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Abstract

Primordial gravitational waves are created during the de Sitter phase of an

exponentially-expanding (inflationary) universe, due to quantum zero-point

vacuum fluctuations. These waves produce fluctuations in the temperature of

the Cosmic Background Radiation (CBR). We calculate the multipole mo-

ments of the correlation function for these temperature fluctuations in a

spatially-closed Friedman-Robertson-Walker (FRW) cosmological model. The

results are compared to the corresponding multipoles in the spatially-flat case.

The differences are small unless the density parameter today, Ω0, is greater

than 2.
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I. INTRODUCTION

Inflationary models of the early universe contain a well-studied mechanism which creates
primordial fluctuations. The fluctuations originate as quantum-mechanical zero-point fluc-
tuations during the exponentially-expanding de Sitter phase. By a process which may be
variously described as particle (graviton) production, non-adiabatic amplification, or super-
radiant scattering, these fluctuations become large in the present epoch. As the universe
expands, these perturbations are redshifted to longer wavelengths and amplified; during
the present epoch these perturbations typically persist over a range of wavelengths λ from
10−27 cm < λ < 102 cm. For a review of perturbations in inflationary models, see Kolb and
Turner [1].

The perturbations of the gravitational field may be decomposed into scalar, vector and
tensor components. The tensor perturbations considered in this paper may be thought of
as gravitational waves in a classical description, or as spin-two gravitons in the quantum
mechanical description used in the present work. The modes of interest have present-day
frequencies in the range from 10−17 Hz to 10−12 Hz and have extremely large occupation
numbers. Hence they may also be thought of as classical gravitational waves - the two
descriptions coincide. The gravitons are created during the de Sitter phase of rapid expansion
by the mechanism originally proposed by Parker; the same mechanism creates particles near
a black hole or in any other region where the spacetime curvature is large and particle
creation is not forbidden by global symmetries or conservation laws. A simple calculation
showing how a potentially-observable spectrum of gravitons is created in inflation is given
by Allen [2].

The tensor perturbations of the gravitational field produce temperature fluctuations in
the CBR, via the Sachs-Wolfe effect. The expected values of the resulting temperature
fluctuations are described by the angular correlation function

C(γ) ≡
〈

0
∣

∣

∣

∣

δT

T
(Ω)

δT

T
(Ω′)

∣

∣

∣

∣

0
〉

=
∞
∑

l=1

(2l + 1)

4π
〈a2l 〉Pl(cos γ). (1.1)

Here δT/T (Ω) is the fractional temperature fluctuation in the CBR at point Ω on the
observer’s celestial sphere, γ is the angle between Ω and Ω′, and the quantum expectation
value is evaluated in the initial state of the universe. The multipole moments 〈a2l 〉 are
generally used to describe C(γ).

In a recent paper [3] the expected multipole moments 〈a2l 〉 due to tensor perturbations
are calculated in a spatially flat k = 0 FRW inflationary model. That paper contains a
detailed review of previous work on this problem, a comprehensive description of the physical
motivation, and a detailed and self-contained “first-principles” calculation. The present work
repeats that calculation in the spatially-closed (k = +1) case. The only previous work on
tensor perturbations in the spatially-closed case is that of Abbott and Schaefer [4]. Note
that the angle brackets around a2l serve as a reminder that we are calculating the expected

or expectation values of these multipole moments, not necessarily the values that they might
have in any given realization of the universe.

The calculation in this paper follows the previous work by Allen and Koranda [3] very
closely. In the present work, we will assume that the reader is familiar with that earlier
paper, and present only the bare minimum of detail required to generalize the work to
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the k = +1 case. In Section II we present the k = +1 cosmological model and Sachs-
Wolfe effect. Section III gives the form of the metric perturbation operator for linearized
gravitational fluctuations. Section IV combines these results to obtain an analytic form
for the multipole moments 〈a2l 〉. Section V details the method by which these multipole
moments were evaluated numerically, and Section VI outlines the results and conclusions of
that numerical study.

Throughout this paper, we use units where the speed of light c = 1. However for clarity
we have retained Newton’s gravitational constant G and Planck’s constant h̄ explicitly. We
choose function branches so that

√
x ≥ 0 and arcsin(x) ∈ [−π/2, π/2].

