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1. Introduction

Classical, non-dissipative solutions - called “lumps” or “defects” - have been studied exten-

sively in the history of physics with various motivations behind their investigation. Initially,

they were studied in the context of Scott Russell’s waves in hydrodynamics 1, then as “soli-

tons” by mathematical physicists and more recently by particle physicists, as possible new

“particles” in the spectrum of non-linear field theories. They have been investigated by

condensed matter physicists looking into superconductivity and by astrophysicists study-

ing the formation of galaxies. Even without considering the fluids and condensed matter

research, a vast amount of literature 2,3,4,5,6 has accummulated on different aspects of such

solutions and the interest continues unabated.

Lumps have been observed in fluids, plasmas and a number of condensed matter sys-

tems but, in particle physics, not a single solution of this type has been detected. The

magnetic monopole remains elusive and, in fact, the archetypal GUT monopole is perceived

to be enough of a cosmological problem that it has to be “inflated” away. Cosmic strings,

though astrophysically promising, have yet to be detected and are tightly constrained by

the millisecond pulsar and other observations. Heavy domain walls are believed to be

cosmological disasters and a particle physics model is considered inadmissible if it predicts

them. The question still looms large if there are any classical, non-dissipative solutions in

particle physics.



On the other hand, the detection of a defect in a system can give us valuable information

about the system. Since the defect is non-perturbative, it gives us information about the

non-perturbative structure of the theory. The existence of a topological defect would tell

us something about the topology of the theory and with it, other features that would be

impossible to glean by perturbative scattering experiments. A famous example is that due

to Dirac 7: the very existence of a monopole would tell us that electric charge is quantized*.

The presence of lumps in a system can lead to novel phenomenon: GUT monopoles can

catalyze proton decay 8,9, and, strings and textures can lead to galaxy formation and to

the generation of primordial magnetic fields 10,11,12,13. Lumps can also give rise to exotic

quantum phenomena such as fermionic zero modes 14 and quantum hair on black holes 15.

The benefits that would be reaped if lumps exist in particle physics seem to far outweigh

the doubts one may have about their existence. It is hardly surprising, then, that so much

effort has gone in the past several decades to uncover the mysteries of the lump.

In the following notes, we shall merely touch upon certain basic aspects of this immense

subject and hope that this can be a starting point for the reader to follow up on the

references that have been provided. The choice of topics included here are essentially

aspects of the subject that I have been personally involved in together with some basic

underlying topics that are the foundations on which the subject has grown.

* It should also be said that this reason is no longer as compelling as it used to be in view
of the fact that electric charge is automatically quantized within the framework of Grand
Unified theories.



2. Topological defects: field theory

In this section we will study topological defects as classical solutions in certain field

theories 16.

The general criterion for the existence of a d (spacetime) dimensional topological defect

in a field theory which exhibits spontaneous symmetry breaking from a group G to a

subgroup H is:

π3−d(G/H) 6= 1 (2.1)

where πn(G/H) is the nth homotopy group of the coset space G/H. The cases d = 0, 1, 2, 3

correspond to the texture, monopole, string and domain wall. The condition (2.1) leads

to topological defects but the theory might also contain non-topological, semilocal and

embedded defects whose existence cannot be detected by using (2.1).

It is often more convenient to think in terms of the vacuum manifold, ΣV , described

by the values of the scalar field φ that minimize the potential:

ΣV =
{

φ :
dV

dφ
= 0 ,

d2V

dφ2
> 0

}

. (2.2)

If the surface ΣV has incontractible surfaces of 3− d dimensions, the theory will contain

a d spacetime dimensional topological defect.

A physical justification for the above criterion can be given. Suppose that the con-

figuration of φ on a 3 − d dimensional surface at spatial infinity (S) is denoted by φ∞.

If we assume that there is vanishing energy at infinity, then φ∞ lies on ΣV . Therefore

φ∞ describes a mapping from S to ΣV . Next let us imagine the case when the image

of this mapping is one of the incontractible 3 − d dimensional surfaces in ΣV and denote

this image by I. But S is contractible - assuming that space itself has trivial topology*

- and so we can continuously shrink this surface to a point. When S shrinks to a point,

it must continue to be mapped to a non-trivial surface in ΣV since I is assumed to be

incontractible. But this would mean that φ would be multi-valued at the point to which S

has been contracted and this is not acceptable. The only way out of this contradiction is

that the field φ must leave ΣV at some point in space. However, this means that φ cannot

remain at the minimum of the potential everywhere and there must necessarily be at least

* If there are black holes or other gravitational peculiarities present, these arguments would
need modification.



one point where there is non-zero potential energy. The location of this potential energy

is the location of the topological defect and the energy distribution at this location defines

the energy distribution of the defect. Note that this argument shows that the asymptotic

configuration of the field φ is sufficient to determine the existence of the defect.

The case of the texture is somewhat different since the asymptotic field configuration

is not sufficient to determine its presence and at almost all times the field never leaves

the vacuum manifold. There is energy in the configuration because the symmetries are

global and hence the variations in the field carry gradient energy. The topology can be

understood by considering the configuration in spacetime since then we can consider three

spheres in the vacuum manifold that are incontractible. If the model one is considering

only contains gauged symmetries, there are no textures since all the gradients in the scalar

field can be compensated by gauge fields. Yet one may still have textures in the entire

universe and these result in different sectors in the gauge theories and lead to degenerate

vacuua 4.

To make things more concrete, we now list the simplest models that give rise to walls,

strings, monopoles and textures.

The domain wall solution arises in models in which a discrete symmetry is spontaeously

broken. For example, consider the model:

Sw =

∫

d4x
[

(∂µφ)
2 − λ(φ2 − η2)2

]

(2.3)

where, φ is a real scalar field. The symmetry breaking in this model is Z2 → 1 and hence

π0(G/H) 6= 1. In terms of the vacuum manifold, it is given by φ = ±η and consists of two

disconnected minima. The consequence is a domain wall in the model which interpolates

between the two minima. For a static domain wall in the yz plane, the field solution is:

φ = ηtanh(
√
λ ηx) (2.4)

and the energy per unit area of a wall in the yz−plane is:

Ew =
8

3

√
λη3 . (2.5)

The most familiar example of a model with gauge strings 17 is the Abelian-Higgs model:

Ss =

∫

d4x

[

|(∂µ + ieAµ)φ|2 −
1

4
FµνF

µν − λ

4

(

φ2 − η2

2

)2
]

(2.6)



where, φ is a complex scalar field and Fµν = ∂µAν − ∂νAµ. Here the symmetry breaking

is U(1) → 1 and π1(G/H) 6= 1. The vacuum manifold is given by φ = η√
2
eiα where α is

any phase. Therefore the vacuum manifold is a circle (parametrized by α) and contains

incontractible 1 dimensional curves. The corresponding unit winding string solution in

cylindrical coordinates (r, θ, z), and along the z−axis, is of the form:

φ =
η√
2
f(r)eiθ (2.7)

Aµ = −v(r)

er
∂µθ (2.8)

where, the functions f(r) and v(r) vanish at the origin and go to 1 as r → ∞. There is no

known closed form for f and v and they have to be found numerically.

