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Abstract – We calculate the linear evolution for a class of mixed dark matter models, where the hot

component derives from the decay of a heavier particle (CntHDM models). These models differ from

ordinary mixed models based on massive neutrinos (CHDM models), for which the hot component has a

phase space distribution which derives from a thermal one. In CntHDM models the density of the hot

component and the derelativisation redshift of its quanta are indipendent parameters. In this work we

provide the spectra for a number of CntHDM models, and compare them with CDM and CHDM spectra.

If PQ symmetry and SUSY simultaneously hold, the lightest standard neutralino can be expected to decay

into axino and photon. We briefly summarise the features of this particle model which gives rise to the

cosmological framework discussed here, as a fairly generic consequence. Other frameworks which lead to

similar models are also briefly discussed.
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1. Introduction.

Mixed dark matter (MDM) models (Valdarnini & Bonometto 1985, Bonometto & Valdarnini 1985, Achilli

et al. 1985, Holtzman 1989, see also Fang, Li, & Xiang 1984) allow a better fit of large scale data

than most other models (Schaefer, Shafi, & Stecker 1989; van Dalen & Schaefer 1992; Schaefer & Shafi

1992; Taylor & Rowan–Robinson 1992; Davis, Summers, & Schlegel 1992, Holtzman & Primack 1993;

Pogosyan & Starobinsky 1993; Liddle & Lyth 1993, Klypin et al. 1993, Klypin, Nolthenius & Primack

1993, Bonometto et al. 1994). Recent treatments of MDM were mostly based on a mixture of CDM,

HDM and baryons with Ωc/Ωh/Ωb = 0.6/0.3/0.1 (Ω: density parameters), although different ratios were

also considered. If HDM is made of fermions of mass mh, with gf spin states, which decoupled when

T ≫ mhc
2, it is Ωh ≃ 0.3(mhgf/14 eV). The standard candidate as HDM component is the τ–neutrino,

assumed to have a mass mh = 7 eV.

Hereafter this version of MDM will be called CHDM. Within its context Ωh and the derelativization

redshift for the hot component zde ≃ mhc
2/3To,ν are connected through mh (To,ν is the present neutrino

temperature). In turn, zde fixes the mass scale MD,h above which fluctuations in the hot component are

not erased by free streaming after their entry in the horizon.

Instead of being composed of massive neutrinos, the hot component could have arisen from the decay

of heavier particles. In this case, the link among mh, gf , Ωh, zde, and MD,h is not so cogent. There are

still precise constraints due, e.g., to primeval nucleosynthesis, but the parameter space is spanned by two

independent continuous parameters (e.g., Ωh and zde), instead of a continuous and a discrete parameter

(e.g., Ωh and gf). The distribution of hot particles in momentum space is then quite different from the one

originating from a thermal distribution. In this note we shall discuss such alternative to CHDM (hereafter

denominated CntHDM).

The decay of mother particles takes place when fluctuations over the relevant scales are still well

outside the horizon. Daugther particles are then relativistic and an analytical treatment of the evolution

of fluctuations during these stages can be given. The critical events to set up the shape of the final

spectrum are the entry of the fluctuations in the horizon and the derelativization of the particles forming

its hot component. These two events can take place in different order, according to the scale considered

and to the model parameters. At a redshift ∼ 103, primeval plasma (re)combines. In purely baryonic

models recombination is a critical step, as it sets up a minimal mass scale for the survival of baryonic

fluctuations and provides information on very–small–scale CBR fluctuations. In models dominated by DM,

these stages are not so essential, as baryons will later fall in potential wells created by CDM and/or HDM,

while the relevant scales for CBR fluctuation observations however enter the horizon after recombination.

The presence of radiation and baryons is critical for fluctuations entering the horizon before equivalence.

The growing of the CDM component is then almost stopped by Meszaros effect, i.e. by the fact that

baryon and radiation can only oscillate as sound waves while, until equivalence, they are the dominant
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substance in the Universe. After equivalence, as is known, DM fluctuation growing can restart.

Furthermore, the baryonic component has a non neglegible influence on the detailed final spectrum.

Our models take also into account a massless neutrino background and its fluctuations (which are rapidly

dissipated at the entry in the horizon). Three, two or one massless neutrinos were considered, according

to the model parameters, as is discussed below.

The main output of this paper are a number of spectra for CntHDM models, computed in detail

through all their linear evolution, down to z = 0. The models considered are given in Table 1 of sec. 2. As

is also outlined in sec. 4, the study of each model still requires a fairly large amount of CPU, and further

numerical analysis is still in progress.

