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1. INTRODUCTION

The detection of gravitational waves is one of the Holy Grails of modern physics (Schutz 1989; Giazzoto
1989). Following the pioneering experimental device of J.Weber (see, for example, Shapiro & Teukolsky
1983 for a clear introduction and historical references to Weber’s resonant bar detectors) and many other
attempts, a series of new-technology interferometric antennas is being planned/constructed to achieve higher
sensitivities for the dimensionless wave amplitude h. These coordinated experimental efforts are being
complemented by increasingly refined theoretical calculations in order to study the expected waveforms from
each potential source.

Although a number of likely sources has been discussed, there is an underlying belief (which has, in
fact, strongly influenced the design of the detectors) that non-spherical supernovae and coalescing binaries
are among the strongest candidates for objects that the devices should detect. The purpose of this work is
to argue quantitatively that wobbling neutron stars, to which comparatively little attention has been paid,
may be an equally good bet regarding the probability of detection.

2. DISCUSSION AND CALCULATION

Rotating neutron stars will emit gravitational waves by means of a time-dependent quadrupole moment,
generated either by the lack of body symmetry on the equatorial plane or by precession caused by a mis-
alignment of the spin and symmetry axes. It is presently quite uncertain how asymmetric a pulsar can be
and we shall not refer to the former case (but keep it in mind as a true possibility) in this work. The latter
wobbling neutron stars will emit mainly at frequencies close to the rotational one f if the wobble angle θ
is small. The resulting amplitude of the waves is calculated as h = (16 πGF/c3 Ω2)1/2 ; where the flux is
F = LGW /4π r2 and Ω = 2π f is the angular frequency of the pulsar (Zimmermann 1978) yielding

h = 1.4 × 10−18 ǫ θ
( Izz
1045 g cm2

)

f2

kHz r−1

kpc (1)

where

ǫ = (Izz − Ixx)/Izz

θ is the wobble angle, fkHz is the frequency in kHz, rkpc is the distance to the star in kpc, Izz is the
moment of inertia with respect to the rotation axis and Ixx is any of the moments of inertia orthogonal to
it. This equation has been established using the ”slow-motion” approximation for the gravitational energy
output of the star (Misner, Thorne & Wheeler 1973) but is probably accurate up to a factor ∼ 2 in
the rapidly rotating regime (Zhong 1985). For a given pulsar, distance and structure, the wobble angle
can be used to parametrize the expected amplitude of eq.(1). According to Pines & Shaham (1974) and
Zimmermann (1978) an upper physical limit to θ is θM ∼ 10−1, and values of θ ∼ 10−2 − 10−3 may be
considered as moderate.

The expected sensitivity of the interferometric detectors to the waves (Vogt 1989; Giazzoto 1991) is of
the order of h ∼ 10−22 for short-lived, impulsive bursts ; and h ∼ 10−25 − 10−26 for periodic sources
in which integration times of about 107 s are possible. According to eq.(1), the emission expected from a
pulsar undergoing a wobble motion characterized by θ needs also an accurate estimate of the quantity ǫ.

To study the strenght of the expected emission we have performed, as discussed in de Araújo et al. (1993,
hereafter paper I), fully relativistic calculations of the stellar structure base on the approach of Butterworth
& Ipser (1976) and Butterworth (1976) (see also Friedman, Ipser & Parker 1986). Our results indicate that
the values of the gravitational ellipticity ǫ due to the stellar rotation are typically one or two orders of
magnitude higher than those usually adopted in the literature, the latter being appropriate for slower radio
pulsars (remarkably, comparable results are already implicit, for example, in Friedman, Ipser & Parker 1986).
As shown below, this feature leads to outputs of h which may be detectable by the upcoming gravitational
antennas generation if those pulsars deformed by rotation can be induced to precess by external/internal
torques.