When 8λ = e2, that is, when the scalar and vector masses are equal, the energy of the

vortex can be found analytically using Bogomolnyi’s method 18 and the result is:

Es = πη2 . (2.9)

For other values of the parameters, the energy has to be evaluated numerically 19.

A simple example of the magnetic monopole 20,21 occurs in the model:

Sm =

∫

d4x

[

|(∂µ + ieǫaAa
µ)
~φ|2 − 1

4
F a
µνF

aµν − λ

4

(

~φ2 − η2

2

)2
]

(2.10)

where, ~φ is a triplet of fields, a = 1, 2, 3, F a
µν are the non-Abelian field strengths and

(ǫa)ij = ǫaij is the usual epsilon symbols. The symmetry breaking is O(3) → O(2) and

this gives magnetic monopoles since π2(G/H) 6= 1. Here the minimum of the potential is

a two sphere and hence contains incontractible two dimensional surfaces. The monopole

configuration can be written down in spherical coordinates:

~φ =
η√
2

f(r)

er
r̂ (2.11)

Aa
µ = ǫaij r̂

i∂µr̂
j
(1− v(r)

er

)

(2.12)

where,

r̂ = (sinθ cosφ, sinθ sinφ, cosθ). (2.13)

The functions f(r) and v(r) and the mass of the monopole need to be found numerically.

The only exception is in the Prasad-Sommerfeld 22 limit, when the solutions and the mass



of the monopole are known in closed form. This is the limit λ → 0 and with e and η held

fixed. Then the solution is:

f(r) = Crcoth(Cr)− 1 (2.14)

v(r) =
Cr

sinh(Cr)
(2.15)

where, C = ηe. The energy in this limit is:

E =
4πη

e
. (2.16)

Finally, the simplest texture 23,24 occurs in a model with symmetry breaking O(4) →
O(3):

St =

∫

d4x
[

(∂µΦ)
2 − λ(Φ2 − η2)2

]

(2.17)

where, Φ is a column vector of 4 real fields. The vacuum manifold in this case is a three

sphere and admits incontractible three dimensional surfaces. The texture solution is time

dependent. The usual approach is to assume spherical symmetry and only consider the

σ−model limit when |Φ| = η. Then, in spherical coordinates 24,

Φ = η(cosχ, sinχr̂) (2.18)

where, r̂ is the unit radial vector as given in (2.13). The function χ(t, r) can also be found

analytically:

χ(t, r) = 2tan−1(−u) , u < 0 (2.19a)

χ(t, r) = 2tan−1(+u) + π , 1 ≥ u > 0 (2.19b)

χ(t, r) = 2tan−1(+1/u) + π , u ≥ 1 (2.19c)

where, u ≡ r/t.

This completes our synopsis of topological defect solutions. The description is far

from complete but suffices for applications to cosmology. The reader interested in the

classification of defects, defects in particle physics models, exotic defects etc. is referred

to the excellent review by Preskill 25 and to the book by Vilenkin and Shellard 6.



3. Embedded defects: field theory

Even if the general criterion for the existence of a topological defect (eq. (2.1)) is not

satisfied, the model can still permit the existence of topological defect like solutions 26,27.

These solutions are essentially the topological defects of a smaller theory which are em-

bedded in the bigger theory under consideration. The conditions under which such an

embedding can be successfully carried out are not very stringent and so we can expect

embedded defects to exist in almost any model.

The existence of a solution in a model does not automatically mean that it is stable and

it is in this crucial way that embedded defects differ from their topological counterparts. A

single topological defect is stabilized by topology and is separated from the zero topological

defect sector by an infinite energy barrier. Embedded defects, however, need not be stable.

In fact, mostly they are unstable, sometimes they are metastable and the only known

examples of stable embedded defects are semilocal strings 28.

Instead of giving the general arguments for constructing embedded defect solutions,

we shall only present some illustrative examples. We shall first construct an embedded

domain wall solution as this is the simplest example of an embedded defect and then we will

focus on the electroweak model and construct the embedded electroweak string solutions.

A limiting case of electroweak strings will give us the semilocal string.

Walls - The most trivial embedded solution is a domain wall embedded in a global

G = U(1) model. We express the Higgs field in terms of two real scalar fields φa, a = 1, 2.

A Lagrangian that is invariant under the global U(1) rotation and describes static field

configurations is,

L = ∂iφ
a∂iφa − λ

(

φaφa − η2
)2

, (3.1)

with i labeling the spatial coordinates.

The first step in constructing the embedded domain wall solution is to identify a Z2

subgroup of the full symmetry group. Let us consider the Z2 subgroup defined by the

transformation: (φ1, φ2) → (−φ1, φ2). Any non-zero vacuum expectation value of φ1 will

break this Z2 subgroup completely and so the embedded symmetry breaking is Z2 → 1.

This symmetry breaking has topological domain walls:

φ1 = ηtanh(
√
λ ηx) (3.2)



and so this configuration for φ1 together with φ2 = 0 is our candidate embedded domain

wall solution.

Once we have identified a candidate embedded defect solution, we should check if

it extremizes the energy functional. The general conditions for this to be true can be

written 26,27 and require setting up a formalism. The idea however is simple: to check that

the configuration is a solution, we perturb the configuration and verify that the variation in

the energy vanishes to first order in the perturbations. Since we know that the domain wall

is a solution to the theory when φ2 is zero, and the directions of φ1 and φ2 are orthogonal,

there is no need to perturb φ1 - only perturbations in φ2 might be dangerous. Now we see

that φ2 appears quadratically in the energy functional and so the variation in the energy

functional vanishes to linear order and the configuration is a solution.

This argument for checking when embedded configurations are solutions can be ex-

tended to arbitrary models and defects without much difficulty.

Electroweak strings 29,30,31 -

Consider the Weinberg-Salam 32,33 model of the electroweak interactions. The sym-

metry breaking is: SU(2)L × U(1)Y → U(1) and the bosonic sector of the Lagrangian

is:

L = −1

4
GµνaG

µνa − 1

4
FBµνF

Bµν + |Dλφ|2 − λ(φ†φ− η2/2)2 (3.3)

where, φ is a complex doublet. The definitions of the field strengths are:

Ga
µν = ∂µW

a
ν − ∂νW

a
µ + gǫabcW b

µW
c
ν (3.4)

Fµν = ∂µBν − ∂νBµ (3.5)

and the covariant derivative is:

Dµ = ∂µ − i
g

2
τaW a

µ − i
g′

2
Bµ (3.6)

where, g and g′ are coupling constants and τa are the Pauli spin matrices.

