
as
tr

o-
ph

/9
41

00
80

   
25

 O
ct

 1
99

4

October 24, 1994WIENER RECONSTRUCTION OF THE LARGE SCALE STRUCTURES. Zaroubi1;2, Y. Ho�man2, K.B. Fisher3;4 and O. Lahav4(1) Astronomy Department and Center for Particle Astrophysics, Campbell Hall, Univer-sity of California, Berkeley, CA 97420, U.S.A.(2) Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel(3) Institute for Advanced Study, Olden Lane, Natural Sciences, Bldg E, Princeton, NJ08540, U.S.A.(4) Institute of Astronomy, Madingley Rd., Cambridge CB3 OHA, UKABSTRACTThe formalism of Wiener �ltering is developed here for the purpose of reconstructingthe large scale structure of the universe from noisy, sparse and incomplete data. Themethod is based on a linear minimum variance solution, given data and an assumed priormodel which speci�es the covariance matrix of the �eld to be reconstructed. While earlierapplications of the Wiener �ler have focused on estimation, namely suppressing the noisein the measured quantities, we extend the method here to perform both prediction anddynamical reconstruction. The Wiener �lter is used to predict the values of unmeasuredquantities, such as the density �eld in un-sampled regions of space, or to deconvolve blurreddata. The method is developed, within the context of linear gravitational instability theory,to perform dynamical reconstruction of one �eld which is dynamically related to some otherobserved �eld. This is the case, for example, in the reconstruction of the real space galaxydistribution from its redshift distribution or the prediction of the radial velocity �eld fromthe observed density �eld.When the �eld to be reconstructed is a Gaussian random �eld, such as the primordialperturbation �eld predicted by the canonical model of cosmology, the Wiener �lter can1



be pushed to its fullest potential. In such a case the Wiener estimator coincides withthe Bayesian estimator designed to maximize the posterior probability. The Wiener �ltercan be also derived by assuming a quadratic regularization function, in analogy with the`Maximum Entropy' method. The mean �eld obtained by the minimal variance solutioncan be supplemented with constrained realizations of the Gaussian �eld to create randomrealizations of the residual from the mean.Subject Headings: cosmology: large scale structure of universe; analytical{ methods:data analysis 1. IntroductionMapping the distribution of galaxies and their peculiar velocity �eld constitutes amajor research area in modern astronomy setting both the observational and theoreticalfoundations of cosmology and, in particular, of large scale structure (LSS). The large scalegalaxy distribution o�ers a probe of the early universe and the nature of the primordialperturbation �eld, and can be used to set strong constraints on the values of cosmologicalparameters (cf., Dekel 1994 for a review and references therein). Astronomical observationsgive us however only incomplete and noisy information on the real universe, as is true in allexperimental sciences. Any experimental measurement necessarily provides an incompletedescription of the physical quantities under consideration, due to the �nite accuracy of themeasuring device. The study of LSS poses a unique astronomical problem, namely theobscuration by the gas and dust in the disk of the Galaxy, the so-called Zone of Avoidance(ZOA), which masks a non-negligible part of the sky. To summarize, the problem addressedhere is one often encountered in physics in general, and in the study of LSS in particular,namely the reconstruction of an underlying �eld from noisy and incomplete observationaldata.The canonical model of cosmology assumes that structure has grown out of smalldensity perturbations via the process of gravitational instability. These perturbations are2



usually assumed to satisfy the statistics of Gaussian random �elds (GRFs). The initialGaussian �eld is preserved only in the linear regime; one expects deviations from a Gaus-sian �eld on scales where structure has evolved into the non-linear regime. Although, thereconstruction method presented in this paper does not rely on the assumption of Gaus-sianity, its fullest potential is achieved when working within the frame work of GRFs.Linear theory in LSS is not the only case in which Gaussian probability distribution func-tion (PDF) is important. It can be shown that the small uctuations from from a stateof local thermodynamic equilibrium constitute a GRF (Landau and Lifshitz 1980). Thesethermodynamic considerations do not strictly apply to the case of gravitational instabilityin an expanding universe. Yet, on the technical level a GRF behaves as if it correspondsto a state of �nite temperature thermal uctuations.In this paper, the problem of reconstruction is solved by assuming statistical priorinformation of the underlying �eld one is trying to measure. This falls into two di�erentapproaches, which at �rst glance seem to be quite unrelated. One is the well knownBayesian approach which quanti�es the posterior probability of the model given the datain terms of the likelihood probability of the occurrence of the data given the model andthe a priori probability of the correctness of the model (i.e., the prior ). A powerfulapplication of Bayes' theorem is the Maximum Entropy (MaxEnt) algorithm, where theprior probability is formulated in terms of statistical entropy (Gull 1989; Skilling 1989).The other approach is that of linear estimation and prediction based on the principle ofminimal variance from a given set of measurements (Wiener 1949). Here, estimation refersto the estimate of the �eld at a measured point while prediction refers to the estimate atan unmeasured point. The former is known in the literature as the Wiener �lter (WF),however here we shall use the term in the broader sense of both estimation and prediction.The WF algorithm is well known and has been widely applied in many branches of physicsand astronomy (cf., the excellent review of Rybicki and Press, 1992). Currently, the WFis overlooked in favor of other methods, such as MaxEnt, particularly in the �eld of image3



processing. However, we show that for the particular case of reconstructing the LSS,the WF is indeed the `optimal' tool best suited to handle such systems, and moreover itcoincides with the Bayesian estimation in the case of GRFs.A primary aim of any LSS reconstruction technique is to recover an estimate of thesmooth underlying cosmological perturbation �eld from observed data. We put a specialemphasis on the smoothness of the underlying �eld. Astronomical observations of LSSare done by measuring a certain property (e.g., position, velocity) of a discrete object(galaxy, cluster), yet one is often interested in calculating a mathematically continuous(hereafter smooth) �eld. This can be considered as a mere mathematical convenience, butit has a physical motivation. First, the actual number of galaxies in a given volume isusually much larger than the number observed, in particular in magnitude limited sampleswhere at large distances one just sees the decreasing tail of the luminosity function. Thesparseness of the observed galaxy distribution usually necessitates smoothing with �nitespatial resolution, i.e. by representing the galaxy distribution as a smooth �eld. Furtherstill, many theories of LSS predict that the universe is dominated by dark matter made ofparticles whose individual masses are much smaller than a galactic mass. In such a case themass density and velocity �elds can be considered smooth. This underlying smooth �eldis sampled by the (often only bright) galaxies, which, in the lack of any detailed theoryof galaxy formation, are usually considered to constitute a Poisson process superimposedon the matter density �eld (cf., Scherrer and Bertschinger, 1991 for a formal treatment).This �nite sampling introduces statistical uncertainties, commonly referred to as \shot"noise, into the analyses of redshift surveys. Shot noise is often further ampli�ed by theneed to correct for the selection criteria of a given sample, e.g., giving increased weightto more distant high luminosity galaxies in a ux-limited survey. Any reconstructionmethod aimed at recovering the true underlying density �eld must therefore yield robustand reliable results when the observations are corrupted by a high degree of statisticaluncertainty. 4



