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ABSTRACT

Fluctuations in the microwave background have now been detected over a wide

range of angular scales, and a consistent picture seems to be emerging. The data

cannot currently be used to constrain a large number of cosmological parameters,

but it is clear that there is more information than just the normalization of the mod-

els. Here we use the data to constrain a second parameter, namely the amplitude of

the Doppler peak, which we do using a phenomenological approach to the radiation

power spectrum. We �nd that the data prefer a Doppler peak of height ' 3 (above

a 
at line normalized to be unit height), with a purely 
at spectrum ruled out at

the 95% con�dence level. Although there are concerns about foregrounds and the

possibility of non-Gaussian 
uctuations, we believe that the existence of a peak at

degree scales is established by the data. This immediately implies that reioniza-

tion was unimportant for the microwave background. It also potentially leads to

di�culties for models where the 
uctuations were produced by topological defects.

Independent constraints on 


B

, on the slope n, etc. will need to wait for further

data. At the moment, the simple presence of a Doppler peak should be seen as

strong supporting evidence for standard dark matter-dominated models with some

few percent of baryons at z ' 1000.

Subject headings: cosmic background radiation | cosmology: theories and obser-

vations | Doppler peaks: proved

1. Introduction

The existence of microwave background 
uctuations over a wide range of angu-

lar scales has now been �rmly established (see ref. 1 for a review), and emphasis

is shifting toward studies that try to extract cosmological information from the ex-

perimental data. There have been several papers that combine the data from two

experiments, usually the COBE DMR results on the largest scales plus a speci�c

smaller angular-scale experiment, to place constraints on some cosmological param-

eters or models

2;3;4;5;6;7;8

. Some authors have even considered the results frommany

experiments, but with no de�nitive conclusions

9;10;11

.

We believe that there are now enough independent experimental measurements

of microwave background anisotropies at di�erent scales that it is possible to com-

bine the available data to obtain a robust answer to a relatively modest question.

* or \How High are the Doppler Peaks, and Other Tall Tales of the CMB"



Instead of trying to rule out speci�c cosmological models we take a more phenomeno-

logical approach. Firstly, we set up a `toy-model' for the radiation power spectrum

which is 
at on large angular-scales and has a peak in power around multipole

` ' 250. This increase at sub-degree scales corresponds to the so-called Doppler

peaks in standard dark matter power spectra. Secondly, we take the data from

the di�erent experiments and convert them into a measure of power through each

window function, so that they can all be plotted together for comparison, and so

that they can be combined to place constraints. Finally we calculate the best-�tting

height for the Doppler peak in our phenomenological power spectrum.

We �nd that a totally 
at scale-invariant spectrum is ruled out by the data

(at the 95% con�dence level), which instead prefer some sort of Doppler peak with

height ' 3 relative to the Sachs-Wolfe part of the radiation power spectrum. This

result is remarkably close to what theorists had been anticipating, and it has some

immediate implications for cosmology.

2. The Radiation Power Spectrum

It has become standard practice in CMB anisotropy studies to work in terms of

the multipole moments of the temperature anisotropy. One conventionally de�nes
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harmonics, and where the angled brackets represent an average over the ensemble of

possible 
uctuations. Assuming that the 
uctuations are gaussian distributed, the

models are uniquely speci�ed by giving their C

`

's, which are usually plotted as `(`+

1)C

`

vs. `. This is the power per logarithmic interval in `, or a 2D power spectrum

on the sphere. Such a plot usually starts as a 
at line at small `, corresponding

to Sachs-Wolfe 
uctuations in an n = 1 spectrum of matter 
uctuations, with

P

matter

(k) / k

n

.

The model C

`

's are obtained numerically from integrating the coupled Boltz-

mann equations for each 
uid. It has become apparent

10;12;13

that variations caused

by di�erent cosmological parameters are not `orthogonal', in the sense that essen-

tially identical C

`

's can be found for di�erent sets of parameters. Attempts to

extract such parameters from CMB data are further complicated by the fact that

theories only predict the expectation values of the a

`m

's (or the C

`

's) for an en-

semble of skies

14;15;16;17

, so that there is an unavoidable level of uncertainty when

comparing with observations. These problems may be somewhat overcome how-

ever by using non-CMB constraints (see for example the plot of the matter power

spectrum in ref. 1).