The electroweak energy functional follows from the Lagrangian (3.6):

E =

∫

dz

∫

d2x

[

1

4
Ga
ijG

a
ij +

1

4
FBijFBij + (Djφ)

†(Djφ) + λ(φ†φ− η2/2)2
]

(3.7)

where, i, j = 1, 2, 3 and we have restricted ourselves to the case when there is no time

dependence and the time components of all gauge fields vanish. In addition, since we



will only be interested in string solutions, we will only consider configurations that do not

depend on the z−direction. Then the integration over z can be ignored and we can think

in terms of the energy per unit length of the string.

The first step is to choose a U(1) subgroup of the full symmetry group. We choose

this to be the U(1) subgroup generated by

T 3 = −cos2θwτ
3 + sin2θw1 = diag(− cos 2θw, 1) . (3.8)

(Note that T 3 is the generator corresponding to the Z−boson (see (3.11) below)).

Now the candidate embedded string solution may be written down:

φemb =
η√
2
fvor(r)e

iT 3θφ0. (3.9)

where, we take,

φ0 =

(

0
1

)

. (3.10)

Here, (r, θ) are polar coordinates. In addition, we want that the covariant derivatives

vanish at infinity and so we take

Zµ = cosθwW
3
µ − sinθwBµ = [Aµ]vor (3.11)

where, [Aµ]vor is defined by eq. (2.8). All the other fields in the model are taken to vanish.

One can check that the static configuration (3.9), (3.11) extremizes the energy func-

tional and hence is a solution 26.

Different choices of the (“embedded”) subgroup lead to other string solutions. The

choice that we now consider is the subgroup sitting entirely in the SU(2) factor of the

electroweak model and generated by: Tα ≡ sinα τ1 + cosα τ2, where α is some constant.

Then the corresponding embedded string solution is:

φemb = fvor(r)e
iTαθϕ0 , sinαW 1

i + cosαW 2
i = (Ai)vor , (3.12)

and all other orthogonal combinations of gauge fields vanish.

The one parameter family of string solutions in (3.12) is called the W (α) string since

the flux in the string is purely in the SU(2) sector. Furthermore, by a global gauge

transformation, any single string solution in the family - that is, a string with any value



of α - may be transformed into the string configuration with α = 0. Explicitly, this gauge

transformation is:

φ′ = exp

[

−i
(1 + τ3)

2
α

]

φ (3.13)

together with a corresponding transformation of the gauge fields. This does not, however,

mean that if there are many different string solutions of different α present, they can be

gauge transformed to another multi-string configuration with all strings having the same

value of α. The simplest way to see that α is a non-trivial parameter is to consider a

loop of W string such that α runs from 0 to 2π as we go around the loop. The winding

of α around the loop is a discrete number and cannot be altered by any non-singular

gauge transformation. Hence, a loop with varying α is not gauge equivalent to one with a

constant value of α.

One may also see that strings of different α are distinct by comparing the directions

of the field strengths in group space in each of the strings. Of course, the field strengths

are only gauge covariant and not gauge invariant and so one must first parallel transport

the gauge field of one string to the location of the other string and then take the scalar

product of the field strengths. This leads us to the following quantity:

∆ ≡ Tr
(

τaF a
ij(~x2;α)P

[

exp(−i

∫ ~x2

~x1

~dl · ~W bτ b)
]

τ cF c
ij(~x1;α

′)
)

(3.14)

The quantity ∆ is a gauge invariant measure of differences in α between strings.

Semilocal strings -

Consider the case g = 0 in the electroweak model. Now the symmetry group is

SU(2)gl × U(1)Y (where gl stands for “global”) and it breaks down to a U(1)gl group.

The vacuum manifold is still given by the minima of the potential and is a three sphere.

However, the model continues to have the electroweak strings as solutions. But the Z-string

is the only gauge string since there is only one gauge field in the model.

With the knowledge of embedded defects, the existence of the semilocal string solution

is not a surprise, but what is surprising is its stability. The simplest case where one

can explicitly check the stability is when λ = e2. In this particular case, the method of

Bogomolnyi can be used and it is at once obvious that the string minimizes the energy 28.

A more careful analysis 34,35 reveals that the string is only neutrally stable in this case,

unstable for larger λ and stable for smaller λ. Subsequent numerical studies 36,37 have

confirmed this result.



One way to understand the stability of the semilocal string is by inspecting the pro-

cesses by which the string solution can destabilize. These processes necessarily require the

presence of gradients of the Higgs field for which there can be no compensating gauge fields.

Hence, unwinding requires a growth of the gradient energy but accomplishes a decrease of

the potential energy. When the coupling constant λ is large, the potential energy is the

more important piece in the energy functional and the string prefers to unwind. If λ is

small, however, the gradient energy required to unwind the string is prohibitive and so the

string is stable.

Topological aspects of semilocal defects have been investigated in Ref. 38, 39 and such

defects have been constructed in a wide range of theories in Ref. 40. Some cosmological

aspects of semilocal strings have been investigated in Ref. 41.

Next, by considering the case of small but non-zero values of g, it is clear that even

the Z−string will be metastable for some values of parameters. A plot of the region of

parameter space where the string is stable may be found in Ref. 42. The stability of

electroweak strings (and other embedded defects) can be considerably enhanced if there

are bound states present on the string 43.



4. Cosmological formation of defects

So far we have only discussed topological defects as classical solutions in certain field

theories. What relevance can such solutions have for cosmology? Here we will argue that

these defects would form during phase transitions in the early universe 44 and, in most

cases, would have survived until the present epoch.

Consider a cosmological phase transition occurring at some temperature T . During

the phase transition the Higgs field φ acquires a vacuum expectation value so that |φ| = η.

If the vacuum manifold is non-trivial, this still does not fix the location of the vacuum

expectation value on the vacuum manifold. For example, if the model is the one with

Z2 symmetry (eqn. (2.3)), we can have φ = +η or φ = −η at any given point in space.

Furthermore, the value that is acquired at one point is uncorrelated with the value acquired

at some other point provided the points are separated by a distance greater than the

correlation distance ξ at the phase transition. Causality necessarily implies that ξ < t

where t is the epoch of the phase transition. Hence, after the phase transition, the Higgs

field lies on different points of the vacuum manifold at different spatial points. Then, it

will happen, just by chance, that the configuration of the field on some asymptotic surface

will be topologically non-trivial. (For example, in the Abelian-Higgs model (2.6), there

will be closed circuits in space on which the phase of the Higgs field varies from 0 to 2π as

each of the circuits is traversed.) When this happens, a defect will necessarily be present

somewhere inside the surface.

This existence proof of the formation of defects during cosmological phase transitions

relies on two facts: (1) the presence of a defect can be determined solely by looking at the

asymptotic field configuration and, (2) the vacuum expectation value is uncorrelated on

distances larger than t. This mechanism for the formation of defects is called the “Kibble

mechanism”.