We have recently started a collaborative e�ort of reconstructing the LSS using theWF method, as �rst reported by Ho�man (1994a) and Lahav (1994a). The method hasbeen used recently to reconstruct the angular density �eld of galaxies in the 1.2 Jy IRASsurvey (Lahav et al. 1994a, hereafter LFHSZ) and the angular maps of the CMB temper-ature uctuations observed by COBE (Bunn et al. 1994; hereafter BFHLSZ). The angularreconstruction method was extended to three dimensions by Fisher et al. (1994, hereafterFLHLZ) and used to recover the real space density, velocity and gravitational potential�elds from the redshift distribution of galaxies in the 1.2 Jy IRAS survey. The reconstruc-tion presented in FLHLZ was based on a decomposition of the redshift space density �eldin spherical coordinates (spherical harmonics and spherical Bessel functions). A similarstudy utilizing a Cartesian space representation, is currently being conducted by Bistolas,Zaroubi and Ho�man (1994). A cosmographical analysis of these reconstructions has alsobeen presented recently (Ho�man, 1994b; Lahav, 1994b; LFHSZ). Given the substantialuse and application of the WF reconstruction we present here a uni�ed presentation of themethod.Many of the ideas presented in the present work are not fundamentally new, in par-ticular the basic WF theory. However, until recently it has not been applied to the re-construction of the LSS, and in particular, within the framework of GRFs. Our primaryaim is to present a comprehensive and self-contained description of the WF algorithm. Anoverview of the linear inversion problem and its solution by the WF is given in x2. TheWF is developed for various functional representations in x3. The use of WF for dynamicalmapping purposes is presented in x4. Possible extensions of WF are discussed in x5. Thepaper concludes with a general discussion (x6).2. Theory2a. The Inversion Problem5



Consider the case of a set of observations, or measurements, performed on an under-lying �eld s = fs�g (� = 1; : : : ;N), or on any �eld linearly related to s, which yields a setof results or data points, d = fdig (i = 1; : : : ;M). Here we are interested in measurementsthat can be modeled mathematically as a linear convolution or mapping of the underlying�eld, d = Rs+ ���; (2� 1)whereR is anM�N matrix which represents a response or point spread function (hereafterRF) and ��� = f�ig (i = 1; : : : ;M), is the statistical uncertainty vector associated with thedata. For simplicity, and with no loss of generality, we assume a discrete modeling ofthe �eld in some representation (e.g., a �nite number of Fourier coe�cients, sphericalharmonics, or real space positions). The RF can represent the response of the measuringdevice (or procedure) to the underlying �eld. Commonly it represents the blurring, orsmoothing, introduced by the measurement. The notion of a RF can however be extendedto represent a theoretical relationship between two �elds (e.g., a matrix which relates theFourier coe�cients of the density �eld to those of the velocity �eld (FLHLZ)).Usually, the statistical uncertainties in the data arise due to instrumental response(e.g., the noise in the individual COBE DMR pixels (BFHLSZ)). However, there are somecases in which the statistical uncertainties arise not from the measurement process but areintrinsic to the the underlying �eld. An example of such a quantity, which is of specialsigni�cance in cosmology, is the shot noise contribution to the the galaxy distribution whicharises from the sampling of the continuous density �eld by a �nite number of galaxies. Insuch a case, it is more illuminating to write the noise contribution as ��� = R��� where ��� isthe shot noise the underlying �eld which would be measured if R = I, the unity matrix.Smoothing or weighting procedures can introduce additional correlations in the statisticalnoise ��� (Scherrer and Bertschinger 1991). In any case we would like to emphasize thatthe correlation of the statistical uncertainties di�ers vastly from one case to another andit should be determined according to the problem at hand.6



Mathematically, the act of reconstruction amounts to solving Equation 2-1 for s givend, where R is assumed to be known and the uncertainties are only statistically known. Anaive approach to the problem is a deconvolution of the operator R by direct inversion,i.e., s = R�1d. This approach is, at best, far from optimal for several reasons. First, oneoften encounters situations where the number of independent data points is much smallerthan the number of degrees of freedom of the �eld (N � M). In such case the data donot contain enough information to constrain all the underlying �eld degrees of freedom.Second, it is well known that the direct inversion will greatly amplify the statistical noise��� and can lead to an unstable deconvolution even when M � N . Due to these potentialpitfalls of direct inversion, one is forced to resort to a regularization technique for solvingEquation 2-1, i.e., a method which will recover a reliable estimate of s given the data setd; as we see in the next section, this is precisely what the Wiener �lter is designed to do.2b. Wiener FilterThe canonical model of LSS assumes that the primordial perturbations constitute arandom �eld, hence we adopt this assumption for the reconstruction technique introducedhere. Our prior model assumes knowledge of the �rst two moments of the �eld, s, we wishto recover: namely its mean, DsE (taken in what follows to be 0 for simplicity), and itscovariance matrix, S = Ds syE � nDsi s�jEo : (2� 2)In equation 2-2 and in what follows sy denotes the complex conjugate of the transpose ofthe vector s and D:::E denotes an ensemble average. Notice that no assumption has beenmade regarding the actual functional form of the probability distribution function (PDF)which governs the random nature of the �eld besides its �rst two moments. We de�nean optimal estimator of the underlying �eld, sMV (hereafter MV estimator), as the linearcombination of the data, d, which minimizes the variance of the discrepancy between the7



estimator and all possible realizations of the underlying �eld. Thus one writessMV = Fd; (2� 3)where the F is an N �M matrix chosen to minimize the variance of the residual r de�nedby Dr ryE = D(s� sMV) (sy � sMVy)E: (2� 4)Carrying out the minimization of equation 2-4 with respect to F one �nds the so-calledWF, F = DsdyEDddyE�1: (2� 5)The MV estimator of the underlying �eld is thus given bysMV = DsdyEDddyE�1d : (2� 6)The variance of the residual of the �-th degree of freedom can be shown to beDjr�j2E = Djs�j2E � Ds�dyEDddyE�1Dd s��E : (2� 7)The noise term ��� is assumed to be statistically independent of the underlying �eld (D��� syE =0) and therefore the correlation matrices appearing in equation 2-6 follow directly fromequation 2-1: DsdyE = Ds syERy � SRy (2� 8)and DddyE �D = RSRy + D��� ���yE: (2� 9)For the case in which ��� is expressed in terms of ��� one gets,N� � D������yE = RD��� ���yERy � RN� Ry; (2� 10)8



N� and N� are the correlation matrices of the noise ��� and ��� respectively (N� and N� arenot necessarily diagonal). With these de�nitions, the expression for WF given in equation(2� 5) becomes F = SRy(RSRy +N�)�1 (2 � 11a)or F = S(S+N�)�1R�1 (2 � 11b)Although, equations 2-11a and 2-11b are mathematically equivalent, equation 2-11ais often more practical computationally since it requires only a single matrix inversion.y,However, if S and N� are both diagonal, then equation 2-11b becomes easier to dealwith numerically (e.g., LFHSZ). Furthermore, equation 2-11b shows explicitly the twofundamental operations of the WF:� inversion of the RF operating on the data (R�1) andsuppression the shot noise roughly by the ratio of priorprior+noise (if S and N are diagonal).Note that this ratio is less than unity, and therefore the method can not be used iterativelyas successive applications of the WF would drive the recovered �eld to zero.The variance of the residual given in equation 2-4 can be calculated easily usingequation 2-11b. This calculation gives,Dr ryE = S (S + N�)�1N�:In the rest of the paper we will consider the case where the uncertainties are expressedexplicitly in the observational domain and the uncertainty matrix is assumed to beN =N�.2c. Conditional Probabilityy In general, the matrices are not square; in these cases inversion refers to the pseudo-inverse, e.g. as de�ned in terms of Singular Value Decomposition (cf. x 5a.1).� Some authors refer to the ratio, (prior/prior+noise), as the WF. However, it is notalways possible to separate it from R�1; consequently our notation WF contains both theoperations noise suppression and inversion of the response function.9