In order to formulate a question that the data may already be able to answer,

we resort to some theoretical prejudice and fall back on some assumptions that

have been common in such studies. We will assume that the power spectrum of

radiation 
uctuations is at least phenomenologically similar to that obtained from

models like the `standard' Cold Dark Matter model, although we need not assume

that all the dark matter is cold. Speci�cally we assume that the power spectrum is




at (corresponding to n = 1) on the largest scales, that 


0

= 1, and that the tensor-

mode (gravity wave) contribution is small (i.e. T=S � 1). Under these assumptions

the most prominent feature of theoretical power spectra is the rise above the 
at

line from about ` ' 100.

Doppler peaks are the name generally used to describe the bumps and wiggles

in the radiation power spectrum at `'s of a few hundred.* They are caused by

the oscillations of the baryon-photon 
uid before the Universe recombined. The

di�erent peaks and troughs correspond to photon density and velocity perturbations

which have had integral number of half oscillations before entering the Jeans scale,

with complications caused by the dark matter potential wells and the thickness

of the last scattering surface. Higher 


B

will generally lead to a smaller Jeans

length, allowing perturbations to grow more before coming inside this scale and

starting to oscillate. The oscillations will therefore be of greater amplitude for

higher 


B

, leading to higher Doppler peaks when the photons are last scattered.

The exact heights of the various bumps and wiggles comes from a combination of

adiabatic and velocity e�ects and so depend on the speci�cs of the cosmological

model (for example the height of the �rst peak is fairly insensitive to h, while the

relative heights of subsidiary peaks have quite a strong h dependence). However,

experiments are sensitive to a wide range of `, which will somewhat wash out these

variations. Moreover, the position of the �rst Doppler peak depends essentially only

on the geometry of the Universe. The scale is determined by the Jeans length at last

scattering, which subtends an angle corresponding to ` � 250


�1=2

0

for standard

recombination at z ' 1100. So for an 


0

= 1 model and no signi�cant reionization

(our assumptions), the position of the main Doppler peak is well-determined. The

damping scale of the C

`

's is also a fairly robust physical quantity. It is determined

by the Silk damping scale and the thickness of the last scattering surface. Although

there is some dependence on cosmological parameters the damping scale will be

roughly ` ' 1500.

In order to keep our power spectrum simple we approximate the Doppler peaks

by a single peak. Speci�cally we take a phenomenological power spectrum of the

form

`(`+ 1)C

`

= 6C

2
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* The naming of the Doppler peaks seems to be due to Bond & Efstathiou, who used it in talks etc. from

the mid-80's, although they appear never to have quite referred to the name in print until much later!

10?

The actual origin of the peaks can be traced back (in less and less familiar-sounding language) through

seminal papers such as Wilson & Silk

18

, Doroshkevich, Zel'dovich & Sunyaev

19

and Peebles & Yu

20

. A

general understanding of the importance of oscillations in the photon-baryon 
uid goes back even earlier,

e.g. to Silk

21

or Sakharov

22

. Indeed some Russians authors

23

refer to the Doppler peaks as Sakharov

oscillations. However, it is clear that the peaks could not be fully understood with the large- and small-

angle approximations used by early workers in this �eld; it wasn't until the detailed numerical calculations

of Bond & Efstathiou

24

, complete with the language of P

rad

(k) and the C

`

's, that what we understand by

the Doppler peaks had really been described. What you call them is rather a matter of taste. The �rst

peak actually comes from the photon monopole term at last scattering, not the velocity term, so perhaps

adiabatic peak would be more accurate (see ref. 25). However, the term `Doppler' peaks seems to have

become common in the literature, whether it is an accurate name or not, c.f. `planetary' nebulae!