Realistically, the phase transition is a thermal process and one should study the for-

mation of defects using statistical field theory. Less ambitiously, one should estimate ξ by

finding the thermal correlation function during the phase transition and this has been at-

tempted in simple models. A rigorous estimate of, say, the density of defects after a phase

transition is not available. However, for cosmological purposes this is not very relevant

either. The point is that even if some defects - as few as one per horizon - are produced,

the cosmological effects can be very dramatic.



Another mechanism by which defects can be produced is by quantum mechanical nu-

cleation of the defect during an inflationary phase of the universe 45. A quick way to

understand this phenomenon is by thinking of inflation as a strong force that pulls apart

any object. On the other hand, the mutual attraction of monopoles to anti-monopoles, the

tension in cosmic strings and domain walls, tends to collapse these objects. In terms of a

potential, there are two regions - one when there is no defect and the other where there is

a defect-anti-defect pair (or loop of string, or shell of domain wall) that are being pulled

apart due to inflation. These two regions are minima of an “effective potential” and they

are separated by a potential barrier. But then there can be quantum mechanical tunneling

from one region to another and if there are no defects to start with, inflation can literally

pull a pair out from the vacuum. As this is a quantum mechanical effect, the number den-

sity of defects produced in this way is small. However, in the post-inflationary universe,

our horizon is only a small patch of the universe and it may well be that our horizon is

located in the region which does contain a few defects. If these defects are domain walls

or strings, they may still be relevant for cosmology within our universe 46.

What do the defects look like on formation? The following summary is based on nu-

merical simulations to study the formation of topological defects during phase transitions.

Walls: There is one infinite wall and very few smaller walls whose size distribution is

exponentially suppressed 47,48. The fraction of wall energy that resides in the infinite wall

is about 87% .

Strings: There are a few infinite strings with close to 80% of the total string length 48.

The remaining string is in loops with a scale invariant distribution:

dn(R) = c
dR

R4

where, dn(R) is the number density of loops having size between R and R + dR and

c ∼ 6 is a numerical coefficient determined by simulations 48. The loops will collapse,

radiate energy and disappear but the infinite strings will survive as they are protected by

topology.

Monopoles: The number density of monopoles is ∼ ξ−3 where ξ is the correlation

distance after the phase transition 49. For a second order phase transition ξ ∼ T−1 and

for a first order phase transition it is given by the typical size of the bubbles when they

collide. The radius of bubbles at collision could be anywhere between T−1 and the Hubble

distance ∼ t.



Embedded defects: The Kibble mechanism does not directly apply to the formation of

embedded defects since the point (1) above is not met and, in this case, a full study of the

phase transition appears necessary. However, some guesses can be made on the basis of

what is known about the formation of topological defects. For example, if the embedded

strings are metastable they can end on monopoles. And if the probability for a string

to break by the formation of monopole and antimonopole pair is small, one would still

expect to form infinite strings. For a larger probability, however, the length distribution

of embedded string segments is expected to be exponential 50,51 - that is, the number of

long strings is exponentially suppressed. At this time, however, no one has a quantitative

understanding of the formation of non-topological defects.

Nucleated defects: For defects that nucleate in de Sitter space, it is possible to find the

wave-function for quantum fluctuations of the defect and hence the distribution of various

shapes and sizes of nucleated defects 46,52. Cosmogical consequences of such defects have

also been investigated in Ref. 53.



5. Cosmological constraints on domain walls and monopoles

Domain walls and magnetic monopoles are strongly constrained by cosmology. Consider

domain walls first 54.

As discussed in the previous section, an infinite domain wall will be formed during a

domain wall forming phase transition. The infinite domain wall will move under its own

tension and try to straighten out. Immediately after the phase transition, the motion of the

wall is damped by friction but as the plasma gets diluted by Hubble expansion, the drag

decreases and eventually the motion of the wall is effectively undamped by friction. Hubble

expansion is still important. The single domain wall in the universe cannot disappear since

it is protected by topology and would be present in the universe if it were ever produced.

(Inflation could, however, push the domain wall outside our horizon in which case it would

be irrelevant for our observable universe.) Assuming that the domain wall straightens out

completely, its area within our horizon is ∼ t2 and its mass is σt2 where σ is the energy

per unit area of the wall. Therefore the energy density in the wall is ∼ σ/t and, for the

walls not to dominate the universe today, we require that σ/t < ρ, where, ρ is the matter

density at time t. The energy per unit area of a domain wall is usually (for example, in

the model (2.3)) given by σ =
√
λη3. Assuming that the coupling constant λ is of order 1,

and taking ρ ∼ 3/(32πGt2) the constraint on domain walls gives η <∼ 10MeV .

The scale η is the scale at which the phase transition occurs and hence the only per-

missible walls are the ones that can form relatively late in the history of the universe. This

excludes domain walls that form at the Grand Unification scale or even at the electroweak

scale.

Next consider magnetic monopoles. There are several interesting bounds on the number

density of monopoles - each involving different physics. Here we will only consider the

cosmological bound which in itself is quite severe 49,55,6.

The cosmological bound is that magnetic monopoles should not overclose the universe.

This means that the energy density in monopoles ρm today should be less than the critical

density of the present universe. The smallest possible number density of monopoles at

formation (nf ) is one per horizon at that epoch:

nf ∼ 1

t3f
(5.1)



After formation they quickly become non-relativistic and from then on their energy density

decays like that of matter and redshifts as a(t)−3 where a(t) is the scale factor of the

universe. The energy density of the radiation dominated universe, however, redshifts

faster, in proportion to a(t)−4. Therefore the ratio of monopole energy density to critical

density (Ωm) at time t is:

Ωm(t) =
mnf
ρc(tf )

a(t)

a(tf )
(5.2)

where, m is the mass of the monopole. With ρc = 3/(32πGt2), a(t) ∝ t1/2 and m ∼ Tf

where, Tf is the temperature at the phase transition, we find that Ωm becomes one at a

time t∗ given by:

t∗ ∼
(1019GeV

m

)8
10−46s. (5.3)

For GUT scale monopoles (m ∼ 1016GeV ), this epoch occurs at 10−22s - well before the

matter era. (This justifies our use of a(t) ∝ t1/2.) Therefore, if monopoles were formed

at the GUT epoch, their energy density would completely overwhelm our universe and

would overclose it. This is not observed and so some way has to be found to resolve this

“monopole overabundance problem”*.

The monopole overabundance problem is head-on in conflict with the philosophy of

conventional GUTs which is that the electroweak and strong forces are unified in a Grand

Unified symmetry group - a simply connected group - at an energy scale of about 1016GeV

and that there is no new force that comes into play between the electroweak (102GeV ) and

the Grand Unification scale. Coupled with standard cosmology, this philosophy implies

that the Grand Unified symmetry group broke down to a subgroup with a hypercharge

U(1) factor at the Grand Unification scale. But then condition (2.1) is satisfied for the case

of monopoles. This means that within conventional GUTs, the monopole overabundance

problem must be confronted.

One obvious solution is to relax conventional GUTs and allow for the possibility of a

U(1) factor in the Grand Unified group. Then monopoles will never form and there will

be no overabundance problem.