We now consider the case where the prior model is extended to have a full knowledgeof the random nature of the underlying s �eld, which is mathematically represented by thePDF of the �eld, P (s). Knowledge of the measurement, sampling and selections e�ectsimplies that the joint PDF, P (s;d), can be explicitly written. The conditional mean valueof the �eld given the data can serve as an estimator of s,smean = Z sP (sjd) ds: (2� 12)The standard model of cosmology assumes that the primordial perturbation �eld is Gaus-sian, and therefore on large scales where the uctuations are still small the present epochperturbations �eld will be very close to Gaussian. The statistical properties of the GRFdepend only on its two-point covariance matrix; in particular the PDF of the underlying�eld is a multivariate Gaussian distribution,P (s) = 1�(2�)Ndet(S)�1=2 exp��12sy S�1s�; (2� 13)determined by the covariance matrix S (Bardeen et al. 1986).Now, if the noise is an independent GRF, then the joint PDF for the signal and datais, P (s;d) = P (s; ���) = P (s)P (���) / exp�12�sy S�1s+ ���yN�1���� (2� 14);while the conditional PDF for the signal given the data is the shifted Gaussian,P (sjd) = P (s;d)P (d) / P (s)P (���) / exp ��12�sy S�1s+ (d�Rs)yN�1(d�Rs)�� :(2� 15)Note also that the second term in the exponent, in equation 2-15, is �12 the classical�2 distribution. Following RP and Bertschinger (1987) we rewrite equation (2-15) bycompleting the square for s:P (sjd) /exp ��12�s� SRy(RSRy +N)�1d�y�S�1 +RyN�1R��s� SRy(RSRy +N)�1d�� :(2� 16)10



The integral of equation 12 is trivially calculated now to yield smean = sMV, theresidual from the mean coincides with r, which is Gaussian distributed with a zero meanand whose covariance matrix is �S�1 + RyN�1R��1. The important result is that forGRFs the WF minimal variance reconstruction coincides with the conditional mean �eld.Maximizing equation 2-15 with respect to the �eld s, yields yet another estimator, namelythe maximum a posteriori estimate (MAP) of the �eld; it is easily shown that the MAPestimator coincides with the WF and conditional mean �eld i.e., sMV = smean = sMAP .In several cases one might be interested in creating a random realizations of a GRFwhich reproduces a given set of data points, the so-called technique of constrained real-izations (CR) (Ho�man and Ribak 1991, hereafter HR). The idea of the CR method is tosupplement the mean �eld (which is uniquely determined by the data and the prior ) witha random realization of the residuals from the mean (see Bertschinger 1987, Rybicki andPress 1992 for a general discussion of CR). The resulting CR can be used as initial condi-tions for a non-linear N-body simulation or in a Monte Carlo study of the reconstructed�eld.Within the framework of GRFs and a given prior , one can show that any realizationcan be split into two parts: the mean �eld which is determined by the constraints (data)and the residual �eld which is a GRF whose variance is given in Eq. 2-7. The main pointof the CR is that the statistics of the residual �eld is independent of the actual numericalvalues of the constraints imposed (HR). Thus, one can make a random realization of theunderlying �eld, based on the assumed prior model, and sample it in the same way theactual data is obtained (cf., equation 2-1),~d = R~s+ ~�~�~� (2� 17)Here, ~s and ~�~�~� are random realizations of the underlying �eld and the statistical uncertain-ties, respectively. A CR of the �eld given the data is given by (HR):s = ~s+ F(d� ~d): (2� 18)11



Note that the variance of the residual obtained here is consistent with the expressionderived above (equation 2-7).Another estimator can be formulated from the point of view of Bayesian statis-tics. The main objective of this approach is to calculate the posterior probability of themodel given the data, which is written according to Bayes' theorem as P (modeljdata) /P (datajmodel)P (model). The estimator of the underlying �eld (i.e., model, in Bayes' lan-guage) is taken to be the one that maximizes P (modeljdata), which is the most probable�eld. The Bayesian posterior PDF is given by:P (sjd) / P (s)P (djs); (2� 19)now, in the general case which is given by equation 2-1, where the prior assumed to be aGaussian, equation (2-19) give:P (sjd) / exp�12�sy S�1s+ (d�Rs)yN�1(d�Rs)� (2� 20)the Bayesian estimator, as it corresponds to the most probable con�guration of the under-lying �eld given the data and Gaussian prior , coincides with the sMV.3. Representations3a. `Orthogonality' and functional Basis' SetsCosmic dynamical �elds (e.g., density, velocity and gravitational potential) can, likeany mathematically well behaved �elds, be expanded in any complete set of basis func-tions. Such a basis de�nes a space in which all of the physical, statistical and geometricalproperties of the �eld are retained. Spaces of special interest for WF applications are thosein which both 
s sy� and 
 ��� ���y� are diagonal (diagonal 
ddy�); in such a basis the WFhas a particular simple form. Such a basis, if it exists, is determined by the homogeneityand isotropy of the underlying �eld and shot noise. We will refer to the property of baseswhich diagonalize the correlation matrices as `statistical orthogonality'.12



As a simple example, consider the Fourier decomposition of the density �eld derivedfrom a full sky discrete galaxy catalogue. In the framework of linear gravitational instabilitythe Fourier functional basis is commonly used for the following reasons: a) The density �eldis statistically `orthogonal', namely, 
�k �k0� = P (k)�D(k�k0). b) The function eikr used inFourier transform is an eigenfunction both of the r and the Laplacian operators, therefore,Fourier space maintains the correspondence between dynamical �elds algebraically. In thissimple case, the underlying and observed �eld are related by�k = �k + �; (3� 1)where �k and �k represent the Fourier coe�cients of the underlying and observed �eldsrespectively, and � (which is independent of k) is the transform of the shot noise term.Eq. 3-1 is a special form of the general inverse equation 2-1 with R = I. The WFreconstruction is particularly simple and is given by (cf., equation 2-11b)�MVk = � P (k)P (k) + 
j�j2���k : (3� 2)Note that the WF is given by the ratio of power to (power + noise) and that in the limitof very good data (P (k) � 
j�j2�) the WF tends to unity and one recovers the raw data.While, in the limit of bad data, (P (k)� 
j�kj2�), the WF attenuates the signal in an e�ortto suppress the statistical noise. This simple example demonstrates a generic feature ofthe WF; when the data is of high signal to noise it is equivalent to direct inversion andwhen the data is poor it yields the null estimator.3b. SH and Mask Inversion - Two DimensionalAnother convenient functional basis is the spherical harmonics and spherical Besselfunctions basis, which is suitable for expanding the �eld at hand around a given point. Itis easy to show that in such representation homogeneous and isotropic random �elds are`statistically orthogonal'. 13