with

y(`) =

log

10

`� 2:4

0:38

;

i.e. a constant plus a Lorentzian, with the amplitude at ` = 2 divided out so that

A

D

is the height above the Sachs-Wolfe plateau. The parameters for the center and

width of the Lorentzian were �tted to accurate C

`

's for a standard CDM model

(h =

1

=

2

;


B

= 0:06) provided by N. Sugiyama (see e.g. refs. 26,27). This �t is

shown in Fig. 1, where the CDM model is the solid line, the best Lorentzian curve

is the short-dashed line, and the best Gaussian curve is the long-dashed line. In fact

the curves were �tted to points equally spaced in log `, chosen from the CDM model.

The easiest way to do this was just to take points at ` = 2

N

with N = 1 : : : 10,

which are the �lled circles in Fig. 1. You can see that a Gaussian is not a very

satisfactory �t, but that the Lorentzian curve is surprisingly accurate.

Figure 1: Our phenomenological �t to the C

`

's is illustrated here for a standard CDM model with




B

= 0:06 and h = 0:5 (solid line). The points are simply the values ` = 2

N

for N = 1 : : :10 (an

easy way of choosing some points equally spaced in log `). The long-dashed line is the Gaussian

which best �ts the points (although not very well). The short-dashed line is the much better-�tting

Lorentzian (see Eq. (1)).

The choice of �tting function was motivated by the need for simplicity and the

requirement of a gradual rise into the Doppler peaks at ` ' 250 (in CDM models

the main Doppler peak occurs at ` ' 220, with subsidiary peaks at higher ` { we

have �tted all the Doppler peaks with a `one-size �ts all' function). Our chosen

form will not be a good approximation for experiments that lie in the range of `

where the accurate Doppler peaks are dropping o�. However, all such experiments

are currently only giving upper limits, and none provide very tight constraints on

CDM-like models (see Fig. 2). Our approach will also tend to slightly overestimate

the power in experiments that have some sensitivity around the �rst Doppler trough



(causing our �t to prefer a lower peak height). However, most experimental points

lie on the rise of the main Doppler peak, where our �t is extremely good.

To make contact with another possibility that has been discussed in the litera-

ture, we will also consider `power law spectra', or Sachs-Wolfe 
uctuations arising

from non-
at power spectra. For these models

28;24;1

,
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3. Di�erent Experimental Results

In order to use the results from several experiments at once, we need to convert

them into a consistent system. The most straightforward and robust datum from

each experiment is the total measured power. A simple parameterization of this

power, integrated across the window function (bandpass) of the experiment is given

by the amplitude of a 
at power spectrum* `(`+ 1)C

`

= constant = (24�=5) Q

2


at

,

required to reproduce the measured power:

Power =

1

4�

1

X

`=2

24�

5

(2`+ 1)

`(`+ 1)

Q

2


at

W

`

: (3)

whereW

`

is the (diagonal) window function of the experiment (see e.g. ref. 30). The

constants in this expression have been chosen so that Q


at

has the same meaning

as the more familiar

31

Q

rms�PS

for n = 1. Note also that Q


at

is chosen to be

independent of the observer's conventions for �T .

Our estimated values for di�erent experiments are listed in Table 1 and shown

in Fig. 2. Each data point represents a �t for the amplitude of a 
at spectrum

convolved with the window function of each experiment. The vertical error bars

are 1� errors on this power, while the horizontal lines show the widths of the

window functions at half peak height (and so should not be regarded as error bars),

with some liberties taken with the way we have plotted COBE and FIRS. For the

error bars on the `power', we have taken them to be symmetric in Q


at

, or the

same quantity as a `�T=T ' measurement. Many published experimental error bars

are quoted as symmetric, others we have symmetrized. The most sensible way of

plotting the experimental results is thus to choose a linear y-axis, which keeps the

error bars symmetric and allows you to judge the signi�cance of each detection.