A particle model, recently discussed by Bonometto, Gabbiani & Masiero (1994, BGM), originates

CntHDM models as a fairly generic consequence. We shall briefly outline some features of this particle

model in sec. 2. The class of cosmological models described here is however relevant, also independently

of that specific particle physics. In sec. 3 we will study the analytical part of the evolution of density

fluctuations. In sec. 4 the numerical treatment will be described. Sec. 5 is devoted to a discussion of the

results.

2. A particle model.

In this section we debate a specific particle model which gives rise to a cosmological framework of the

kind discussed in the next sections. Although this model is complitely consistent, the cosmological results

have a validity which extends well beyond this peculiar particle physics. In recent years cosmologists have

become familiar with supersymmetry (SUSY) and Peccei–Quinn (PQ) symmetry. Both of them provide

CDM candidates. The lightest mass eigenstate of neutral fermion SUSY partners, called neutralino (χ),

has a mass mχ∼
> 30GeV and must therefore decouple when T is significantly below mχ (Lee & Weinberg

1977, Ellis et al., 1984). The goldstone boson associated to PQ symmetry, arising at T < VPQ (scale of

PQ symmetry breakdown), is called axion (a). If both SUSY and PQ symmetry are implemented, also

SUSY partners of a’s exist; the fermion partner of a is called axino (ã). In BGM it is shown that we can

expect two ã background to exist. Besides thermal ã’s, decoupling slightly below VPQ, probably diluted

by entropy inflow(s) at later phase transition(s), non–thermal ã’s originate from χ decay. The former

component is cold, the latter one is a non–thermal hot component. It is possible that all DM consists of

ã’s, which can account for both components of MDM.

The decay χ → ã+ γ takes place at zχ,Dy ∼ 109 and ã’s have initially momentum P = mχc/2. They

derelativize at zde ≃ zχ,Dy2mã/mχ. The outcoming density parameter Ωã = Ωh is linked to the axino

mass (mã) and χ number density at the eve of their decay (nχ). These quantities are linked by a number

of particle relations, discussed in BGM and summarized in fig. 1. In such figure msf is the scale of the

soft SUSY breaking (sfermion scale.

Different curves refer to possible choices of mχ and mt (top quark mass), as is detailed in its caption.
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Table 1: Parameters for CntHDM models

model 1 2 3 4 5 6 7 8 9 10

Ωã 0.30 0.30 0.30 0.15 0.20 0.15 0.20 0.20 0.15 0.20

zde/10
4 1.5 6 3 1.5 0.7 0.7 0.9 1 0.4 0.4

massless ν’s 2 3 3 3 2 2 2 1 2 1

For each value of msf , fig. 1 provides the values allowed for the axino mass mã (decreasing curves) and

for the quantity zdeVPQ/Ωã, where the particle parameter VPQ, expected to range between 5×109GeV

and 1012GeV, is combined with zde (ã derelativization redshift) and Ωã (hot DM density parameter).

Fig. 1 shows that the quantity zdeVPQ/Ωã can be expected to range between 1013GeV and 1016GeV,

for reasonable values of msf . In turn, it is possible to find various combinations of particle parameters

which give Ωã in the range 0.1–1, and zde in the range 103–105.

Further constraints are set by the number of massless neutrinos still present during primeval nucleosyn-

thesis. Let gν be the number of massless ν spin states present during the nucleosynthesis (ν’s with mass

much below nucleosynthesis temperatures are to be considered massless). Standard stellar abundance

data for light elements allow up to gν ≃ 7. Accordingly, if gν = 6 (3 standard neutrinos) we are allowed

g+ = 1 extra spin states. It can be g+ = 3 or g+ = 5, if one or two neutrino(s) are supposed to be quite

heavy and to have already decayed before nucleosynthesis. Neutrinos with a mass mν =7 eV (= 8×104K)

derelativize at a redshift z ≃ 1.5× 104 and yield Ων = 0.3. A particle allowed half of their energy density

at nucleosynthesis and derelativizing at zde will then yield Ωh ≃ zde/10
5. If the number of extra neutrino

spin states allowed during nucleosynthesis is g+, the limit for Ωh reads:

Ωh∼
< g+ zde/10

5 . (2.1)

The number gν of effective massless neutrinos is used in the equations ruling the expansion of the Universe

through the quantity wν = (7/4)(4/11)
4

3 gν , that will be used below.