II. THE BACKGROUND SPACE-TIME AND THE SACHS-WOLFE EFFECT

The spacetime considered here has the topology R × S3 of the static Einstein cylinder,
and is covered by coordinates x0 = t, x1 = χ, x2 = θ, x3 = φ with the ranges χ, θ ∈ [0, π],
and φ ∈ [0, 2π). The time coordinate t ranges over a connected open subset of the real line,
which we will specify below. The spatial coordinates cover a three-sphere of radius a(t); we
refer to this function as the cosmological scale factor. The metric of the spacetime is given
by

ds2 = a2(t)
(

−dt2 + dχ2 + sin2 χ(dθ2 + sin2 θdφ2) + hij(t, χ, θ, φ)dx
idxj

)

. (2.1)

The metric perturbation hij is assumed to be small; in its absence the spacetime metric is
that of a homogeneous and isotropic k = +1 FRW model. With our choice of gauge for the
tensor metric perturbations, the indices i, j = 1, 2, 3 run only over the spatial coordinates.

In order to completely specify the cosmological model, we need to define the cosmological
scale-factor a(t). The cosmological model is completely defined by the free parameters given
in Table I. Note that we have assumed that the universe is currently expanding, since we
require H0 to be positive. The density parameter

Ω0 =
8πGρ0
3H2

0

(2.2)

is the ratio of the present-day energy-density ρ0 to the critical energy density required to
produce a spatially-flat k = 0 universe.

A. The Matter-Dominated (Dust) Phase

In our cosmological model, the universe is assumed to pass through three “phases”,
appropriate to a simple inflationary model. We let t = 0 denote the present time. The most
recent phase was a matter-dominated period of expansion, described by the scale factor

a(t) = A sin2(t/2 +B) for teq < t < 0. (2.3)

Here the constants A,B, teq are defined by
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A =
1

H0
Ω0(Ω0 − 1)−3/2,

B = arcsin

√

Ω0 − 1

Ω0
, and (2.4)

teq = 2 arcsin

√

Ω0 − 1

Ω0(1 + Zeq)
− 2 arcsin

√

Ω0 − 1

Ω0

.

During this matter-dominated phase, the stress-energy tensor is that of a perfect fluid, with
zero pressure and an energy density proportional to a−3(t). We assume (as indicated in
Table I) that the surface of last scattering is located within the matter-dominated phase.
Thus, the time of last scattering,

tls = 2 arcsin

√

Ω0 − 1

Ω0(1 + Zls)
− 2 arcsin

√

Ω0 − 1

Ω0
, (2.5)

is given by a formula identical in form to (2.4) for teq, and satisfies teq < tls < 0.

B. The Radiation-Dominated Phase

Preceding the matter-dominated phase of expansion is a radiation-dominated phase of
expansion. During this phase the scale factor is

a(t) = C sin(t+D) for tend < t < teq. (2.6)

Here the constants C,D, tend are defined by

C =
1

H0
Ω

1/2
0 (Ω0 − 1)−1(1 + Zeq)

−1/2,

D = 2 arcsin

√

Ω0 − 1

Ω0
− arcsin

√

Ω0 − 1

Ω0(1 + Zeq)
, and (2.7)

tend = −2 arcsin

√

Ω0 − 1

Ω0
+ arcsin

√

Ω0 − 1

Ω0(1 + Zeq)
+ arcsin

√

√

√

√

(Ω0 − 1)(1 + Zeq)

Ω0(1 + Zend)2
.

During this radiation-dominated phase of expansion the energy density is proportional to
a−4(t) and the pressure is equal to 1/3 of the energy-density. This phase is preceded by a
de Sitter phase.

C. The Initial de Sitter (Inflationary) Phase

In our coordinate system, the de Sitter (exponentially expanding, inflationary) phase has
scale factor

a(t) =
E

sin(t + F )
for t < tend. (2.8)

Here the constants E and F are defined by
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E =
−1

H0
Ω

−1/2
0 (1 + Zeq)

1/2(1 + Zend)
−2, and (2.9)

F = 2 arcsin

√

Ω0 − 1

Ω0
− arcsin

√

Ω0 − 1

Ω0(1 + Zeq)
− 2 arcsin

√

√

√

√

(Ω0 − 1)(1 + Zeq)

Ω0(1 + Zend)2
.

Note that the constant E < 0 because sin(t + F ) < 0 during the de Sitter phase. During
the de Sitter phase, the energy density is a constant

ρdeSitter =
3

8π
E−2 = ρ0

(1 + Zend)
4

1 + Zeq
=

3H2
0Ω0

8πG

(1 + Zend)
4

1 + Zeq
(2.10)

and the (negative) pressure is −ρdeSitter.

D. Properties of the Cosmological Model

It may be easily verified that the scale factor and its derivative w.r.t. time t are both
continuous, however the second derivative is discontinuous. This is because in our simple
inflationary model, the energy-density is a continuous function but the pressure changes
discontinuously at the beginning and end of the radiation-dominated epoch.