On the other hand it makes more sense to plot a theory in terms of the computed

(�T=T )

2

quantity. However, this squaring exaggerates the size of the experimental

error bars. A logarithmic y-axis allows you to slide a theory up and down to �nd

* We have tried to select the most transparent notation for this amplitude, bearing in mind that it is the

expected quadrupole you would get if you put a 
at spectrum through the experimental window function

(and not a standard CDM, or even pure Sachs-Wolfe spectrum, which would depend on scale). The idea of

quoting the power through the window has also been discussed by Bond

9;29

.



the best-�t normalization, but again makes it hard to interpret error bars. These

considerations make it di�cult to usefully plot data and theories together!

Table 1: Summary of scales and predictions for current experiments. The parameters `

0

, `

1

and `

2

are the peak and the lower and upper half-peak points of the window function, respectively. Q


at

is

the best-�t amplitude for a 
at spectrum through the window function, quoted at the quadrupole

scale. The error bars are �1�.

Experiment `

0

`

1

`

2

Q


at

(�K)

COBE [33] { { 18 19:9� 1:6

FIRS [35] { { 30 19� 5

Ten. [7] 20 13 30 26� 6

SP91 [48] 66 32 109 14� 5

SK93 [42] 71 44 102 21� 7

Pyth. [37] 73 50 107 37� 12

ARGO [44] 107 53 180 25� 6

IAB [45] 125 60 205 61� 27

MAX{2 (
UMi) [50] 158 78 263 74� 31

MAX{3 (
UMi) [39] 158 78 263 50� 11

MAX{4 (
UMi) [51] 158 78 263 48� 11

MAX{3 (�Peg) [38] 158 78 263 19� 8

MAX{4 (�Her) [52] 158 78 263 39� 8

MAX{4 (�Dra) [52] 158 78 263 39� 11

MSAM2 [41] 143 69 234 40� 14

MSAM3 [41] 249 152 362 39� 12

There are a number of issues that arise in dealing with these data. Space prevents

us from going into every detail, but below we discuss some of the main points. We

have chosen to use only quoted detections (see Table 1), and to neglect experiments

that have given upper limits (we plot three smaller-scale upper limits in Fig. 2,

but do not use them in our �t). Generally the error bars on these upper limits

are large enough that they would not a�ect our results

4

. We have represented the

COBE experiment by a single point, when it in fact has information for a range of

`

32;33

. This is also true of the FIRS experiment

34;35

. Furthermore, since we are

�tting to the Q for a 
at model, it is appropriate for us to take the COBE

33

and

FIRS

35

results for an n = 1 spectrum. For these experiments we plot the data point

mid-way (logarithmically) to the half power ` of the window function. The position

of the points on the plot is a visual aid to the scale these experiments probe; in

analyzing the data we use the full window function as described below.

There is also the question of the `sample variance'

36

of the experiments, i.e. the

fact that looking at only part of the sky a�ects the error bar when comparing with a

theoretical model. If the correlations between experimental data points are included

in a proper statistical analysis (which is the case for all the numbers we consider)

then the �nal result will have both the cosmic and sample variance fully included.

We have also included the quoted calibration error for all the numbers where it was

not included in the original papers, by adding it in quadrature to the quoted error

bars.



In computing Q


at

for the experiments, we have used whatever data were pub-

licly available. For Python

37

and MAX{3

38;39

, we �tted the given data to a 
at

spectrum. For COBE and FIRS, the results quoted by the groups come directly

from a �t to a form like Eq. (3). For the Tenerife

40;7

experiment we used the pub-

lished Harrison-Zel'dovich normalization.

For the MSAM

41

, Saskatoon/SK93

42

, ARGO

43;44

and the Italian Antarctic

Base

45

data, we scaled from the quoted results for a Gaussian Autocorrelation

Function (GACF). By this we mean that we calculated the power represented by a

GACF of the quoted amplitude, and matched it to our chosen measure of power:

Q
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Although the GACF is not a good approximation for the sky 
uctuations, the

power estimated in this way will not be too far wrong; it also has the virtue of

taking into account the sample variance, since the correlations are done at least

approximately correctly (see e.g. ref. 4 for a comparison of GACF and CDM cor-

relation functions with and without beam chopping). Note also that by using Q


at

as our measure of power, the normalization of the window functions cancels in the

conversion C

1=2

0

!Q


at

and in our �t. Further details of this conversion can be

found in our companion paper

46

.