Spherical harmonics (SH) have been used to probe the large scale structure from wideangle galaxy surveys (Peebles 1973, 1980; Scharf et al. 1992; Scharf & Lahav 1993). Theseanalyses consist of expanding the angular galaxy distribution in a set of spherical harmon-ics which form an orthonormal functional basis when the expansion is carried out over thefull, 4�, sky. Galaxy surveys su�er from two basic problems, namely a signi�cant shotnoise and incomplete sky coverage. Now, in the absence of noise the full sky harmonicscan be easily found by a matrix inversion (Scharf et al. 1992) but the shot noise desta-bilizes the inversion. The reconstruction of the IRAS angular structure is well suited fora WF approach, as indeed has been recently worked out by LFHSZ. Here we expand thebrief description of LFHSZ and study the potential and limitations of the application ofthe WF to the angular structure. The method is applied here to mock IRAS catalogs,compiled from N-body simulations, to test its ability to reconstruct the underlying largescale structure.Consider an underlying angular density �eld, given in terms of its spherical harmonicexpansion, alm = Z dr̂S(r̂)Y �lm(r̂): (3� 3)where the projected surface density is given byS(r̂) =Xlm almYlm(r̂) : (3� 4)This �eld is sampled by a �nite distribution of galaxies, which su�ers basically from in-complete sky coverage. This sampling yields a raw estimator of alm by:clm = NgalXi Y �lm(r̂i) (3� 5)The observed clm and the underlying alm are related byclm = Xl0m0 Wmm0ll0 al0m0 + �lm (3� 6)14



where Wmm0ll0 = NgalXi Y �lm(r̂i)Y �l0m0 (r̂i); (3� 7)is the harmonics expansion of the mask and �lm is the shot noise term. Note that the maskintroduces mode-mode coupling between the `observed' harmonics even in the case wherethe underlying harmonics alm are statistical independent. In the case of full sky coveragethe mask converges to Wmm0ll0 = �l0l �m0m . The extraction of the monopole term, correspondsto the mean surface number density, should take into account that it is coupled to the othermultipoles. (See Peebles 1973, 1980 for rigorous treatment of a non-zero monopole term.)The representation in terms of spherical harmonics assumes that the sum in equation 3-4extends to an in�nite harmonic number, l. In practice, one should check for convergenceof the summation as l goes to in�nity. A cuto� at a maximal lmax implies a �lter whichcuts the small scale power on an e�ective angular scale of � �=lmax.Eq. 3-6 can be rewritten asclm = Xl0m0 Wmm0ll0 fal0m0 + �l0m0g (3� 8)where �l0m0 is the shot noise term in the case of full sky coverage. Assuming that theshot noise behind the masked region is the same as in the other regions, it follows thath�lm �l0m0i = N �l0l �m0m (Scharf et al. 1992), where N is the two dimensional projectedaverage number density.The recovery of the `true' alm from equation (3-8) amounts to a deconvolution orinversion, which in the presence of noise is well known to be unstable. The WF is invokedhere to stabilize this deconvolution, thus serving two purposes, namely estimation andprediction. The WF yields an estimator of the underlying �eld suppressed o� the shotnoise, and a prediction of the galaxy distribution in the masked regions.Substituting c from equation 3-8 in equation 2-6 one obtains the MV estimator of theunderlying �eld, aMV =ha ayi h�a+ ���� �ay + ���y�i�1W�1c15



=diagn AlAl +N oW�1c � B�1C; (3� 9)where for a statistical isotropic perturbation �eld the covariance matrix of the alm isdiagonal, halma�lmi = Al�ll0�mm0 . Here the data and estimator vectors, C and aMV, areassumed to be of the same length and the B�1 is a square matrix. In the case of a fullsky coverage, where W is the unity matrix the WF corresponds to a diagonal isotropic(no m dependence) matrix which a�ects only the amplitude but not the `phases' of theharmonics. In the case where the observation is dominated by noise the WF approachesthe null matrix and the estimator vanishes. In the limit of negligible noise but partialsky coverage the WF corresponds to a straightforward deconvolution of the `observed' clm.The variance of the residual from the mean is given by:h[a� aMV][ay � aMVy]i = diag� h�2ai AlAl + h�2ai� ; (3� 10)where it is dominated by the theoretical power spectrum when h�2ai � ha2l ith, and vanishesif the signal to noise ratio is very big.Here we apply this method to a standard CDM simulation characterized by 
0h = 0:5with particles selected to mimic the IRAS 1.2Jy galaxy catalogue. The simulation evolvesthe particles until the rms variance of the density �eld in a sphere of 8Mpc=h reached�8 = 0:62 (see Fisher, Scharf and Lahav 1994, for more details). At the �rst stage weassume a full sky coverage for which the coupling matrix,W, is the unity matrix. Figure 1shows the harmonic reconstruction of the projected counts of the simulation, using theraw all-sky coe�cients clm up to lmax = 15 of the Mock IRAS catalogue in Galactic Aito�projection. Although, in this case the sky is fully covered, WF is used to suppress theshot noise giving the most probable underlying density �eld. Note, that in this case WFchanges only the harmonics amplitudes and do not a�ect the relative phases. Figure 2shows the Wiener reconstruction of the all-sky map of Figure 1, using the Wiener �lteredcoe�cients, alm, up to lmax = 15, where a standard CDM power spectrum is assumed andthe shot-noise is taken from the simulation (392 galaxies per steradian). Figure 3 shows16



the Wiener factor (the ratio AlAl+h�2ai ) versus the harmonic number l, this factor dropsmonotonically with l due to the increasing of the relative shot noise power (�2a=Al) withl. An application of the method for projected Mock IRAS 1.2 Jy catalogue with a ZOAjbj = 15� is presented in x5a.1 and for the real IRAS data with jbj = 5� at LFHSZ.A similar approach has been adopted recently by BFHLSZ to analyze the �T=T mapdetected by COBE's DMR. Another basis that can be used to produce WF estimator of theCMB distribution, is the one introduced by G�orski (1994). In this basis the inner productis de�ned by an integral over the incomplete part of the sky covered by the radiation.Orthogonality is obtained by applying Gramm-Schmidt orthogonalization method on thebasis of spherical harmonics.3c. SH and Spherical Bessel Functions for 3D ReconstructionHere we use spherical harmonics and spherical Bessel functions, jl(kr) (cf., Arfken1985; Jackson 1975), to expand the three dimensional galaxy distribution in whole-skysurveys. Recently, FLHLZ (see also Heavens and Taylor 1994) used this basis to probethe underlying density, velocity and potential �elds, from IRAS 1.2 Jy redshift catalogue,where they usedWF for both noise suppression and deconvolution of the redshift distortion.FLHLZ neglected the coupling introduced by the incomplete sky coverage, which is a fairassumption for IRAS catalogue. Here we use the same �eld to expand galaxy survey whichsu�ers both from incomplete sky coverage and selection e�ect, where the redshift distortionis neglected.Here we assume an in�nite sample, hence, k will be continuous (for detail discussionon the e�ect of �nite sample and its boundary conditions see FLHLZ). The expansion isde�ned as follows: �� �(r) = 2� Xlm Ylm(r̂)Z 10 �lm(k)jl(kr)k2dk (3� 11)where the expansion coe�cients �lm(k) are de�ned as17