Table 1 gives the stellar parameters calculated at fixed baryon number (that corresponding to M =
1.4 M⊙ for a static star) for different rotation velocities using the medium-stiff Bethe-Johnson I equation of
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state (Bethe & Johnson 1974) for the neutron matter. While it is not guaranteed that the actual composition
of the pulsars can be represented by this choice, it is generally agreed that the chosen equation of state is a
reasonable compromise given the present uncertainties on the subject and it will be employed for the sake
of definiteness.

In order to relate the putative gravitational wave emission to the expected signal at the detectors it is
imperative to estimate the damping timescale for a given wobbling pulsar due to the emission of gravitational
waves. The characteristic braking timescale is

τbrake ≃
5 c5

128 G Izz Ω4
o ǫ2

≃ 2
( ǫ

0.1

)−2 ( Izz
1045 g cm2

)−1 ( Ωo

5000 s−1

)−4
s (2)

where Ωo is the initial rotational angular velocity. Therefore, even though the sources would have an
explicit periodic behaviour, the fact that τbrake ≪ 107 s qualifies them as ”impulsive” or burst one since
the duration of the emission is short compared to the experimental observation time (see a full discussion
in Thorne 1987). If we require h ≥ 10−22 (the condition of burst detectability foreseen for LIGO-type
interferometers) for a P = 2ms pulsar with a ”fiducial” value of Izz = 1045 g cm2 we would need

θ

rkpc
≥ 6 × 10−3 (3)

Thus, observation of a ”spike” burst with duration limited by τbrake from anywhere in the Galaxy
(r ≃ 20 kpc) would require wobble angles of the order of the more extreme theoretical expectations. However,
it is now known that the population of ms pulsars is large (see e.g. Kulkarni & Thorsett 1993) and there
have been (unexpectedly) observed in nearby clusters like 47 Tuc (see e.g. Lyne 1992) which is only ∼ 4 kpc
away. Those potential sources would require values of θ ≃ 10−2 to be detected at LIGO-type observatories.
We remark that a reliable calculation of ǫ is an important ingredient for such a conclusion. In addition, not
only the interesting wobble angles are probably less than extreme, but also that the emission will come out
at frequencies which are not expected (in principle) to suffer from severe noise problems in contrast with the
values required to detect the precession of slower Crab-like sources.

It should be stressed that the actual number of sources in a sphere of radius 20 kpc (roughly the volume
of the Galaxy) will depend on the details of the internal dynamics and external torques and can not be
reliable evaluated other than in a statistical way. The total number of pulsars in the sample volume may
be as high as 108 and it has been estimated (Kulkarni, Narayan & Romani 1990) that the subpopulation
of ms pulsars in globular clusters only is higher than 104. Detailed calculations of external (i.e. encounters
with perturbing stars) and internal (i.e. phase transitions) mechanisms capable of exciting moderate wobble
motions must be undertaken to address the expected number of sources at a given time. As an example,
mechanisms which may conceivably produce small wobble motions in the range θ ∼ 10−4 − 10−6 have been
discussed in Pines & Shaham (1974). Several other excitation mechanisms may be operative as well. If
Nature provides even a single source out of the whole galactic population (the case for a precessing Her X-1
and newer data from radio pulsars seem to suggest the possibilty of wobble being an ubiquitous phenomenon)
it may be enough greatly to improve our knowledge on gravitational wave phenomena.
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Table 1. Stellar parameters of rotating B-J I pulsars

Ω (rad s−1) e ǫ Izz (1045 g cm2) Ixx (1045 g cm2)
3000 0.31 0.047 0.6557 0.6246
4030 0.38 0.089 0.6994 0.6374
5000 0.51 0.14 0.7763 0.6658
6203 0.75 0.25 0.9946 0.7476

Table captions

Table 1. The relevant parameters for gravitational waves emission from wobbling pulsars. Here e is the
usual stellar eccentricity and the other quantities are defined in the text. Note that the maximum value of
Ω corresponds to the Keplerian value although several instabilities may limit the actual maximum rotation
rate to about 0.9 of the former.
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