For all our models we took Ωtotal = 1, Ωb = 0.05, and H = 50 km s−1Mpc−1. Values of Ωh and

zde ranging in the intervals 0.15–0.30 and 4 × 103–6 × 104 were considered. Models with low zde show

interesting features and the parameter space was explored in that region in more detail. In Table 1 we

report the values of Ωh, zde, and the number of massless neutrinos, for those models whose spectra are

worked out here.

3. Density fluctuation evolution: analytical aspects.

Let f(xα, Pα, t) be the ntH (non–thermal hot) ã distribution in phase space (xα, Pα = P nα: particle
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coordinates and momentum). We must also consider the source of ã’s due to χ–decay: S(xα, Pα, t). Up

to first order,

f = fo(P, t)[1 + ǫ̃(xα, P, t)] , S = So(P, t)[1 + σs(xα, P, t)] (3.1)

(Notice that ǫ̃ and σs do not depend on nα). The analysis is based on the equation

S = ∂f/∂t+ (∂f/∂xα)ẋα + (∂f/∂P )Ṗ (3.2)

taking into account that ẋα = cnα(P/Po)(To/T ), Ṗ = P [(Ṫ /T )+ y/4]. Here Poc is energy, T is radiation

temperature, y yields perturbation self–gravity and will be given in eq.(3.7) below. At the 0–th order,

eq. (3.2) yields

So = ∂fo/∂t+ P (Ṫ /T )(∂fo/∂P ) , (3.3)

while the source term, due to χ–decay, is

So = (h3/4π)nχ,dg(T/Tχ,Dy)
3 exp(−t/tχ,Dy) (tχ,DyP

2)−1δ(mχ,Dyc/2− P ) (3.4)

(tχ,Dy: χ mean life, nχ,dg:χś number density at the decoupling ). With such source terms the solution of

eq. (3.3) reads

fo = (h3/4π)nχ,dg exp(−Q)(2Q/P 3) θ(mχ,Dyc/2− P ) (3.5)

with

Q = (2P/mχc)
2(t/tχ,Dy) (3.6)

(notice that Qδ(mχc/2 − P ) = t/tχ,Dy); χ decays occur in radiation dominated era, when t/tχ,Dy =

(Tχ,Dy/T )
2.

We shall treat the first order equation for the case of a plane wave in x3 direction. In such direction

the component of P is µP . Let also hαβ = ηαβ − gαβ express the deviation of the metric tensor gαβ from

purely spatially flat ηαβ components (α, β = 1..3; t being the universal time, only goo does not vanish,

besides of gαβ). Then

y = (1− µ2)3ḣt − (1 − 3µ2)ḣ33 = 2Po(µ)ḣt + 2P2(µ)ḣ3 , (3.7)

where

3ht =

3
∑

α=1

hαα , h3 = ht − h33 . (3.8)

Let us then take ǫ̃ = ǫ(k, P, µ, t) exp(ikx3T/To), in order to treat each length scale separately (ρc: present

critical density; Pl: Legendre Polynomials).

The first order equation splits in two parts. Let be K = kcT/To. For P < mχc/2,

ǫ̇+ iǫµKP/Po = (1 + 2Q)y/4 , (3.9)
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while, for P = mχc/2, it is ǫ = σs + yt/2. The latter equation holds at χ decay and sets initial conditions

to eq. (3.9). Such equation is to be solved for any µ and P ; however P is related to Q (see 3.6) and the

distribution fo decreases exponentially with Q (see 3.5). This will allow to select a finite set of Q values.

As far as µ is concerned, we perform the expansion

ǫ(k, P, µ, t) =

∞
∑

l=0

(−i)lσl(k, P, t)Pl(µ) . (3.10)

Then, taking eq. (3.7) into account, eq. (3.9) yields the system

σ̇o = −(1/3)K(P/Po)σ1 + (1/2 +Q)ḣt , σ̇1 = K(P/Po)(σo − 2σ2/5)

σ̇2 = K(P/Po)(2σ1/3− 3σ3/7) + (1/2 +Q)ḣ3 , σ̇l = K(P/Po)(l−σl−1 − l+σl+1) (l > 2) (3.11)

[here l− = l/(2l− 1), l+ = (l + 1)/(2l+ 3)].