The de Sitter phase “begins” at early times when the time coordinate t approaches the
value −π − F . At this early time the cosmological scale factor is very large (approaching
infinity as t → −π − F ). As the time coordinate increases, the scale factor decreases,
eventually reaching a minimum value when t = tmin = −π/2 − F . After this time, the
scale factor begins to increases again (exponentially in physical time). One might find it
reasonable to demand that the universe be expanding at time tend when the inflationary
phase ends. This is the case if and only if tmin < tend, which implies that the free parameters
given in Table I must satisfy the inequality

√

(Ω0 − 1)(1 + Zeq)

Ω0

< 1 + Zend. (2.11)

It is also easy to determine the “amount” of inflation that takes place. The amount that
the universe has expanded between time tmin, when the spatial sections have their smallest
extent, and time tend, when the inflationary phase terminates and the radiation-dominated
phase begins, is

a(tend)

a(tmin)
= (1 + Zend)

√

Ω0

(Ω0 − 1)(1 + Zeq)
. (2.12)

Comparison with (2.11) shows the obvious - if the universe is expanding at the end of the
de Sitter phase, then the amount of inflationary expansion (2.12) is greater than unity. In
typical inflationary models, the free parameters have values of order H0 between 50 and 100
Km/s-Mpc, Ω0 < 2, 100 < Zls < 1500, 2× 103 < Zeq < 2× 104, and 1026 < Zend.

There is a sense in which the spatially-closed inflationary models are not “natural.” One
of the principal motivations which led to the development of the inflationary paradigm was
the desire to solve the so-called “horizon problem.” As we will now show, this problem is
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only solved (for reasonable choices of the cosmological parameters) if Ω0 < 2. Thus, while
it is technically consistent to use the results obtained in this paper for any value of Ω0 > 1,
one must bear in mind that the cosmological model, for large values of Ω0, runs counter to
the spirit of inflation.

The horizon problem may be stated in terms of a set of points C, which is the intersection
of the past horizon of an observer today with the surface of last scattering. The horizon
problem is “solved” if C lies within the causal domain of influence of either (1) a point on
the initial singularity, in a big bang model, or (2) a point on the surface at t = tmin where
inflation “begins”, in a model with no initial singularity. Thus, in our model, which is of
type (2), the horizon problem is solved if and only if

|t0 − tls| < |tls − tmin|
⇐⇒ (2.13)

2 arcsin
√

Ω0−1
Ω0

− 4 arcsin
√

Ω0−1
Ω0(1+Zls)

+ arcsin
√

Ω0−1
Ω0(1+Zeq)

+ 2 arcsin
√

(Ω0−1)(1+Zeq)
Ω0(1+Zend)2

< π
2
.

For reasonable cosmological models, the terms containing Zls, Zeq, and Zend may be ne-
glected. The horizon problem is then solved if and only if

arcsin

√

Ω0 − 1

Ω0
<
π

4
⇐⇒ Ω0 < 2. (2.14)

While we present results for any value of Ω0, the cosmological model itself should be viewed
with some suspicion if Ω0 is much larger than unity.

The final result of this paper are values of the dimensionless quantities

Ml ≡
ρPlanck
ρdeSitter

l(l + 1)

6
〈a2l 〉. (2.15)

Here ρPlanck is the Planck energy-density ρPlanck = 1
h̄G2 ≈ 5× 1093 gm/cm3. It will turn out

that Ml is independent of H0, and depends only upon the dimensionless quantities Ω0, Zls,
Zeq, and Zend. This is because ρdeSitter, and 〈a2l 〉 are both proportional to H2

0 . In addition,
if Zend is sufficiently large then the Ml are also independent of its value.

E. The Sachs-Wolfe Effect

If the metric perturbation hij vanishes and the temperature of the CBR on the surface
of last scattering is constant, an observer today would see exactly the same temperature at
each point on the celestial sphere, and C(γ) would vanish. However the metric perturbations
will in general break the rotational symmetry and perturb the energy of the photons. This
results in a temperature fluctuation which varies from point to point on the celestial sphere;
the fluctuation may be calculated in the same way as for a spatially-flat Universe, given in
[5].

We assume that the observer is located at t = 0, and at “radial” coordinate χ = 0.
(Because the coordinate system is singular at χ = 0 every value of θ, φ corresponds to the
same space-time point at χ = 0, so their values are irrelevant when χ = 0.) If the observer
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looks out at a point Ω on the celestial sphere, she observes photons that arrive, in the
unperturbed metric, along the null geodesic path

t(λ) = λ χ(λ) = |λ| = −λ θ(λ) = θΩ φ(λ) = φΩ. (2.16)

In these equations, θΩ and φΩ are the angular coordinates of the point Ω on the celestial
two-sphere. We have chosen the (non-affine) parameter λ along the null geodesic path to
run through the range tls ≤ λ ≤ 0 between the time of last scattering and the observation
today.