�lm(k) = Z �(r)jl(kr)Ylm(r̂)d3r (3� 12)The relation between the Fourier components of the density �eld and expansion coef-�cients can be very easily obtained,�lm(k) = il4� Z �kY �lm(k̂)d2
k (3� 13)where the well known relation,eik:r = 4�Xlm iljl(kr)Ylm(r̂)Y �lm(k̂)has been used.The last two equations yield the auto-correlation function of the coe�cients �h�l1m1(k1) ��l2m2(k2)i = �2 P (k1)k21 �Kl1;l2�Km1;m2�D(k1 � k2) (3� 14)where P(k) is the usual power spectrum. This equation shows that this basis is statisticallyorthogonal and therefore, might be very useful for WF.Now consider a 3-D ux limited catalogue, which su�ers also from the incomplete skycoverage. Namely, the observed density is related to the real density � by, M(r̂) �(r) �(r),where M is the mask function and � is the radial selection function (we restrict thetreatment to a pure radial selection function). The `observed' expansion coe�cients of theoverdensity are: �obslmn = Z M(r̂)�(r)!(r) �(r) jl(kr)Ylm(r̂) d3r (3� 15)where !(r) is an arbitrary weighting function (often taken to be �(r)�1).� This equation obtained by using the orthogonality of spherical Bessel functions:Z 10 r2jl(k1r)jl(k2r)dr = ��D(k1 � k2)2k2118



The overdensity MV estimator �̂lmn given a model is (equation 2-6):�̂lmn = Xl1m1k1 Xl2m2k2h�lmn �obs;�l1m1k1i h�obsl1m1k1 �obs;�l2m2k2i�1�obsl2m2k2 (3� 16)here the correlation function of the `observed' coe�cients is:h�obsl1m11 �obs;�l2m22i =Z d3r1d3r2�(r1)�(r2)!(r1)!(r2)jl1(k1r1)jl2(k2r2)� Y �l1m1(r̂1)Yl2m2(r̂2)M(r̂1)M(r̂2)�(jr1 � r2j)+Z d3r�(r)!2(r)jl1 (k1r)jl2(k2r)Y �l1m1(r̂)Yl2m2 (r̂)M2(r̂) (3� 17)where � is the correlation function. The last expression contains two terms, the �rst comesfrom the correlations and the second comes from the shot noise. Note that in the shotnoise term � appears to �rst power, while in the mask term it appears squared. This dueto the di�erent e�ect of the radial selection function on the noise. The �rst term at theRHS of equation (3-17) can be written, after some algebra, as:I =2� Xl0m0 Wm1m0l1l0 Wm2m0l2l0 Z dkk2P (k)� �Z dr1r21�(r1)!(r1)jl1(k1r1)jl0(kr1)�� �Z dr2r22�(r2)!(r2)jl2(k2r2)jl0(kr2)� (3� 18)and the second term is:II = ( 2� )2Xl0m0 Wm1m0l1l0 Wm2m0l2l0 Z dr r2�(r)!2(r)jl1 (k1r1)jl2(k2r2) (3� 19)The correlation function between the `theoretical' and `observed' coe�cients is:h�lmn �obs;�l1m11i = Z d3rd3r1�(r1)!(r1)jl1(k1r1)jl(kr)M(r̂1)Y �lm(r̂)Yl1m1(r̂1)�(jr � r1j)(3� 20)This expression does not include a shot noise term. After some algebra, equation 3-20 canbe writtenh�lmn �obs;�l1m1k1i = 2�Wm1ml1l P (k)Z dr1r21jl1(kk1r1)jl(kr1)�(r1)!(r1) (3� 21)19



some of the expressions become very simple when !(r) = �(r)�1. Note, that even in thiscase equation (3-17) is not diagonal.3d. Cartesian CoordinatesThe last section shows that working in a `statistically orthogonal' representation doesnot necessarily simplify the calculations, moreover, it turns out that if the ZOA coversmore than jbj = 15� (as is the case for most optical catalogues), then spherical harmonicsreconstruction requires additional regularization beyond the WF (LFHSZ and section 5below). In fact in some cases it might be more useful to perform the calculation in thereal space (Ho�man 1994a,b). Here, MV estimator of the density is calculated in terms ofCartesian coordinates, where the considered model is an IRAS mock catalogue, extractedfrom a numerical simulation of a CDM Universe. The simulations are those used byBistolas, Zaroubi and Ho�man (1994) and are of standard biased CDM model (h = 0:5,
 = 1, � = 0, n = 1). The output time of the simulation corresponds to an rmsamplitude of mass uctuations in an 8Mpc=h sphere of �8 = 1. The points selected asgalaxies, however, are not biased; they do trace the mass, i.e., b = 1 and 
0:6=b is unity.The mock catalogue was constructed to mimic the IRAS 1.2 Jy selection function. Herethe ZOA modeled as a sharp mask at Galactic latitude jbj = 5�. For this case the followingmatrices are substituted in equation 2-6:< si dj >= �(jri � rjj) (3 � 22a)< dj dk >= �(jrj � rkj) + 1�n(2��2)3=2 Z ��1exp(�" (ri � x)2 + (rk � x)22R2s #) d3x(3 � 22b)where � is the IRAS selection function (Yahil et al. 1991), Rs = 10Mpc=h and �n is themean number density of the mock catalogue. It is straight forward to calculate the shotnoise term in equation 3-22b (Scherrer & Bertschinger 1991; Bistolas, Zaroubi and Ho�man1994). 20



Figure 4y shows a reconstruction of the density �eld in the supergalactic plane fromthe mock IRAS CDM catalogue. The reconstruction is performed within a sphere ofradius r = 60Mpc=h where 834 constraints are taken from radius of 40Mpc=h. Figure 4ashows the underlying �eld from which the catalogue is constructed. The `observed' mapsmoothed over 10Mpc=h is shown in Figure 4b. The MV reconstructed map is shown inFigure 4c. The contours are spaces at �� = 0:1 with solid (dashed) line denoting positive(negative) contours. The heavy line represents � = 0, all the maps have been smoothedover 10Mpc=h. Figure 4d shows the reconstructed density within r < 40Mpc=h versusthe true density as given by the N-body simulation.4. Dynamical ReconstructionThe applications of the WF approach presented so far have all dealt with the statis-tical reconstruction of an underlying �eld from observational data that sample that �eld.In particular we have focused on the density �eld which is sampled by the galaxy distribu-tion. Here, the reconstruction method is extended further to do dynamical reconstruction,namely using observational data that sample one �eld to reconstruct a di�erent �eld that isdynamically related. Immediate application of that approach to the study of LSS includesthe reconstruction of underlying density �eld from observed radial peculiar velocities, orgoing the other way round to use density data to construct the peculiar velocity �eld. Thisdynamical approach depends on the availability of a theoretical model which relates thetwo di�erent �elds via a cross-correlation function. Most of the discussion here is based onthe linear theory of gravitational instability, however it will be shown how the formalismcan be extended beyond the linear regime.The velocity-density relation plays a crucial role in the study of LSS (for a recent re-view see Dekel, 1994). An example of an algorithm for reconstructing the density from they V. Bistolas has kindly provided us with this �gure21



