut

)]

.

(B17)

Using the expansion of the exponential integral for small

values of the argument, we �nd that if ∆νline ≪ ∆νcut ≪
kBTr/h, then

N0(ν−) ≈ NL

(

1 +
h∆νline
kBTr

ln
∆νcut

1.78∆νline

)

, (B18)

where 1.78 = eγ is the exponential funtion of Euler's

onstant.
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