We also chose to use the results from the full MSAM data, since we see no

compelling reason to identify any point sources in the scans (see ref. 47). If these

`sources' are in fact removed, the two points (for the single- and double-di�erencing

analyses) move roughly to the positions of the lower error bars. This would decrease

the signi�cance of our �nal results, although not greatly.

For SP91 we use the 13-pt scan

48

and neglect the upper limit from the 9-pt

scan

49

, which has little constraining power

4

. We performed a �t to the quoted data

including correlations. It appears that combining the data from the two scans would

lead to a higher value than for the 13-pt data alone

9

, so choosing only the 13-point

scan is conservative in this regard.

The MAX experiment also presents complications, since there are now six avail-

able scans. The �Peg data set is known to be contaminated and gives a lower signal

than the others, also there is a question as to whether the error bar accounts for all

the error in the dust subtraction. However in the absence of a new analysis of these

data, we decided that it would be a statistically dangerous thing to remove a data

set just because it seemed disparate. We adopted a general philosophy that the

systematic errors in these experiments are potentially large (so that some results

will turn out to have been dominated by some non-primordial e�ect), but that once

there are enough pieces of experimental data then a few discrepant points should

carry little weight. For the earlier (
ight 2)

50

and the newer (
ight 4)

51;52

MAX

data, we scaled from the quoted GACF results, after symmetrizing the rather pos-

itively skewed error bars. For the third 
ight `GUM' (i.e. 
UMi) scan we use the

results of ref. 6. For the purposes of plotting and �tting the data we add the results



in quadrature, except for the discrepant �Peg scan, which we plot separately. This

is statistically reasonable since the all the results except �Peg are consistent

52

. We

lose nothing by averaging the consistent data sets at the same angular scale; how-

ever including the �Peg scan in the average would be bad, since it would make

the �nal �t appear better than it should. In fact the window functions for 
ights

2 through 4 of the MAX experiment are not identical, but we feel that they are

similar enough that we can treat them with an `average' window function without

introducing signi�cant error. We have attempted to deal with the problem of the

beam-size varying with frequency for the fourth 
ight, by carefully calculating the

separate C

1=2

0

to Q


at

conversions for each frequency and then taking a weighted

average of the results. A full comparison of the MAX data with models still needs

to be done, but we doubt that the �nal result will di�er by more than a few �K

from the values we have adopted.

We present our estimates for the power (Q


at

in �K) obtained from each set

of experimental data in Table 1. We also list the peak and half peak points of

the window function for each experiment. These data are plotted in Fig. 2, along

with three of the tightest (2�) upper limits at somewhat smaller angular scales.

The upper limits are for the White Dish

53

, OVRO (NCP program

54

) and ATCA

55

,

and have been calculated from the quoted GACF results. In Fig. 2, if the power

spectrum was actually Harrison-Zel'dovich, then the points would scatter about a

horizontal line on this plot. The fact that there appears to be a trend for the

degree-scale experiments to lie above such a line is what we will examine next.

4. How High is the Doppler Peak?

Taking the experimental measures of power from Table 1 and the toy-model

power spectrum of Eq. (1), we can employ a likelihood analysis using the data to

�t the two parameters, i.e. the overall normalization and the height of the Doppler

peak. We should point out that we do not just �t a curve through the points of

Fig. 2, which would not be an accurate procedure. The proper method is to convolve

the �tting function with the window function for each experiment and compare the

power with that obtained from the 
at spectrum. This de�nes the set of predicted

Q's for each theory, which can be compared with the data in Table 1. We emphasize

this so that the reader understands that the Q


at

vs. ` plot should be regarded as

a visual aid and is not directly what we used to calculate the �ts.