velocity �eld is the POTENT method where the observed radial velocities are integratedalong the line-of-sight to get the velocity potential (Bertschinger and Dekel 1989; Dekel,Bertschinger and Faber 1990). This method assumes that the velocities are derived from apotential ow; with the additional assumption of linear theory the Laplacian of the poten-tial yields the density uctuations up to an overall proportionality constant. The drawbackof this method, as is true with many other methods, is that it does not separate the signal(in this case the density �eld) from the noise (velocity errors). Hence velocity measurementerrors are fed into the density determination. An indirect density-from-velocity reconstruc-tion was done before by Kaiser and Stebbins (1991) and Stebbins (1994), who have de�nedthe problem within the framework of Bayesian statistics. Their approach is equivalent, ofcourse, to the WF method, and it is repeated here for the sake of completeness. The op-timal dynamical reconstruction, �opt(r), is derived by cross-correlating the radial velocity,u(r) = v(r) � r̂ with �(r): �opt(r) = D�(r)uiEDuiuj + �2iE�1Uj : (4� 1)Here the Ui = ui + �i is the observed radial velocity and for simplicity we assume adiagonal error covariance matrix. Given an assumed power spectrum the auto- and cross-correlation functions are readily calculated. Note that within the linear theory the velocityand density �eld are related by a simple convolution, and therefore the problem of densityreconstruction from observed velocity is equivalent to a deconvolution in the presence ofnoise (with possible predictions to unobserved regions). The inverse problem of estimatingthe velocity �eld from the measured galaxy distribution is very similar to the above velocityreconstruction.The density-density reconstruction has been given in x3. The velocity-density relationis analogous to equation 4-1, i.e.,vopt(r) = Dv(r)�(ri)ED�(ri)�(rj)E�1�(rj) : (4� 2)22



A major problem in analyzing red-shift surveys is the transformation of the galaxiesfrom redshift to real space. Two direct approaches to the problem have been used inanalyzing the IRAS redshift catalog. One is the iterative method of Yahil et al. (1991),and the other more recent modi�ed Poisson equation of Nusser and Davis (1994). Thelatter method relates the velocity potential to the density evaluated in redshift space,resulting in a Poisson equation with an extra term added to it. These two direct methodsdo not remove the noise before applying the dynamical mapping, but rely on smoothing tomitigate its e�ects. Within the limitation of the linear theory a WF can be used to removenoise, transform from redshift to real space, deconvolve smoothing and extrapolate acrossunobserved regions (cf., FLHLZ). This is given by�opt(r) = D�(r)�S(si)ED�S(si)�S(sj)E�1�S(sj); (4� 3)and here s is the position vector in redshift space, subscript S denotes quantities evaluatedin redshift space and �S is the observationally determined density (contrast) as evaluatedin redshift space. The auto- and cross- correlation matrices which relate the redshiftspace and real space densities are readily calculated in the linear theory (cf., Zaroubiand Ho�man 1994). In the linear theory the redshift space density depends linearly onthe actual (real space) densities, and therefore one can write a linear transformation torelate the two and the WF approach amounts a matrix inversion in the presence of noise.Indeed, the redshift to real space transformation in the SH presentation is given in termsof a regularized inversion of a distortion matrix (FLHLZ).5. Extensions5a. Extra-RegularizationIn several cases the WF alone is not su�cient to stabilize the deconvolution and con-sequently it must be either modi�ed, supplemented with extra-regularization, or replaced23



with another method. In this section we examine several examples of extra-regularizationand briey discuss other possible regularization techniques.5a.1 SVD as a RegularizerA simple example which illustrates the need for further regularization is the recon-struction of the angular galaxy distribution when the ZOA is quite large, as in the caseof optical galaxy surveys. In this case the stability is controlled by four factors, namelythe prior , the shot noise, the width of the mask and the required resolution (i.e., lmax).Mathematically, the reconstruction of the full sky harmonics given in equation 3-9, involvesthe solution of the equation BaMV = C (5� 1)for the unknown harmonic coe�cients, aMV.An elegant and robust solution to such a linear set of equations is given by the Sin-gular Value Decomposition algorithm (SVD) (e.g., Press et al. 1992) The SVD algo-rithm basically decomposes any M �N matrix, B, into a multiplication of three matrices,B = U diagf�ig VT where the set f�ig are the referred to as the singular values of thematrix B. The matrices U and V are each orthogonal in the sense that their columns areorthonormal. The matrix U is also of order N �M while the other two are square N �Nmatrices. The inversion, after the decomposition, is straightforward and gives,B�1 = V diagf1=�ig UT : (5� 2)Formally speaking, equation 5-1 has a unique solution if and only if B is a non-singularmatrix, namely if �i 6= 0 for all i. However a meaningful solution to equation 5-1 can beobtained even in the case where B is singular, by requiring the solution to minimize thenorm of the residuals, jBa�Cj. Such a solution is obtained by substituting 1=�i = 0 inthe expression for the inverse (equation 5-2) for any �i = 0 (Press et al. 1992).The question arises in a particular problemn of setting the lower limit of the singularvalues, below which the inverse values are set to zero. As an example, we consider the24



problem of reconstructing the harmonic coe�cients for the simulations discussed in x 3bwhen the ZOA is quite large, jbj � 15�, (characteristic of optical galaxy catalogues).Figure 5 shows the harmonic reconstruction of the projected counts of the simulationusing the raw harmonic coe�cients, clm, up to lmax = 15. In this case the direct inversionof the matrix B is unstable and yields excessive power on small scales. However using theSVD algorithm sheds a new light on the question of the stability of the WF reconstruction.Figure 6 shows the sorted spectrum of the singular values (�i) versus the harmonic number,l. In general, the singular values measure the amount of `information' carried by eachmode in the problem (Press et al. 1992), namely the small singular values does not havesigni�cant contribution to reconstruction, nevertheless, they can destabilize the inversion.As an extension of the ideal case of �i = 0, we impose a cuto� on the small singular valuesin order to maintain stability. The `knee' in Figure 6 suggests how to choose the cuto� forthe SVD, where in this case it is �min=�max = 0:565. Note that this cuto� suggests thatonly the largest 184 modes are signi�cant, corresponding to an e�ective lmax � 13. Thisimplies that with a mask of jbj = 15� (and assumed shot-noise and power spectrum) therein no need to expand the harmonics much beyond l = 13.Figure 7 shows the the reconstructed alm's map using WF and the above cuto� forSVD. Note that here, contrary to the jbj = 5� case discussed by LFHSZ where the structurewas recovered in the ZOA, the reconstructed ZOA remains empty, which illustrates thatWF even with the use of SVD extra-regularization can not create structure out of nothing,unless it is dictated by the correlations (cf., LFHSZ).This example shows how by using the singular values one can gain more insight tophysical relevance of the harmonic modes and how to use that to stabilize the deconvolutionoperation. Yet, as with theWF, the application of the SVD does not guarantee the stabilityof reconstruction. In cases where the amount of observable data, its quality and the natureof the prior do not set strong enough constraints on the underlying �eld other regularizationtechniques might be used. 25