If one is unwilling to relax one’s philosophy of Grand Unification, there is still a cos-

mological solution and another particle-physics solution to the monopole overabundance

* The problem is even more severe when one considers the various other constraints on the
present monopole flux - such as the Parker bound or the bound coming from neutron
stars 55.



problem. The cosmological solution is to have an inflationary phase during or after the

formation of monopoles 56. The inflationary phase simply dilutes the monopoles until their

number density gets so small that they cause no problem. The particle physics solution

is due to Langacker and Pi 57 who consider the formation of monopoles at the GUT stage

and then another stage when the electromagnetic symmetry gets broken. At this stage

the magnetic flux of the monopoles gets confined and the monopoles get connected by

strings. The strings bring the monopoles and antimonopoles together, they annihilate,

and subsequently the electromagnetic symmetry is restored.



6. Cosmic strings: general properties

Here we will summarize some properties of cosmic strings.

At formation, the string network consists of closed loops and infinite strings. It is

estimated that ∼ 80% of the energy in the string network resides in infinite strings 48.

Once formed, the strings move under their own tension and try to straighten out. This

motion is damped due to the frictional force of the ambient matter 58,59 and is also slowed

due to the Hubble expansion. The frictional force is more important than the Hubble

expansion as the matter density is high. With time, however, the matter density gets

redshifted and the Hubble expansion dominates the frictional force. The time at which

the Hubble expansion drag become comparable to that due to friction is t∗ ∼ (Gµ)−2tPl.

After this time, the frictional force can be ignored 60.

The motion of a string in vacuum with energy density µ is well described by the

Nambu-Goto action:

S = −µ

∫

dτdσ

√

−g(2) , (6.1)

where, g(2) is the determinant of the world-sheet metric defined by

g
(2)
ab = gµν∂ax

µ(τ, σ)∂bx
ν(τ, σ) , (6.2)

a, b = τ, σ; gµν is the metric of the background spacetime and xµ(τ, σ) are the coordinates

of the string world-sheet.

The Nambu-Goto action is valid as long as the radius of curvature of the string is

much larger than the thickness of the string 61,62,63. Also, the action does not include

the interactions of strings when they intersect. When there is a collision of a string with

another string, it leads to the phenomenon of intercommuting 64,65,66. In this event, the

strings intersect, exchange partners and then again move as given by (6.1).

Another factor that plays an important role in the evolution of the string network is

the gradual loss of energy from strings into forms of radiation. An oscillating string is a

time dependent solution to a set of field equations and so one would expect that the motion

would lead to the radiation of quanta of any fields that couple with the fields that form the

string. However, it has been shown that the radiation in these quanta is negligible from the

strings that are expected to be of cosmological interest 67. This is solely due to the fact that

the curvature and oscillation frequencies of such strings is very small compared to particle



physics scales and hence the only radiation that can possibly be emitted is into massless

particles. A more detailed study then shows that the dominant loss from oscillating gauge

strings is to gravitational radiation 68,69. A loop of size L emits gravitational radiation

and loses all its energy in a time:

τ ∼ L

ΓGµ
(6.2)

where the coefficient Γ is numerically found to be of order 100 for certain family of string

loops 69. (In the case of global strings, the energy loss is dominated by the emission of

Goldstone bosons 70,71.)

At times later than t∗, the evolution of the network of strings is governed by string

tension, Hubble expansion, intercommuting and gravitational radiation. These four factors

make the evolution complicated enough so that no one has a clear picture of what the

network looks like at any instant. Progress in this problem has relied on the results of

numerical simulations of the string evolution and, recently, an analytical attack is also

underway.

Even though the string network is not fully understood, a few features seem to be

emerging 72,73,74,75,76,77. First of all, the network at any instant much later than t∗ seems

to consist of a few infinite strings (that is, strings that traverse the whole horizon without

closing up on themselves) and a large number of tiny loops. The size distribution of the

loops is not known but the favoured guess is that the size is given by the gravitational

radiation cut-off distance: l ∼ ΓGµt. (Loops smaller than this evaporate in less than

a Hubble time and would probably not be significant for cosmological purposes.) The

distribution of loops in space is not known either but, since the loops are produced at very

high velocities (v ∼ 1) one would expect them to be distributed roughly homogenously

even if they are initially produced in a localized region of space (for which there is some

visual evidence). The long strings are not smooth but have a lot of irregularities. The

scale of the irregularities is guessed to be the same as the size of the loops ∼ ΓGµt at any

time t. These irregularities are called “kinks” or “wiggles” in the literature and the long

strings are said to be “wiggly”.

Cosmic strings can also have the ability to carry persistent electric currents 14. Such

superconducting cosmic strings 78 can have very dramatic cosmological signatures. Other

notable varieties of strings include global, non-abelian and Alice strings. We shall not

discuss these varieties of strings but the reader can find a description in Ref. 6.



7. Cosmic strings: gravitational properties

Non-superconducting topological defects interact with their environment primarily via

gravitational forces. Here we will consider the metric of gauge strings and textures and

describe some of the known properties 79.

We first consider the metric of a source with energy-momentum tensor 80,81

T ν
µ = δ(x)δ(y)diag(µ, 0, 0, T ) . (7.1)

With T = µ = µ0 this is the effective energy-momentum tensor of an unperturbed string

with string tension µ0 as seen from distances much larger than the thickness of the string.

When 82,83

µT = µ20 (7.2)

this also describes the energy-momentum tensor of a wiggly string as seen by an observer

who cannot resolve the wiggles on the string.

The gravitational field of the string can be found by solving the linearized Einstein

equations with T ν
µ from (7.1). This gives 80

h00 = h33 = 4G(µ− T )ln(r/r0),

h11 = h22 = 4G(µ+ T )ln(r/r0), (7.3)

where, hµν = gµν − ηµν is the metric perturbation, r = (x2 + y2)1/2 and r0 is a constant

of integration.

For an unperturbed string, T = µ = µ0 and we get

h00 = h33 = 0, h11 = h22 = 8Gµ0ln(r/r0). (7.4)

A coordinate transformation brings this metric to a locally flat form,

ds2 = dt2 − dz2 − dr2 − (1− 8Gµ0)r
2dφ2 (7.5)

It describes a conical space, which is just a Euclidean space with a wedge of angular size

∆0 = 8πGµ0 removed and the two faces of the wedge identified. A particle at rest with

respect to a straight string experiences no gravitational force, but if the string moves with

velocity vs, then nearby matter gets a boost

ui = 4πGµ0vsγs (7.6)



in the direction of the surface swept out by the string. Here, γs = (1 − v2s)
−1/2. This

effect is responsible for the formation of wakes 84 and for a discontinuous change of the

microwave background temperature across a moving string 81,85. Assuming that the string

is perpendicular to the line of sight, the magnitude of the latter effect is

δT

T
= 8πGµ0vsγs . (7.7)

The conical metric also results in the formation of double images of background objects.