In the presence of the metric perturbation hij the fractional temperature fluctuation
observed at point Ω on the celestial sphere is

δT

T
(Ω) = −1

2

∫ 0

tls
dλ

(

∂hχχ
∂t

)

(t(λ), χ(λ), θ(λ), φ(λ)). (2.17)

As indicated in this formula, the partial derivative w.r.t. the time coordinate t is taken
before setting the coordinates equal to the values which they take along the unperturbed
null geodesic path.

III. THE METRIC PERTURBATION OPERATOR

The classical metric perturbation hij may be replaced with a quantum field operator.
The justification for this is given in our detailed paper on the spatially-flat case [3] and
will not be repeated here. The basic idea is that the inflationary epoch redshifts away all
the perturbations, with the exception of the zero-point quantum fluctuations. Hence we
calculate the expectation value of δT

T
(Ω) δT

T
(Ω′) in the vacuum state |0〉 appropriate to the

initial de Sitter state.

A. Mode function expansion of Metric Perturbation Operator

The quantum field operator (which we denote with the same symbol hij as the cor-
responding classical perturbation) may be expanded in terms of a complete set of mode
functions. As was originally shown by Ford and Parker [6], in an FRW cosmological model,
the time-dependence of these mode functions is the same as that of a massless minimally-
coupled scalar field. The field operator is

hij(t, χ, θ, φ) = (3.1)
∞
∑

L=2

L
∑

l=2

l
∑

m=−l

[

ψLlm(t)T
(s;Llm)
ij (χ, θ, φ)cLlm + ψ∗

Llm(t)T
∗(s;Llm)
ij (χ, θ, φ)c†Llm

+ ψLlm(t)T
(v;Llm)
ij (χ, θ, φ)dLlm + ψ∗

Llm(t)T
∗(v;Llm)
ij (χ, θ, φ)d†Llm

]

.

In this expression, the sum is over a complete set of rank-two symmetric transverse traceless
tensors T

(Llm)
ij . These tensor modes are defined on a unit-radius sphere S3 and are given

explicitly by Higuchi [7]. (Note however a typo [8] in one of the formulae which does not
affect the results which we need.) Henceforth we will denote the triple sum that appears in
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(3.1) by
∑

Llm without explicitly indicating the ranges of summation. (The temperature T

can always be distinguished from the tensor modes T
(Llm)
ij , since the latter is always written

with indices.)
The graviton has two possible polarization states, labeled s and v in this expansion, each

of which has its own set of tensor modes. The modes are labeled by the three integers L,
l, and m. (Note that Ford and Parker’s [6] index n = L + 1 in our notation.) Associated
with the s-polarization modes are creation and annihilation operators cLlm and c†Llm, and
associated with the v-polarization modes are creation and annihilation operators dLlm and
d†Llm. The only non-vanishing commutation relation among this infinite set of operators is
the relation

[cLlm, c
†
L′l′m′ ] = [dLlm, d

†
L′l′m′ ] = δLL′δll′δmm′ (3.2)

where δ denotes the Kronecker delta function.

B. The Transverse-Traceless-Symmetric Tensor Harmonics

The tensor modes defined by Higuchi [7] obey the normalization condition

∫ π

0
dχ sin2 χ

∫ π

0
dθ sin θ

∫ 2π

0
dφT

(p;Llm)
ij T (p′;L′l′m′)

rs P irP js = δLL′δll′δmm′δpp′. (3.3)

Here, the polarization indices p and p′ take on either of the values “s” or “v”. The integral
is over the unit-radius three-sphere, and P ir is the inverse of the metric on the unit-radius
three-sphere:

Pijdx
idxj = dχ2 + sin2 χ(dθ2 + sin2 θdφ2). (3.4)

Note that the measure that appears in the normalization integral (3.3) is the usual volume

element defined by
√

detPij. The Sachs-Wolfe effect (2.17) is produced only by the χχ

component of hij . Because T (v;Llm)
χχ ≡ 0, only the “s” polarization state contributes to the

temperature fluctuation. The only component needed is thus

T (s;Llm)
χχ (χ, θ, φ) ≡ Rl

L(χ)Ylm(θ, φ). (3.5)

The Ylm(θ, φ) are standard scalar spherical harmonic functions on the two-sphere [9]. The
“radial” dependence is given by

Rl
L(χ) ≡

√

√

√

√

(l − 1)l(l + 1)(l + 2)(L+ 1)(L+ l + 1)!