5a.2 Maximum EntropyThe MaxEnt algorithm is closely related to the Bayesian approach discussed in x 2cand it can actually be regarded as a particular application in which the PDF of the prior isgiven as the exponent of some regularization functional, usually called `entropy' functional(Narayan and Nityananda 1986). The common application of the MaxEnt technique isin image reconstruction, where one often deals with very high signal-to-noise images. Insuch cases the entropy is formulated in general terms of information theory without anyreference to the physical nature of the object whose image is studied. Thus an image ofan Sb galaxy taken by an astronomical telescope or a picture of New York City takenfrom an Earth-orbiting satellite are analyzed by the same MaxEnt technique (e.g., Puetterand Pina, 1993). The analysis of LSS presents a very di�erent challenge, involving datasets whose typical signal-to-noise ratio is rather low, of the order of a few or even unity.However, LSS has been extensively studied and a lot of information has been accumu-lated. This information should be taken into account in constructing a prior model, andthis should compensate for the low quality of the data. Thus, unlike the case of imagereconstruction where the entropy describes the information content of the image regardlessof the physical nature of the object at hand, a MaxEnt approach to LSS should be basedon an entropy formulation which depends on the physics of the underlying �eld. Appli-cations of the MaxEnt method for image restoration in astronomy, using various entropyfunctionals has been reviewed by Narayan and Nityananda (1986).Maximum Entropy can be viewed as a regularization procedure where the quantitymaximized is Q = �L+ � Swhere (�L) is the log-likelihood function (�12�2), � is a Lagrange multiplier, and S is theentropy. When considering reconstructions of cosmological �elds it seems reasonable tochoose the galaxy density � as the relevant variable, and to adopt Skilling's generalization26



of Shannon's entropy (Skilling 1988) :S(�) = �� ��� � ln(�=��);such that when � = �� the entropy is zero, and the form ensures that the density cannot benegative. Maximizing the entropy under the data constraint (likelihood) will give us themost conservative picture of deviations from uniformity allowed by the data. For a similarapplication of reconstructing the galaxy density �eld with Maximum Entropy see Lahavand Gull (1989).We now note that for small uctuations � = (� � ��)=��, the entropy is S � �12 ���2.This quadratic form as a regularizer (which does not ensure positivity) leads a Wiener �lter(as described in x 2). Hence in the case of small uctuations the Maximum Entropy andWiener approaches are very similar. We note that in our Wiener approach the Lagrangemultiplier is not a free parameter; it is �xed in terms of the assumed cosmic variance.5b. Alternative FiltersThe WF is based on a minimal variance approach, and therefore it should provide apowerful reconstruction technique for random systems whose statistical behavior does notdepend on moments higher than the second, namely the variance. Not surprisingly it hasbeen shown here that in the case of GRFs the WF coincides with MAP, MV and meanestimators of the underlying �eld. Thus, to the extent that the system under considerationis well described by the formalism of GRFs one might reasonably expect the WF to performwell. The case of the linear regime of LSS certainly falls in this category.As mentioned before, the WF has its limitations, even in the framework of GRFs. Itdepends on an adequate modeling of the data, and an assumed knowledge of the correlationfunction of the underlying �eld and the nature of the statistical uncertainties. Now, inthe limit of no statistical uncertainties, the WF reduces to a simple deconvolution andprediction. This can be extended over an in�nite domain (in real space) or to in�niteresolution (e.g., in Fourier space). The existence of noise limits the extrapolation of the27



reconstruction in the two conjugated spaces. Yet, the tendency of the WF is to vanish inthe absence of good data, yielding the null �eld as the best estimator. The WF alwaysyields a conservative estimate of the underlying �eld, replacing noise by the zero �eld. Anad hoc attempt to correct for this conservative approach is given by a modi�ed WF (cf.,Andrews and Hunt, 1977), which in the case of a diagonal WF has a simple form. Here weapply it to the case of Fourier space reconstruction involving smoothing, where the pointspread function is W (k) = exp��k2R2=2� (R is the smoothing length). A modi�ed �lteryields, �estk = � P (k)W (k)P (k)W 2(k) + �2 �1��W���k; (5� 3)where � ranges from 0 to 1. Note that in the limit of vanishing noise (�2) one obtainssimple deconvolution, which is also the case of � = 1. The standard WF is recovered for� = 0. Adopting values of � larger than 0, increases the amplitude of the �lter and thusthe amplitude of the estimated �eld. The reader should be aware that this stronger signalis obtained at the expense of weaker statistical signi�cance (larger variance) since more ofthe observational noise is retained as \real" signal. A recent application of a modi�ed WFhas been done by A. Yahil (private communication)5c. Non-Gaussian FieldsAs the perturbation �eld evolves to the non-linear regime it ceases to be a GRF,namely its (Fourier) phases become correlated. Much of the success of the application ofthe WF to the reconstruction of the LSS is due to the Gaussian nature of the primordialperturbations. The question naturally arises as to what extent the WF approach is appli-cable beyond the linear regime. Here we present two di�erent approaches, dynamical andstatistical, to the problem.It has been argued that the statistical properties of the perturbation �eld in the quasi-linear regime are well approximated by a log-normal distribution (Coles and Jones 1991;Sheth 1994). Given that, the WF can be applied to the reconstruction of the logarithm ofthe density to yield an optimal estimator of the log[�] �eld. This can be easily done either28



by estimating the correlation functions directly from the observations or by calculatingthem theoretically from a chosen model. However, ambiguity arises when this is translatedto the actual density �eld. For a log-normal distribution the di�erent estimators, namelythe optimal (in least squares sense), mean and most probable, do not coincide (Sheth1994). Also, special care should be given to the treatment of errors in the determinationof the log[�] �eld. Note however that to the extent that the log-normal distribution is agood �t to the data, the WF provides a statistical rigorous reconstruction tool and theambiguity in its application arises from the nature of the assumed log-normal statistics.Note also that such a PDF preserve the positivity of the density �eld.A very di�erent approach is to perform the reconstruction on the density �eld itself,namely applying the WF as a minimal variance estimator regardless of the actual statis-tical distribution. Now, the nature of the gravitational instability is that the fractionaloverdensity (�) cannot be negative, and therefore as the dynamics evolves away from thelinear regime skewness develops (Bouchet et al. 1993, Nusser, Dekel & Yahil 1994). TheWF minimizes the variance and it tends to ignore the skewed nature of the distribution.Thus, at least in the form presented here, the WF is expected to yield poor reconstructionof the LSS in the very non-linear regime. Yet it might be of some use in the quasi-linearregime. This, rather naive, application of the WF can be improved considerably in thefollowing way. Consider the problem of the reconstruction of the primordial perturbation�eld from the present day quasi-linear observed density and/or velocity �eld, i.e., the re-covery of the linear �eld from the present epoch quasi-linear structure. Formally this canbe obtained by using equation 4-3 in which the index S is substituted by QL, which refersthe quasi-linear density (or velocity) �eld. This depends on the evaluation of the auto- andcross-correlation functions. This can be achieved by direct analytical calculation withinthe framework of perturbation theory, or evaluated empirically from fully non-linear nu-merical simulations. Note that in this case the minimal variance reconstruction coincideswith the mean �eld and most probable Bayesian estimator (within the framework of the29