A cursory glance at Fig. 2 is enough to realize that there are at least one or

two of the data points which are not in very good agreement with the others, for

any model, given the quoted error bars. It may be considered that this is evidence

for non-Gaussian 
uctuations (see e.g. ref. 56), but we believe it is more likely to

be telling us that these are hard experiments, which have to contend with many

technical di�culties, systematic errors (e.g. calibration errors at the 10% level) and

possible foreground contamination. One way to view the data points is that their

error bars have been underestimated to some extent. However, we �nd that the



best �t Doppler model is allowed at the 90%CL. This shows that there is in fact

no strong statistical reason to increase the error bars on the points { the data are

more consistent than many people have been suggesting.

Figure 3: Contours of �

2

for a �t to the data of Table 1 using our phenomenological curve from

Eq. (1). The cross marks the best �t (Q


at

= 19�K, A

D

= 3:4), while the contours mark 68% and

95%CL regions for the �t parameters.

Having established that a `good' �t exists, we will henceforth, following the

Bayesian approach, ignore the goodness of �t and scale our likelihood function to

unit integrated probability. A contour plot of the allowed range in Q


at

and A

D

is shown in Fig. 3. The power spectrum normalization is well �xed by large scale

measurements. To focus on the Doppler peaks, we show in Fig. 4 the `marginal

likelihood' or L(C

1=2

2

; A

D

) integrated over C

1=2

2

(with uniform prior). The best �t

is A

D

' 3 and the mean ' 4. We can also ask what is the best �t for a straight

power law and for a tilted CDM spectrum. The marginal likelihoods are shown in

Fig. 5, both scaled to have unit area. The best �tting power law model is a worse

�t than our best �tting \Doppler" model, and is (just) ruled out at the 95%CL.

5. Conclusions

So what does this mean? The existence of the Doppler peaks �rst of all implies

that reionization was relatively unimportant for CMB anisotropies, i.e. that the

Thomson scattering optical depth since the Universe became ionized is not very

signi�cant (see later). This is perhaps not unexpected in cosmological models like

CDM, which have little small-scale power to collapse and reheat the IGM at early

epochs. But the existence of the Doppler peaks is also a con�rmation of a quite

fundamental theoretical prediction. The Doppler peak(s) occurs at approximately

the position and size predicted many years ago for models with a few percent baryons

with dark matter added to make up critical density, and a roughly scale-invariant

primordial power spectrum. There were in fact baryons at z � 1000! They were



once tightly coupled and oscillating with the photons, up until recombination at z '

1000. And the amplitude of the oscillations is consistent with the nucleosynthesis

constraint on 


B

of a few percent.

Figure 4: The marginal likelihood, or likelihood integrated over C

1=2

2

, as a function of A

D

for our

�tting form in Eq. (1). The likelihood has been normalized to have unit area. A �t with no Doppler

peak (A

D

= 0) is ruled out at 95%CL.

What about `non-standard' scenarios? In texture models the peaks are gen-

erally absent

56

, both because of the lower velocities in such models and because

they generally invoke reionization. However, reionization is not necessary in such

models. Without it we would probably expect Doppler peaks, although no explicit

calculation has so far been done

57

. Certainly the microwave background would be

expected to be highly non-Gaussian on such angular scales (roughly the horizon

size at last scattering) in texture models. It seems that the similarity in 
uctua-

tions in the three dust-free regions scanned by the MAX experiment may already

be evidence against such non-Gaussian models. The predictions of defect models

will also depend on the choice of defect, for example with cosmic strings as seeds

the anisotropies would not necessarily be non-Gaussian until much smaller angular

scales

58

. But obviously time will tell how these models fare!

Also, the fact that our �tting formula, which has a plateau for low ` before rising

into the peak, manages to pass through much of the data could be taken as evidence

against an open universe isocurvature model (such as BDM/PIB/PBI). This model

rises quickly into the Doppler peaks and is not 
at at large scales

59;27

. The model

is rather hard to rule out, since it has so many free parameters (' 8), but detailed

comparison with CMB results in the near future will be a critical test.