In the cosmological context, this would lead to the gravitational lensing of background

quasars and galaxies 80,81.

Returning now to the wiggly string metric (7.3), we first consider the effect of the

wiggles on light propagation 13. Assuming for simplicity that the direction of propagation

is perpendicular to the string, we can write the relevant components of the metric in the

form

ds2 = (1 + h00)[dt
2 − (dx2 + dy2)] (7.8)

where we should identify the half-lines y = ±4πGµx, x ≥ 0. The conformal factor (1+h00)

does not affect light propagation and can be dropped. Then the resulting metric describes

Minkowski space with a deficit angle 8πGµ, and we conclude that background temperature

discontinuities produced by wiggly strings are given by the same equation (7.7) with µ0

replaced by µ. In contrast to the smooth string, however, the wiggly string also produces

a change in the photon temperature when the photon propagates parallel to the string but

perpendicular to the velocity of the string.

Next, we study the formation of a wake behind a moving wiggly string. First look at

the problem in the rest frame of the string where the particles are flowing past the string

with a velocity vs in the x-direction. The linearized geodesic equations in the metric (8)

can be written as

2ẍ = −(1− ẋ2 − ẏ2)∂xh00, (7.9)

2ÿ = −(1− ẋ2 − ẏ2)∂yh00, (7.10)

where over-dots denote derivatives with respect to t. We need only work to first order

in Gµ, in which case (7.10) can be integrated over the unperturbed trajectory x = vst,

y = y0. Then we can transform to the frame in which the string has a velocity vs. The

result for the velocity impulse in the y-direction after the string has passed by is 13:

ui = −2πG(µ− T )

vsγs
− 4πGµvsγs (7.11)



The second term is the usual velocity impulse due to the conical deficit angle. But, for

small velocities, it is the first term that dominates the deflection of particles. The origin

of this term can be easily understood. From eqn. (7.3), the gravitational force on a

non-relativistic particle of mass m is F = 2mG(µ − T )/r. A particle with an impact

parameter r is exposed to this force for a time ∆t ∼ r/vs and the resulting velocity is

ui ∼ (F/m)∆t ∼ G(µ− T )/vs.

The metric of a loop of cosmic string can be obtained quite easily in the weak field

approximation 86,87. The result is that, at distances much larger than the size of the

loop, the metric is Schwarzschild with mass parameter M equal to the mass of the loop.

Singular points (“cusps”) on the string world-sheet may have novel gravitational features 87

but a proper treatment of these features requires going beyond the weak gravitational field

approximation. (In addition, these singular features do not seem to be very relevant

for cosmology since now it is believed that loops are not very important and that the

occurrence of cusps on loops is not as generic as it first seemed to be 88.)



8. Structure formation by wiggly cosmic strings

The formation and evolution of long-string wakes and their possible role in structure for-

mation in the scenario where strings are not wiggly have been discussed in Refs.84, 89, 90,

91, 92, 93 and many other papers. The scenario where the strings are wiggly has a shorter

history and some of the relevant papers can be found in Refs. 13, 94, 95, 96, 97, 98. Here

we will follow Ref. 13.

When a collisionless fluid flows in the wiggly string metric, the gravitational field

focusses the fluid particles inwards so that streamlines flowing on either side of the string

converge behind the string. Therefore a wake forms behind the string which has twice the

density of the ambient fluid. If the fluid is not collisionless, the fluid flow into the wake

will be accompanied by the formation of shocks and turbulence. These features of the

wake are likely to be important for the formation of structure on galactic scales and for

the generation of magnetic fields. However, the details of the wake are not important for

the formation of large-scale structure which is what we shall now describe.

Consider a wake formed behing a moving string segment of length ∼ ξ(ti) at time ti.

The distance travelled by the string in one Hubble time is ∼ vsti, and thus the initial length

and width of the wake are li ∼ ti, wi ∼ vsti. We shall first assume that the universe is

dominated by cold dissipationless matter. In this case the two opposite streams of matter

in the wake overlap, and the mass density is enhanced by a factor of 2 within a wedge

with an opening angle 2ui/vs, where ui is from eqn. (7.11). The average thickness of this

wedge is di ∼ uiti. The initial surface density of the wake is

σi ≈ 2ρ(ti)di ≈
2

3

µ− T

vsti
(8.1)

where ρ(t) = (6πGt2)−1 is the average density of the universe, and its total mass is

Mi ≈ σiliwi ≈ (µ − T )ti. Note that Mi is independent of the string velocity vs. If the

string moves faster, the wake is wider, but the surface density is decreased proportionately.

We note also that the velocity perturbation (7.11) is produced at distances up to ∼ wi

from the plane of the wake. For r > wi, the gravitational field of the string is like that of

a stationary rod and ui ∼ G(µ− T )ti/r.

As the universe expands, the length and width of the wake grow like the scale factor,

a(t) ∼ t2/3, while the total mass of the wake grows by gravitational instability like M ∝



a(t). As a result, the wake thickness (defined as the turnaround distance) and surface

density evolve like d ∝ a2(t), σ ∝ a−1(t). At the present time (t = t0)

σ0 ≈ µ− T

vst0

(

t0
ti

)1/3

. (8.2)

Cold-dark-matter wakes can also be formed during the radiation era (ti < teq), but in this

case the gravitational instability sets in only at t ∼ teq. It can be shown that the surface

density of the resulting wakes is proportional to (ti/teq)
1/2. Together with eqn. (8.2) this

implies 89 that the most prominent wakes having the largest surface density are the ones

formed at t ∼ teq.

The fraction of the total mass of the universe accreted onto wakes which were formed

at time ∼ ti can be estimated as (for ti > teq)

f ≈ 2widizi
L2(ti)

≈ 8πG(µ− T )zi (8.3)

where zi is the redshift at ti. The total mass of dark matter in all wakes is dominated by

the wakes formed at t ∼ teq,

ftot ∼ 20Gµ0zeq ∼ 0.4h2µ6. (8.4)

Here, h is the Hubble constant in units of 100km/s.Mpc, the universe is assumed to have

critical density, Ω = 1, µ6 = Gµ0/10
−6, and in the last step we have used the values of µ

and T from the simulations.

The evolution of the initial velocity perturbation (7.11) can be found from the equation

of motion for dark matter particles,

u̇+
ȧ

a
u = g (8.5)

where, g = 2πGσ(t) is the gravitational acceleration due to the wake. This gives u(t) ∝
t1/3. A careful analysis shows that the present velocity perturbation due to a single string

impulse is 92

u0 ≈ 2

5
uiz

1/2
i . (8.6)

If the filamentary wakes created by strings were sheet-like, they would have a thickness

∼ uitiz
2
i . For wakes produced around teq, this thickness is somewhat larger than the width



of the wake ∼ vstizi and hence we should not treat the filamentary wake as having planar

geometry. Instead the wake should be treated as having linear geometry and the accreting

structure will be cylindrical in shape with the possibility of some planar sub-structure.