Radiation is to be treated very much alike. The critical difference is that photons are massless and

therefore all P behave in the same way (furthermore, of course, the P distribution is different). Integrating

the photon distribution over P and expanding the outcoming δ(k, µ, t) =
∑∞

l=0
(−i)lδl(k, t)Pl(µ), we obtain

a closed system analogous to (3.11), which reads

δ̇o = −(1/3)Kδ1 + 2ḣt , δ̇1 = K(δo − 2δ2/5)− (δ1 − 4w)ν

δ̇2 = K(2δ1/3− 3δ3/7) + 2ḣ3 − δ2 9ν/10 , δ̇l = K(l−δl−1 − l+δl+1)− δlν (l > 2). (3.12)

Apart of the replacement 1/2+Q→ 2, the main difference are the terms accounting for matter–radiation

collisions: ν = neσT c is the inverse γ collision time (ne: electron number density, σT : Thomson cross–

section) and w is the velocity field in baryons. Eqts. (3.11) and (3.12) are to be implemented by the

equations for baryon and CDM density fluctuations (δb, δc), metric perturbations (ḣt) and t dependence

of T . Such equations read:

(Ṫ /T )2 = Γ3[Ωb + (1 + wnu)T/Te +Ωheh +Ωc] ,

δ̇b = −Kw + 3ḣt/2 , ẇ = wṪ/T + (δ1 − 4w)(ρr/ρb)ν/3 ,

ḧt = 2ḣtṪ /T + Γ3[δbΩb + 2(δo + δo,ν)T/Te + eoΩh + δcΩc] ,

ḣ3/2 = −ḣt + (Γ2/kc)[wΩb + (δ1 + δ1,ν)T/3Te + e1Ωh] . (3.13)

Here ρr/ρb is the radiation/baryon density ratio, ΩcTe = 104ΩcTo is the temperature when CDM and

radiation have equal densities, Γn = (8π/3)Gρc(T/To)
n, and

eh =

∫ χ

o

dQe−Q

√

1 +Q
T 2

T 2
de

, eo =

∫ χ

o

dQe−Q
Q T 2

T 2

de
+ 1

2
√

Q+ T 2

T 2

de

σo , e1 =
T

2Tde

∫ χ

o

dQe−QQ1/2σ1. (3.14)
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Here χ = (Tχ,Dy/T )
2 and, in most cases, it cannot be numerically distinguished from ∞. Tde is the typical

derelativization temperature of axinos.

We took into account also massless neutrinos. Their fluctuations are rapidly damped as soon as they

enter the horizon. In principle, to follow such damping in detail, the same number of equations as for

radiation are to be used. Some approximations, introduced when residual neutrino fluctuations are below

the precision limit of the whole algorithm, have been set up in order to limit the number of harmonic

components. They will not be discussed here. In eq.(3.13), δo,ν and δ1,ν indicate the first two harmonics

for neutrinos, multiplied by a factor which depends on the number of massless neutrinos in the model.

4. Density fluctuation evolution: numerical aspects.

We performed a set of numerical integrations of the integro–differential system of equation (3.11), (3.12),

(3.13), plus massless neutrinos. The integral part of the system was treated by taking 10 values of

P associated with those values of Q needed to perform the integrations in eq. (3.14) with the Gauss–

Laguerre projection procedure. The number of Pl in eqts. (3.11)-(3.12) was self regulated to obtain a

precision of 1:105. The algorithm allowed up to a maximum of 499 harmonics, which were never reached.

The integration routine is a distant descendant of the one used by Bonometto, Caldara, & Lucchin (1983),

although the treatment of collisionless particles with ntH spectrum required substantial changes.

Altogether the differential equations to integrate numerically are up to 5505. For each model 9 lenth–

scales were considered (1 Mpc, 5 Mpc, 10 Mpc, 20 Mpc, 50 Mpc, 100 Mpc, 200 Mpc, 500 Mpc, 1000

Mpc), approximately spanning the mass–scale range from 1012M⊙ to 1021M⊙. Each model requires

approximately 37 hours of CPU at a 4000/90 vaxstation. Small length–scale cases are obviously taking

much more time than great length–scale ones.

For the sake of example, in fig. 2 we report the detailed behaviour of density fluctuations for the

various components, for the model 5 and the 100 Mpc case. Some irregularities are present in the plot of

matter and radiation sound–waves, due to a number of prints not fully adequate to follow the oscillations

in detail.

In fig. 3 and 4 we plot the outcoming spectra at z = 0, arising from primordial Zel’dovich spectra, for

the models 2 and 6. In the same plots the spectra for a pure CDM and a standard CHDM model are

also shown. The CDM spectrum has also been worked out with our algorithm by setting Ωh = 10−3. The

discrepancy between such spectrum and the one given by Holtzman (1989), for the same cosmological

parameters, is typically ∼
< 0.5%, and nowhere exceeds 2%.