2L(L+ 1)2(L+ 2)(L− l)!
(sinχ)−5/2 P

−(l+1/2)
L+1/2 (cosχ), (3.6)

where the functions P
−(l+1/2)
L+1/2 (z) are associated Legendre functions [9]. In Section V we

explain how these functions may be easily evaluated.
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C. Normalization Condition for Wavefunctions

The quantum field operator hij obeys canonical commutation relations which can be
derived from the quadratic part of the gravitational action. We have already specified the
normalization of the creation/annihilation operators (3.2) and of the spatial part of the
mode functions (3.3). The commutation relations for hij then determines the normalization
of the time part ψLlm(t) of the graviton wavefunctions. The details of this procedure are
given in [6] and yield a normalization condition

ψLlm(t)
d

dt
ψ∗
Llm(t)− ψ∗

Llm(t)
d

dt
ψLlm(t) = 32iπh̄Ga−2(t). (3.7)

(Note that the normalization condition given in equation (3.3) of Ford and Parker [6] contains
a minor typo [10].)

D. Choice Of An Initial (Vacuum) State

If one defines a Fock vacuum state by the property that it is annihilated by all of the
operators cLlm and dLlm, then the choice of vacuum state is really determined by the choice
of the mode functions ψLlm(t). For the reasons given in [3] we choose these mode functions
to be those which correspond to the unique de Sitter invariant vacuum state |0〉 during the
initial inflationary stage whose two-point function has Hadamard form.

E. Wavefunction During The De Sitter Phase

As shown in equation (2.18) of Ford and Parker [6] the mode functions obey the
minimally-coupled massless scalar wave equation

[

d2

dt2
+

2

a

da

dt

d

dt
+ L(L+ 2)

]

ψLlm(t) = 0. (3.8)

There is a slight subtlety: it is impossible to define a de Sitter invariant Fock vacuum state for
the minimally-coupled massless scalar field [11]. However it was shown by Allen and Folacci
[12] that the difficulty only arises for the L = 0 mode. In the case of the gravitational field
operator, the L = 0 and the L = 1 modes are both absent; they correspond to “monopole”
and “dipole” dynamical degrees of freedom which are not present in the spin-two case. Hence
in the case of the gravitational field, it is possible to define the desired de Sitter invariant
vacuum state. The corresponding normalized wavefunction during the de Sitter phase is
[2,7,11,12,13,14]

ψLlm(t) = ψL(t) =
1

a

√

16πh̄G

L(L+ 1)(L+ 2)

(

i(L+ 1)− 1

a

da

dt

)

e−i(L+1)t for t < tend. (3.9)

We note in passing that this time-dependent part of the wavefunction depends only upon
L and not upon l and m. (This guarantees that the vacuum state will be invariant under
all rotations of the three-sphere t = constant, which is the subgroup SO(4) of the de Sitter
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group SO(1, 4)0. However the invariance of the state under the de Sitter group SO(1, 4)0
is not obvious from inspection. Here the subscript on SO(1, 4) denotes the part of the
group connected to the identity.) For this reason, from this point on we drop the indices
l, m from the time-dependent part of the wavefunction, denoting ψLlm by ψL. Because
the wave equation (3.8) is a second-order ODE, the solution ψL(t) during the de Sitter
phase completely determines the solution at all later times. The solution at later times is
conveniently written in terms of Bogoliubov coefficients.

F. Wavefunction During The Radiation-Dominated Phase

The epoch that follows the de Sitter epoch is the radiation-dominated phase. One may
write the solution to the wave equation during this phase as

ψL(t) = αrad
L ψrad

L (t) + βrad
L ψ∗rad

L (t) for tend < t < teq. (3.10)

Here, the positive frequency mode during the radiation epoch is defined by

ψrad
L (t) =

1

a

√

16πh̄G

(L+ 1)
e−i(L+1)t for tend < t < teq. (3.11)

The Bogoliubov coefficients are determined by a condition which follows from the wave
equation (3.8): both ψL(t) and its time derivative must be continuous at all times, and in
particular at t = tend. One obtains

αrad
L = (L(L+ 2))−1/2

(

i(L+ 1) +
√

Q− 1− iQ

2(L+ 1)

)

(3.12)

βrad
L =

i

2
(L+ 1)−1(L(L+ 2))−1/2Qe−2i(L+1)tend .

Here Q is the constant defined by

Q =
Ω0(1 + Zend)

2

(Ω0 − 1)(1 + Zeq)
. (3.13)

We stress once again that the solution ψL(t) during the de Sitter phase completely determines

the solution at all later times. In other words the choice of a “positive-frequency” mode

function during the radiation phase is unimportant. Had we picked a different solution to
the wave equation (3.8) to call “positive frequency” then αrad

L and βrad
L would have changed

in such a way as to keep the mode function ψL(t) given in (3.10) unchanged. In similar
fashion, the solution of the wave equation during the radiation phase completely determines
its solution during the matter-dominated phase.