The diameter of the cylindrical structure is characterized by the geometric mean of the

previously calculated width and thickness and is ∼ (uivs)
1/2z

3/2
i ti while the length is tizi.

To get a qualitative feel for the appearance of the wakes, we adopt the picture developed

in Ref. 72 for the evolution of the string network. The basic idea is that the long strings are

moving slowly at speeds ∼ 0.2 for about one Hubble time. Then there is an intercommuting

somewhere in the network which triggers an instability and speeds up the string to a much

higher velocity ∼ 0.6. In this way, during every Hubble time period, a string moves slowly

for most of the time but the slow motion is followed by a rapid motion that helps maintain

the scaling solution in which the distance between strings stays a fixed fraction of the

horizon size. In addition, string simulations show 73,72 that the coherence length of strings,

beyond which the directions along the string are uncorrelated, is ξ(t) ≈ t. The inter-string

separation L(t) is of the same order of magnitude. In the matter era L(t) ≈ 0.7t. The

rms string velocity on the scale of the smallest wiggles is 73 (< v2 >)1/2 ≈ 0.6, but the

coherent velocity obtained by averaging over a scale ξ is vs ∼ 0.15. The average mass per

unit length and string tension are (in the matter era) µ ≈ 1.4µ0, T ≈ 0.7µ0. With these

values, the first term in eqn. (7.11) is about ten times larger than the second.

If a string segment moves coherently for more than one Hubble time, the resulting

wake will have a variable surface density, with denser parts being the ones formed at

earlier times. The straightening of long strings on the scale ξ ∼ t occurs mainly due to

string intersections. Long strings occasionally self-intersect producing a horizon-size loop

which then rapidly collapses into miriads of tiny stable loops. If two different strings

intercommute, the highly curved regions near the points of intercommuting develop a high

velocity, vs ∼ 1, and also shed off a large number of tiny loops as they move. The wakes

due to rapidly moving strings have the form of sheets with dimensions tizi × tizi × uitiz
2
i

while the wakes due to slow strings have a filamentary appearence. As we explained (see

below (8.1)), the masses of both types of wakes are comparable, but the surface density in

the filamentary wakes is much higher, and we expect filamentary features to be prominent

in the large- scale galaxy distribution. In addition to wakes due to long strings, there will

also be comet-like wakes produced by rapidly moving small loops 99. The characteristic

scale of the large-scale structure in this scenario is teqzeq ∼ 10h−2Mpc. With h = 0.5 it is



comparable to the scale suggested by observations 100 (∼ 25h−1Mpc).

The wiggliness of the string network implies that the wakes will not be uniform but

will have sub-structure on the scale of the wiggles. This scale is expected to be larger than

the damping scale due to gravitational radiation from the string network which is ΓGµt,

at the time of formation of the wake, where Γ ∼ 102 is a numerical factor coming from the

rate of gravitational radiation 69. For the wakes produced at teq, the sub-structure is on

a comoving scale larger than ∼ 1µ6h
−2kpc. We expect that the wakes will fragment into

smaller objects due to this sub-structure.

The large-scale velocities predicted at the present time can be found from eqn. (8.6).

For sheet-like wakes from rapidly moving strings, it gives u0 ∼ 300µ6 h km/s where we

assumed that ti ∼ teq and vsγs ≈ 1. These velocity perturbations extend over regions of

size (10h−2Mpc)3 and may account for the observed large-scale streaming velocities 101.

Reasonable values of u0 are obtained, e.g., for h ∼ 0.5, µ6 ∼ 4. We note that in some

regions of space the motion of matter can be affected by two or more different strings.

The streaming velocity in such regions will typically be enhanced by a factor
√
n where

n is the number of string impulses that the matter experiences 102. Regions larger than

(10h−2Mpc)3 will also get peculiar velocities due to string impulses but the velocity will

scale as 1/L where L is the size of the region. (This is simply because a string gives a

coherent impulse to a region of size L, when its correlation length becomes comparable

to L. For large L, this happens later, giving less time for the velocity to grow.) The

observational situation on the dependence of peculiar velocity on length scale is quite

unclear and it remains to be seen if this predicted fall-off agrees with observation 103.

If the dark matter is cold, wakes formed at all epochs prior to radiation-matter equality

will survive and density fluctuations will be present on very small scales too. Albrecht and

Stebbins 96,97 argue that this small scale power is excessive and the sheet-like structures

formed later would not be prominent. The situation to me does not seem as clear since

one could imagine small scale structures themselves clustering into larger scale structures.

So the large scale wake could be prominent simply because it rearranges the small scale

structure into sheets and filaments.

In a universe dominated by light neutrinos, wake perturbations are damped by neutrino

free streaming on co-moving scales smaller than λν(t) ∼ vν(t)t, where vν(t) ≈ veq(teq/t)
2/3

is the rms velocity of neutrinos and veq ≈ 0.2. On larger scales the evolution of pertur-



bations is similar to that in cold dark matter. For a cold-dark-matter wake formed at

time ti, all matter initially within a distance uitizi/z will be accreted onto the wake by

the redshift z. A neutrino wake will go nonlinear at the redshift znl when the co-moving

scale of λν(ti) becomes less than the distance to which the matter has been swept by the

wake 91 : uiti(anl/ai)
2 ≈ λν(ti)anl/ai, where the scale factor a(t) is related to the redshift

by 1 + z = a(t0)/a(t). For filamentary wakes, this gives 104 1 + znl ≈ 4.5µ6h
2 indepen-

dent of zi. With h = 0.5 and µ6 = 4, we have znl ≈ 3.5. For sheet-like wakes, we find

1 + znl ≈ 2µ6h
2. Observations do indicate that z = 2− 3 is the epoch of intensive galaxy

and quasar formation 105. Thin wakes of small relativistic loops are strongly suppressed

by the neutrino free streaming 106, and it appears that loops play a negligible role in this

scenario. Eqn. (8.4) then implies that most of the matter in the universe remains unclus-

tered at the present time 93. This may explain why dynamical measurements in clusters

give values of Ω substantially smaller than 1. By contrast, in the cold dark matter scenario

the loops accrete at least as much matter as the wakes, and the voids will be pierced by

the long comet-like wakes formed behind relativistically moving loops. The characteristic

scale of the large-scale structure in this scenario is teqzeq ∼ 10h−2Mpc. With h = 0.5 it is

comparable to the scale suggested by observations 100 (∼ 25h−1Mpc). The surface density

of the neutrino wakes produced subsequently decreases but the decrease is only ∝ t
−1/3
i .

This means that the structure on still larger scales can also be prominent.