In order to argue on the physical interpretation of the outcoming spectra, a direct comparison with

CDM and CHDM is more suitable than the detailed spectral shape. Henceforth we preferred to plot the

differences ∆ log[P (k)] ≡ log[P (k)] − log[P (k)]CDM,CHDM , for the 10 cases we evaluated, rather P (k)

themselves. In fig. 4, 5 and 6 such ∆ log[P (k)] are shown for the models 1–5, 5–7 and 8–10, respectively.
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Table 2: Transfer function coefficients for CntHDM models

model c1 c2 c3 c4

1 -0.12991D+01 0.11015D+02 0.34827D+02 0.40777D+03

2 -0.45687D+01 0.60267D+02 -0.13429D+03 0.37425D+03

3 -0.24013D+01 0.38752D+02 -0.81353D+02 0.44185D+03

4 -0.17309D+01 0.17613D+02 0.69582D+02 0.13268D+03

5 -0.11754D+01 0.49944D+01 0.13379D+03 0.16949D+03

6 -0.20006D+01 0.16444D+02 0.10363D+03 0.11294D+03

7 -0.13807D+01 0.10134D+02 0.10300D+03 0.18045D+03

8 -0.12392D+01 0.10929D+02 0.86743D+02 0.16254D+03

9 -0.22635D+01 0.20171D+02 0.10958D+03 0.11857D+03

10 -0.19229D+01 0.11527D+02 0.14706D+03 0.15760D+03

5. Discussion.

The main outputs of this work are reported in the figures and in Table 2, where we provide the coefficients

for a numerical interpolation of the transfer functions

T (k) =
√

P (k)/k = N/



1 +
4

∑

j=1

cj [k/(Mpc−1)]j/2



 (5.1)

through the coefficients cj (the normalization coefficient N will not bew given here).

In fig. 5, fig. 6 and fig. 7 we compare the spectra of the models studied here and those of CDM and

standard CHDM. Most features reported on these figures can be qualitatively understood taking into

account the corresponding values of Ωh and zde.

Model 1 (in fig. 5, solid curve). The behaviour of this model is not far from standard CHDM. Its

transfer function nowhere exceeds CHDM by more than a factor 1.4. No attempt was made to fine tune

Ωh and zde, to obtain a still nearer spectrum, but a better fit is possible.

Models 2 and 3 (in fig. 5: dashed curve and dotted curve). They are characterized by a greater zde

and the same Ωh, in respect to CHDM. Their transfer functions are then greater than CHDM over all

those scales which enter the horizon when the hot component is already derelativized. At large k, the

curves fall down towards CHDM, as is to be expected.

Model 4 (in fig. 5: short–dashed dotted curve). This model differs from model 1 for a smaller Ωh (zde

is the same). It is therefore intermediate between CDM and CHDM. The spectrum bends at the same

scale as for CHDM and the transfer function ratio is then decreasing fairly slowly, in respect to CDM.
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Models 5–6–7 (in fig.6). Their behaviours show that a decrease of zde can widely compensate an

increase of Ωh. The spectrum falls more rapidly than model 4 and begins to flatten at a smaller k. These

models were considered to explore the parameter space with intermediate values for zde.

Models 8–9–10 (in fig.7). While model 8 still reproduces a situation similar to CHDM, just with

smaller density for the hot component, the other two models (with low zde) show a consistent decrease of

the spectrum if compared to CDM for small kś and a stabilization of their behaviours at k/Mpc−1 ≃ 1.

This is likely to cause a significant improvement in respect to CHDM for the scales over which objects

can form at high z.

The linear evolution of primeval fluctuations can be used to evaluate a number of observational quan-

tities that will not be fully enumerated here. Each one of them can be obtained by performing suitable

integrations over particular regions of the spectrum. After COBE evaluation of δT/T , it can be conve-

nient to compare different models by requiring them to give the same result over the COBE angular scale.

This is approximately obtained here by requiring that all spectra coincide at 500 Mpc. A more detailed

integration of the numerical outputs for radiation can be performed to improve δT/T results; the radiative

component is evaluated by our algorithm down to z ∼ 500, and we shall use all relevant harmonics to give

the expected δT/T , over a wide range of scales, in a forthcoming work.