G. Wavefunction During The Matter-Dominated Phase

The wavefunction during the matter-dominated (dust) phase may again be expressed as
a linear combination of the natural positive-frequency solution and its complex conjugate:
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ψL(t) = αLψ
mat
L (t) + βLψ

∗mat
L for teq < t < 0. (3.14)

The positive frequency mode functions during the matter epoch are

ψmat
L (t) =

1

a

√

16πh̄G

(L+ 1)(2L+ 1)(2L+ 3)

(

2i(L+ 1) +
1

a

da

dt

)

e−i(L+1)t for teq < t < 0.

(3.15)

The Bogoliubov coefficients αL and βL are determined (as in the spatially flat case [3]) by
combining the Bogoliubov coefficients for the two different phases.

(

αL βL
β∗
L α∗

L

)

=
(

αL βL
β∗
L α∗

L

)rad (αL βL
β∗
L α∗

L

)mat

. (3.16)

As previously, the Bogoliubov coefficients αmat
L and βmat

L are determined by matching the
positive frequency radiation mode function ψrad

L (t) to the linear combination αmat
L ψmat

L (t) +
βmat
L ψ∗mat

L at time teq. One obtains

αmat
L = ((2L+ 1)(2L+ 3))−1/2

(

−2i(L+ 1) +
√
W − 1 +

iW

4(L+ 1)

)

(3.17)

βmat
L =

−i
4
(L+ 1)−1((2L+ 1)(2L+ 3))−1/2We−2i(L+1)teq .

Here the constant W is given by

W =
Ω0(1 + Zeq)

Ω0 − 1
. (3.18)

We are now in a position to evaluate the multipole moments 〈a2l 〉 of the angular correlation
function C(γ).

IV. MULTIPOLE MOMENTS OF C(γ)

Combining the results of the previous section, one can easily obtain a formula for the
multipole moments of the angular correlation function C(γ). One replaces the metric per-
turbation that appears in the Sachs-Wolfe formula (2.17) with expansion (3.1) of the field
operator. The resulting operator depends upon an angle Ω on the celestial sphere. One then
takes the expectation value of this operator with an identical operator at a different point
Ω′ on the celestial sphere. This yields the correlation function

C(γ) ≡
〈

0
∣

∣

∣

∣

δT
T
(Ω) δT

T
(Ω′)

∣

∣

∣

∣

0
〉

= (4.1)

1
4

∫ 0
tls
dt

∫ 0
tls
dt′

∑

Llm

∑

L′l′m′ ψ̇L(t)ψ̇
∗
L(t

′)Rl
L(|t|)Rl′

L′(|t′|)Ylm(Ω)Y ∗
l′m′(Ω′)

〈

0

∣

∣

∣

∣

cLlmc
†
L′l′m′

∣

∣

∣

∣

0
〉

.

Here γ is the angle between the points Ω and Ω′ on the celestial sphere. Because the Sachs-
Wolfe formula (2.17) involves the time-derivative of the mode function, we have defined
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ψ̇L(t) ≡ dψL(t)/dt, where ψL is the mode function during the matter-dominated epoch,
given in (3.14).

To simplify this expression, first note that the matrix element
〈

0

∣

∣

∣

∣

cLlmc
†
L′l′m′

∣

∣

∣

∣

0
〉

=

δLL′δll′δmm′ . This eliminates the triple sum
∑

L′l′m′. Because the summand is indepen-
dent of the summation index m, one may then explicitly carry out the sum over m using
the addition formula for spherical harmonics, equation (3.62) of reference [15]:

l
∑

m=−l

Ylm(Ω)Y
∗
l′m′(Ω′) =

2l + 1

4π
Pl(cos γ). (4.2)

Because the argument of the Legendre function Pl(z) is the cosine of the angle γ between
the points on the celestial sphere, this shows explicitly that the correlation function depends
only upon γ.

C(γ) =
1

4

∞
∑

L=2

L
∑

l=2

2l + 1

4π
Pl(cos γ)

∫ 0

tls
dt

∫ 0

tls
dt′ψ̇L(t)ψ̇

∗
L(t

′)Rl
L(|t|)Rl

L(|t′|) (4.3)

Comparing this to the definition of the multipole moments (1.1), and noting that the sum-
mation

∑∞
L=2

∑L
l=2 is equivalent to the summation

∑∞
l=2

∑∞
L=l, one immediately obtains a

simple formula for the multipole moment,

〈a2l 〉 =
1

4

∞
∑

L=l

∫ 0

tls

dt
∫ 0

tls

dt′ψ̇L(t)ψ̇
∗
L(t

′)Rl
L(|t|)Rl

L(|t′|) =
1

4

∞
∑

L=l

|αLI
l
L + βLI

l
L

∗|2. (4.4)

The complex quantity I lL is what remains of the integral of the mode function along the
radial null geodesic path.