Figure 5: The marginal likelihood, or likelihood integrated over C

1=2

2

, as a function of n for an

n 6= 1 Sachs-Wolfe spectrum (dotted) and for a tilted CDM model with 


B

= 0:10 (dashed). Both

likelihoods have been normalized to unit area.

In the context of an in
ationary dark matter-based theory, we can also ask for

information on another parameter: the primordial spectral slope, n. Unambiguously

determining this parameter is well beyond the scope of this work, although the `peak'

in the data at ` ' 250, in combination with the COBE measurement, allows us to

put a lower limit on n. Such a lower limit is most conservative if we ignore the

possibility of gravity waves. From Big Bang Nucleosynthesis we `know' that 


B

cannot be arbitrarily large. In fact a value of 


B

as large as 10% seems unlikely.

Since the Doppler peak height increases with 


B

, a lower limit on the tilt of such a

model is a conservative lower limit for any model with a more reasonable value of




B

. From Fig. 4 we see that the CMB data alone appear to require n > 0:7 at the

95%CL, even for such a high 


B

, which is competitive with combinations of large

scale CMB and LSS data (n

�

>

0:7, e.g. ref. 60).

As an alternative to limiting n, we can obtain a crude limit on the ionization

history of the universe. Recall

61

that in a reionized universe the degree scale tem-

perature anisotropies are reduced, relative to those in the standard model, by a

factor e

��

. If we compare this with the amount that degree scale anisotropies are

reduced in a tilted model, `

(1�n)=2

, we can use our limit above to �nd �

�

<

0:7. As-

suming, as above, that 


B

= 0:10 and with full ionization (x

e

= 1) at the present

epoch, we �nd that the universe had to have been neutral between redshifts ' 50

and 1000.

Knowledge of other cosmological parameters will a�ect our �ts to some extent.

For example if 


0

< 1, � > 0, n 6= 1, T=S > 0 etc., then the height of the Doppler

peaks will change relative to a COBE normalization. However, the indications

are that none of these e�ects are so important as to invalidate our results. More



rigorous and constraining �ts could clearly be done, but we feel that the current

data do not warrant a complicated multi-parameter �t. In particular we have

avoided the temptation to derive any speci�c cosmological parameter instead of

our phenomenological amplitude A

D

. However, we cannot entirely resist saying

that A

D

= 3{4 would correspond to 


B

= 1{3% for a standard CDM model with

h =

1

=

2

. But this result is really quite meaningless as a measurement of 


B

since it

depends sensitively on what is assumed for the other cosmological parameters.

The potential for doing cosmology with the spectrum of microwave background

anisotropies is �nally being realized. The COBE detection allowed us to normalize

models, and now the detections at degree-scales are indicating the reality of Doppler

peaks of some sort. The task for the immediate future will be to determine exactly

where and how high they are. The position of the main Doppler peak gives an

exciting possibility of being able to `prove' that the Universe is open; if it is at

` ' 500 we will have to take seriously the idea that 
 ' 0:2 say (although it will be

more di�cult to `prove' that 
 = 1 if it is at ` ' 220). The height of the Doppler

peaks will be an important constraint on a combination of cosmological parameters,

perhaps mainly 


B

, although determining the size of the subsidiary peaks may give

us information on the Hubble parameter. In the more distant future, after we

have accurately charted the Doppler peaks and have other cosmological evidence

for constraining H

0

, � and the reionization history, there is a chance of being able

to detect a component of gravity waves as well as measuring n for the scalars. This

will lead to some fundamental constraints on the physics of the early Universe.

However, for now the determination of more `classical' cosmological parameters is

an ambitious enough goal!
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Figure 2 (colour plate):The `power' in each experiment as a function of scale (multipole ` � �

�1

).

Detections from 10 experiments are plotted, with the MSAM andMAX experiments each represented

by two separate points. The vertical error bars are �1�, while the horizontal bar represents the half

power range of the experimental window function. There are also three smaller-scale upper limits

plotted at the 2� level. It is possible to sense a general `upness' in the area around ` ' 100, which

we claim is evidence for a Doppler peak in the radiation power spectrum.