Among the advantages of CHDM in respect to CDM is the behaviour of the spectrum over the scales

yielding bulk velocities. However, the faster decrease of CHDM also leads to predicting a rather unadequate

amount of high–redshift objects. This can be a problem for high redshift galaxies and QSO’s (see, e.g.,

Pogosyan e Starobinsky 1994). More recently, it has been pointed out that the problem can be even more

severe for objects associated to damped Lyα clouds (Mo and Miralda-Escude‘, 1994, Subramanian and

Padmanabhan, 1994, Kauffmann and Charlot, 1994, Ma and Bertschinger, 1994, see however also Klypin

et al., 1994).

In this connection we wish to draw the attention on the characteristics of the models 5–6 and 9–10.

Such choice of parameters give a decrease of P (k) (in respect to CDM) down to intermediate scales, while

the difference between CDM and such models tends then to stabilize, instead of further decreasing as in

standard CHDM. More detailed computations are needed to verify up to which degree this improving of

outcoming spectra can ease the fit with observational data.

There can be scarse doubts that, thanks to the presence of an extra parameter, CntHDM models are

more flexible than CHDM ones. However such extra parameter is connected with precise data of particle

physics, which can be tested through experiments which are either already feasible or can be expected to

be performed in a fairly nearby future. This does not only concern the axino model discussed in sec.2,

but also other models with decaying particles. Among them, models in which there can be decays of one

neutrino flavour into lighter neutrinos can be of particular relevance. Although these decays have a more

complex kinematics, the cosmological behaviour due to the outcoming spectra can be very similar to the
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ones discussed here.
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FIGURE CAPTIONS

Fig. 1 – Particle and cosmological parameter for the ã model. The four lines refer to different choices

of mχ and mtop. The solid lines are for mχ = 30GeV and mtop = 120GeV. The dotted lines are for

mχ = 30GeV and mtop = 180GeV. The short dashed lines are for mχ = 60GeV and mtop = 120GeV.

The long dashed lines are for mχ = 60GeV and mtop = 180GeV. The area between solid and long dashed

lines is therefore however allowed for a combination of mχ and mtop, in their allowed ranges.

Fig. 2 – Examples of time evolution of the different components (CDM, ã’s, massless ν’s, baryons,

radiation); trif = 1.44× 1011s. The ordinate scale is arbitrary.

Fig. 3 – Spectrum at z=0 for the model 2 (see text). Dotted lines refer to a CDM and a CHDM model

(the latter has Ωc/Ωh/Ωb = 0.6/0.3/0.1).

Fig. 4 – The same as fig. 3 for the model 6 (see text).

Fig. 5 – The difference ∆ log[P (k)] between the models 1 to 4 and CDM (lower curves) or CHDM (upper

curves) is given in function of k. The solid curves refer to model 1. The dotted curves refer to model 2.

The dashed curves refer to model 3. The short–dashed dotted curves refer to model 4.

Fig. 6 – The same as fig. 5. Here the models 5 to 7 are considered. The solid curves refer to model 5.

The dotted curves refer to model 6. The dashed curves refer to model 7.

Fig. 7 – The same as fig. 5. Here the models 8 to 10 are considered. The solid curves refer to model 8.

The dotted curves refer to model 9. The dashed curves refer to model 10.

12



This figure "fig1-1.png" is available in "png"
 format from:

http://arxiv.org/ps/astro-ph/9410059v1

http://arxiv.org/ps/astro-ph/9410059v1


This figure "fig2-1.png" is available in "png"
 format from:

http://arxiv.org/ps/astro-ph/9410059v1

http://arxiv.org/ps/astro-ph/9410059v1


This figure "fig3-1.png" is available in "png"
 format from:

http://arxiv.org/ps/astro-ph/9410059v1

http://arxiv.org/ps/astro-ph/9410059v1


This figure "fig1-2.png" is available in "png"
 format from:

http://arxiv.org/ps/astro-ph/9410059v1

http://arxiv.org/ps/astro-ph/9410059v1


This figure "fig2-2.png" is available in "png"
 format from:

http://arxiv.org/ps/astro-ph/9410059v1

http://arxiv.org/ps/astro-ph/9410059v1


This figure "fig3-2.png" is available in "png"
 format from:

http://arxiv.org/ps/astro-ph/9410059v1

http://arxiv.org/ps/astro-ph/9410059v1


This figure "fig1-3.png" is available in "png"
 format from:

http://arxiv.org/ps/astro-ph/9410059v1

http://arxiv.org/ps/astro-ph/9410059v1