I lL ≡
∫ 0

tls

dtRl
L(|t|)

d

dt
ψmat
L (t) (4.5)

Note that we have assumed (as is implied in Table I) that the surface of last scattering lies
within the matter-dominated epoch; the positive frequency mode function during the matter
phase is given by (3.15). The Bolgoliubov coefficients are given by (3.16)

αL = αrad
L αmat

L + βrad
L β∗mat

L and βL = αrad
L βmat

L + βrad
L α∗mat

L , (4.6)

where the Bolgoliubov coefficients for the matter and radiation transitions are defined by
(3.17) and (3.12). In the next section, we discuss how the multipole moments 〈a2l 〉 may be
rapidly evaluated using numerical techniques.

V. NUMERICAL EVALUATION OF THE MULTIPOLE MOMENTS

As discussed at the end of Section II, it is convenient to define dimensionless quantities
Ml ≡ ρPlanck

ρdeSitter

l(l+1)
6

〈a2l 〉. Using the previous formulae one may write this in the dimensionless
form
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Ml =
32π2

3

l(l + 1)

6

1 + Zeq

(1 + Zend)4

(

Ω0 − 1

Ω0

)3 ∞
∑

L=l

1

L(L+ 1)(L+ 2)
|αLJ

l
L + βLJ

l
L

∗|2. (5.1)

where

J l
L ≡ ∫ 0

tls
dtRl

L(|t|) csc2(t/2 +B)e−i(L+1)t × (5.2)
[

−3i(L+ 1) cot(t/2 +B)− 3
2
csc2(t/2 +B) + 2L2 + 4L+ 1)

]

.

Taken together with the definitions of αL and βL given (4.6), (3.17), and (3.12), the constants
Q and W defined in (3.13) and (3.18), and the radial function Rl

L(χ) defined in (3.6) this is
a self-contained formula for calculating Ml.

Before discussing the evaluation of Ml in general, it is worth commenting on two limits.
The first limit is the Zend → ∞ case, where the amount of inflation is large. In this case,
it is easy to see that Q and hence αL and βL diverge ∝ (1 + Zend)

2. Thus in the limit,
Ml converges. A second interesting limit is the spatially-flat one, Ω0 − 1 → 0+, where the
density parameter approaches unity from above. In this case, it is easy to see that Q and
hence αL and βL diverge as (Ω0 − 1)−1, and the integral J l

L diverges as (Ω0 − 1)−1/2. Once
again, the limit is well-defined. In addition, in this case, the sum over L can be re-written
as an integral, recovering the k = 0 spatially-flat formula given in [3].

We evaluated Ml using an fourth-order Runge-Kutta adaptive stepsize integrator [16] to
obtain the integral which defines JL. In cases of interest, one frequently needs to include
many values of L in the summation. In practice we found that summing over the range
L ∈ l, l+1, · · · , lmax with lmax = 32+(5l+10)/|tls| gave results accurate to a few percent for
reasonable ranges of the free parameters listed in Table I. Rather than compute the J l

L one
at a time, it is more practical to compute them “en masse”, determining J l

l , J
l
l+1, · · · , J l

lmax

simultaneously. This can be done easily because the associated Legendre functions may be
computed with a stable upwards recursion relation.

A. Second-Order Recursion Relations

The upwards recursion relation for the associated Legendre functions is given in equation
(8.731.2) of reference [17].

P
−(l+1/2)
j+l+1/2 (z) =

2(l + j)

2l + j + 1
zP

−(l+1/2)
(j−1)+l+1/2(z) +

1− j

2l + j + 1
P
−(l+1/2)
(j−2)+l+1/2(z) for j = 2, 3, · · · ,

(5.3)

together with the boundary conditions (or initial values) given in equation (8.755.1) of
reference [17]:

P
−(l+1/2)
l+1/2 (cosχ) =

1

Γ(l + 3/2)

(

sinχ

2

)l+1/2

and P
−(l+1/2)
l+3/2 (z) = zP

−(l+1/2)
l+1/2 (z). (5.4)

These relations may be used to obtain a recursion relation and initial values for the radial
functions Rl

L. The initial values are
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Rl
l(χ) =

√

√

√

√

(l − 1)Γ(l + 1)

2
√
πΓ(l + 3/2)

(sinχ)l/2−1 and Rl
l+1(χ) = cosχ

√

2l(l + 1)

l + 3
Rl

l(χ) (5.5)

and the recursion relation is obtained from (5.3)

for j = 2, 3, · · · Rl
l+j(χ) = (5.6)

√

4(l+j)2(l+j−1)
j(l+j+2)(2l+j+1)

cosχRl
l+j−1(χ)−

√

(j−1)(2l+j)(l+j−1)(l+j−2)
j(2l+j+1)(l+j+1)(l+j+2)

Rl
l+j−2(χ)

Although this recursion relation does not appear to be stable, our experience has been that
it accurately determines Rl

L for l ≤ L ≤ l + 6000.