Baryonic wakes in a neutrino-dominated universe start collapsing after baryons de-

couple from radiation, t > tdec. However, since baryons constitute only a small fraction

of the total density, the growth of these wakes is strongly suppressed. Baryonic wakes

could nonetheless be cosmologically significant if the energy output from the primordial

stars formed in the wakes might trigger some kind of explosive amplification and lead to

preferential galaxy formation along these wakes 90. They could also explain the existence

of quasars at redshifts greater than 3. The scale of baryonic wakes, tdeczdec ∼ 50h−1Mpc,

is comparable to the largest-scale structure observed in the universe.

A novel outcome of the cosmic string scenario is that it predicts the generation of

primordial magnetic fields 13,98,107. The mechanism by which this happens relies on the

fact that the relativistic motion of strings after decoupling of matter and radiation induces

vorticity in the baryonic fluid. The vorticity then leads to the generation of primordial

magnetic fields.

To put these arguments on a firmer footing it is necessary to establishe generation of



vorticity and then to show that the vorticity will lead to magnetic fields. Fortunately, the

second step had been investigated in the 70’s and several mechanisms are known by which

vorticity can lead to magnetic fields. So the main task that remains is to show that there

will be vortical motion and to estimate the vorticity.

An estimate of the Reynold’s number for the flow of the baryonic fluid into the string

wake shows that it is very high (∼ 1011) and hence it is natural to suspect that the flow will

be turbulent. A large Reynold’s number, however, is not sufficient to guarantee turbulence

and one must demonstrate that the flow is unstable. In the case of fluid flow into a cosmic

string wake one can actually go further and explicitly describe the mechanism by which

vorticity is generated.

Consider the wake formed by a relativistically moving string at the recombination

epoch. At this epoch, the sound speed is dropping steeply but the flow of the fluid into

the wake is still given by (7.11). Then, for string tensions that are suitable for structure

formation, the fluid flow is supersonic and the wake is bounded by strong shocks. On

large-scales this shock is uniform but on small scales, the shock is non-uniform because the

string is wiggly and the wiggles have highly variable velocities. This is the crucial feature

- the wiggly string wakes are bounded by strong, non-uniform shocks.

Once we have shown that the scenario has this feature, the presence of vorticity follows.

From Euler’s equation and steady flow, one finds that the vorticity is related to the gradient

of the entropy by the equation 108:

~v × ~ω = −T ~∇s (8.7)

where, ~v is the fluid velocity, ω the vorticity, T the temperature and s the specific entropy.

In the preshock region, the flow is isentropic but, at the shock, the entropy suffers a

discontinuous jump. Since the shock is non-uniform, the post-shock entropy is different at

different points along the shock. This gives us gradients in the post-shock entropy and a

non-zero vorticity.

The presence of vorticity in the baryonic fluid flow means that the protons and electrons

are in vortical motion. But we also have ambient photons and neutral particles which

interact with the protons and electrons. The next crucial ingredient in the scenario is that

the masses of the protons and electrons are different and therefore their interaction times

with photons are also different. (The scattering cross-section of either particle with photons



is inversely proportional to the square of the mass of the particle.) Then the stronger

interaction of photons with electrons slows them down with respect to the protons and the

resulting electric current due to the differential rotation of charges produces a magnetic

field. Such scenarios - using the different interaction rates of protons and electrons with

photons - were proposed by Harrison 109, Mishustin and Ruzmaikin 110 and others in the

70’s.

While the scenario is clear qualitatively, quantitative estimates are more difficult to

obtain. The first hurdle is to understand the vorticity in the fluid flow. For this we

would need to have a quantitative analysis of the turbulence in the fluid flow and, as far

as I know, there is no theoretical recipe for analyzing turbulent flow. But dimensional

arguments allow us to estimate the average vorticity as follows. We expect that vorticity

will be produced on the scale on which the wake is inhomogenous. Therefore the co-moving

scale of this vorticity is ∼ ΓGµtizi where zi is the redshift at the epoch ti when the vorticity

is generated at a time ti. The velocity of the fluid is estimated as in (7.11) and so the

vorticity is

ω ∼ u

l
∼ 0.1

ti
. (8.8)

Given the vorticity, the generated magnetic field is estimated from the results of Mishustin

and Ruzmaikin 110

B ≈ 2
mc2

e

(1 + z)5/2

Ω1/2Hτeγ(0)
ω (8.8)

where, m is the electron mass, e the electron charge, z the red- shift at which the vortical

motion starts, Ω the mean-to-critical density or the baryonic matter, H the Hubble con-

stant, τeγ(0) the interaction time between electrons and photons at the present epoch and

ω is the angular velocity of the eddy. The interaction time between electrons and photons

at the present epoch is given by

τ−1
eγ (0) =

4σT ργ(0)c

3m
(8.9)

where, σT ∼ 10−24 cm2 is the Thompson scattering cross-section and ργ(0) is the present

photon energy density. Inserting Ω ∼ 0.03, H ∼ 50 km/s−Mpc, z = 103, and ω = 10−13 s

gives,

B ∼ 10−14 G . (8.10)



The magnetic field produced due to the vorticity at decoupling can be further amplified

by turbulence in the wake and by a galactic dynamo. Such a tiny seed field is all that is

needed to generate the observed galactic magnetic field of 10−6G.

Cosmic strings seem to be uniquely suited for generating magnetic fields via vorticity

since they naturally have the two features that seem essential for this mechanism: coherence

and strength. The first feature is that the vorticity should be on relatively large scales

(∼ 10kpc) for which it is essential that the source producing the vorticity should also have

this coherence scale. If the source is not lineal , it is difficult to see how this large a scale

is obtained. The second point is that the vorticity on these scales has to be relatively

large, implying that the source itself has to be undergoing violent motion. Once again,

this feature comes up naturally in the string picture but seems hard to get with other

sources.

Outlook:

While the cosmic string scenario for structure formation has ingredients that seem to

be promising, it is not detailed enough yet to be testable. This is because the problem

is doubly difficult - first one has to understand the evolution of the string network and

then the evolution of the matter that gravitates around the network. The evolution of the

network itself has turned out to be a really sticky problem and an analytical understanding

is just beginning to emerge. The flow of matter around the string network promises to be

an even more difficult problem since, as we have seen while discussing the generation of

magnetic fields, the flow will be non-linear and turbulent. Without going into the details

of the flow, one can only make some broad predictions about the large-scale structure as

we have done above. To make predictions on galaxy scales, it is essential to understand

the structure and fragmentation of the wake. Only then will we be able to say something

about the galaxy-galaxy correlation function and other quantitative measures that can

enable a comparison with observation.

These problems seem so difficult that at times I am tempted to think that it may be

simpler to observe cosmic strings or rule them out (as a mechanism for structure formation)

on the grounds that they are not observed. The millisecond pulsar observations seem to be

a foolproof way to go but for this we have to wait for another decade or so. The microwave

background anisotropy measurement by COBE does not confirm or rule out strings. But

small-scale measurements - when they become more reliable - could test the cosmic string



scenario*. The direct observation of strings by their gravitational lensing property is also

possible but is likely to be effort consuming. On the other hand, this effort seems very

worthwhile considering all the exciting outcomes!
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