VI. NUMERICAL RESULTS AND CONCLUSIONS

The numerical results are presented as a series of graphs Figs. 1, 2, and 3 showing
the values of Ml ≡ ρPlanck

ρdeSitter

l(l+1)
6

〈a2l 〉. For all of these graphs, we have taken Zend = 1026,

Zeq = 104 and Zls = 1300, and varied the density parameter Ω0. The graphs also show the
values of Ml for the spatially-flat k = 0 case, taken from [3]. This case corresponds to the
critically-bound Ω0 → 1 limit.

It is clear from the figures that this limit is quickly approached; when Ω0 = 1.1 the Ml

are almost indistinguishable from the k = 0 spatially-flat case. It is not hard to see why.
The effects of the spatial curvature only appear if the past light cone of the observer, taken
back to the surface of last scattering, actually “probes” a substantial fraction of the spatial
three-sphere. If the past light cone fails to do this, then within the past light cone the
universe is indistinguishable (to good approximation) from a spatially-flat model.

The fraction of the three-sphere (S3) within this past light cone is easy to determine.
The three-volume contained within angle χmax from the point χ = 0 of the unit-radius S3

may be obtained by integrating
√

detPij where Pij is the three-metric (3.4). One obtains

V (χmax) = π(2χmax − sin 2χmax). The total volume of S3 is V (π) = 2π2. If we assume that
Zls is much larger than one, then the fraction of the volume of S3 contained within the past
light cone is approximately

f(Ω0) ≡
V (|tls|)
V (π)

≈
V (2 arcsin

√

Ω0−1
Ω0

)

2π2
. (6.1)

For Ω0 near 1, this fraction is well-appoximated by

f(Ω0) ≈
16

3π
(Ω0 − 1)3. (6.2)

Thus when Ω0 = 1.1 the past light cone only explores about 1/1000 of the spatial volume.

Even if Ω0 = 2 the fraction of the three-sphere that is observed is only f(Ω0 = 2) = 1
3
−

√
3

4π
≈

0.1955 · · ·. This is why the multipole moments are not very sensitive to Ω0 provided it is
close to unity.

The extension of this calculation to the case of a spatially open FRW universe appears
straightforward. However it turns out to be much more difficult than expected, primarily
because the correct choice of initial state is not the obvious one, and because the final result
for the multipole moments appears to contain logarithmic (infra-red) divergences at zero
frequency. The spatially open case will be the subject of a forthcoming paper.
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FIGURES

FIG. 1. The normalized multipole moments Ml ≡ ρPlanck

ρdeSitter

l(l+1)
6 〈a2l 〉 of the CBR temperature

fluctuations are shown as a function of the multipole number l, for a spatially-flat (Ω0 = 1) and for

spatially-closed (Ω0 > 1) cosmological models. Ω0 − 1 needs to be fairly large for the effects of the

spatial curvature to be significant. The models being compared all have cosmological parameters

defined by the redshifts Zls = 1300, Zeq = 104 and Zend = 1026.

FIG. 2. The normalized multipole moments Ml ≡ ρPlanck

ρdeSitter

l(l+1)
6 〈a2l 〉 are shown as a function

of Ω0 − 1 for l = 2, 5, 10, 20, 30, 50. In all cases, the models being compared have the same

cosmological parameters as in Fig. 1. Only when Ω0 becomes significantly larger than one do the

multipole moments change significantly from the spatially-flat case.

FIG. 3. The normalized multipole moments Ml ≡ ρPlanck

ρdeSitter

l(l+1)
6 〈a2l 〉 are shown as a function of

Ω0 − 1 for l = 100, 200, 400. In all cases, the models being compared have the same cosmological

parameters as in Figs. 1 and 2. Only when Ω0 becomes significantly larger than one do the multipole

moments change significantly from the spatially-flat case.
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TABLES

TABLE I. List of the free parameters that define the cosmological model.

Parameter Units Range Description

H0 length−1 H0 > 0 Present-day Hubble expansion rate

Ω0 dimensionless Ω0 > 1 Present-day density parameter

Zls dimensionless Zls > 0 Redshift at last scattering of CBR

Zeq dimensionless Zeq > Zls Redshift at equal matter/radiation energy density

Zend dimensionless Zend > Zeq Redshift at end of de Sitter inflation
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