GRFs). To reconstruct the present day LSS one can use CR to add short waves powerand set initial conditions for N-body simulation. Integrating the equations of motion oneobtain a full non-linear reconstruction of the LSS.Finally, in the limit of small density number of galaxies in the catalogue, the shotnoise is no longer well represented by a Gaussian �eld. While, the Gaussian assumption isreasonable for most regions, a rigorous treatment of the WF in underdense regions requiresthe noise to be described by a proper Poisson PDF.5d. Simultaneous Reconstruction and Parameters EstimationSuppose that the physical model one uses to construct the prior has a few freeparameters. Generally, one would like to determine the parameters in the prior as wellas the underlying �eld using the same data. The Bayesian approach provides one with amethod of simultaneously determining the �eld and the parameters. In the context of ourproblem, there are two kinds of parameters, internal and external. The internal parametersare free parameters appearing in the theoretical prior (e.g. 
 and the bias parameter).while the extrenal parameters account for possible corrections to the model (e.g. the e�ectof matter outside the sampled volume on the reconstructed peculiar velocities). Equation2-1 can be readily extended to include a set of linear external parameters, q,d = Rs+Tq+ ���: (5� 4)where the linearity is represented by the M �L matrix T. (The estimation of the externalparameters was analysed by Rybicki and Press,1992, and this is generalized here to thecase of internal parameters as well)A Bayesian approach to the problem is to write the posterior PDF,P [s;p;qjd] = P [s;p;q]P [djp;q; s]P [d] / P [s]P [djs] ; (5� 5)where we have included the dependence of the prior of a set of internal parameters, p.The last proportionality in equation 5-5 holds for the case of an assumed uniform prior30



for p and q (P [d] serves only to normalize the probability function). Extending equation2-15 to include the free parameters, one �ndsP [s;p;qjd] /s 1det(S)� (5� 6)expn�12hsyS�1s+ �d� (Rs+Tq)�yN�1�d� (Rs+Tq)�io� Z expf�12�gNote that here the correlation matrix, S depends on p while N does not. The second termin the argument of the exponent (�) is the �2 of the data for a given set of parameters anda realization of he underlying �eld: � = syS�1s+ �2 (5� 7)The Bayesian, namely MAP, simultaneous estimation of the �eld and parametersis obtained by solving for the extrema of the posterior PDF in the multidimensional(N + L+ P ) space: � @@s ; @@p ; @@q�P [s;p;qjd] = 0 (5� 8)Consider �rst the estimation of q. The only external dependence of the posterior PDFis in the �2, and therefore the vanishing of the gradient in the subspace of the externalparameters implies that @@q�2 = 0: (5� 9)Solving this equation one �nds (RP):qMAP = �TyD�1T��1TyD�1d (5� 10)Next, one takes the �rst derivative of equation 5-6 with respect to s. The MAP solutionis equivalent to the WF, and upon substituting qMAP one �nds:sMAP = SRy �RSRy +N��1 �d�TqMAP� (5� 11)31



Finally, the internal parameters are to be determined here, thus solving�@P [s;p;qjd]@p �qMAP;sMAP = 0: (5� 12)Now, given equation 2-16 it can be easily shown that on the subspace where q = qMAP,[�] = 0. (here it might be equal to an irrelevant constant, independent of data.) Next one�nds, � @�@p�qMAP;sMAP = @dy�RSRy +N��1d@p � @�2CV@p ; (5� 13)where �2CV is the �2 that takes into account the cosmic variance, i.e., all possible realiza-tions of the �led s. The condition imposed by equation 5-9 now yields,ddp �logZ � 12�2CV� = 0: (5� 14)Thus solving equation 5-12 one �nds the most probable values of the parameters, pMAP,given the data. Note however that this is exactly the result obtained by writing thelikelihood function of the data given the parametric model (after correcting for the externalparameters), L�djp� = Z exp��12�2CV� : (5� 15)Namely a likelihood function which takes into account all possible variations of s, i.e.,the cosmic variance. The conclusion that follows is that the likelihood analysis of theparameters is independent of the Wiener estimation, but is consistent with it.6. DiscussionThe general framework of linear estimation and prediction by minimal variance, alsoknown as Wiener �ltering, has proved to be a very useful tool for reconstructing the largescale structure of the universe from incomplete, noisy and sparse data. In particular thisholds on scales where the linear theory is valid and the underlying perturbation �eld is32



Gaussian. In such a case the WF solution of minimal variance coincides with other esti-mators such as the Bayesian MAP solution, conditional probability and maximum entropy(for a quadratic entropy). In conjunction with the algorithm of constrained realizationof GRFs, the combined WF/CR approach provides one with a method of reconstructing,predicting and performing Monte Carlo simulations of the LSS. Various applications of themethod include the reconstruction of the angular (LFHSZ) and three dimensional (Ho�-man 1994a,b) galaxy distribution, the peculiar velocity and density �elds (FLHLZ), andthe CMB large scale anisotropies (BFHLSZ). This approach is currently being used to setinitial conditions for high resolution N-body simulations from low resolution IRAS dataand to perform Bayesian parameter estimation from COBE DMR's data.The WF has lost its appeal in many �elds of physics and technology where one facessimilar problem of reconstruction from noisy and blurred data, and in particular so inthe �eld of image reconstruction. The �eld of cosmology and LSS, on the other hand,provides one with an ideal case for using the WF. The main shortcoming of the WF isthat it involves only the �rst and second moments (mean and variance) of the statisticaldistribution, ignoring higher moments. However, a fundamental ingredient of the canonicalmodel of cosmology and LSS is that the primordial perturbation �eld is Gaussian, i.e.,it is determined by its �rst two moments. Thus a WF would reconstruct all the keyingredients of such a �eld, and would not add any new ones as an artifact. Furthermore,the basic underlying symmetries of the cosmological model are homogeneity and isotropy,and this statistical homogeneity is a necessary condition for a successful application of themethod. Thus, as long as one deals with structures in the linear regime, where the GRFapproximation holds, the WF is the tool of choice for reconstruction. Yet one problemstill remains, and that is related to the basic property of the �lter to predict the null�eld in the absence of good data. In the limit of very poor signal-to-noise data and/orfar away from regions of good data, the cosmological mean �eld is estimated, i.e., zeroperturbation. Now, this is what one expects of course, but this is not very useful for33



Monte Carlo and modeling purposes. A common astrophysical problem is that the qualityof the data degrades with distance, and as the signal-to-noise ratio decreases the amplitudeof the WF estimated �eld decreases with it. Yet the model tells us that the variance ofthe �eld is constant in space. This problem is solved here by making CR on the data,i.e., adding to the minimal variance solution a random realization of the residual fromthe mean. The CR is guaranteed to have the correct variance, and where the quality andsampling of the data are good, the resulting CR is dominated by the data and the actualunderlying �eld is recovered. Otherwise, almost random realizations are obtained that aredominated by the prior model, but still somewhat constrained by the available data.The traditional WF approach focuses on recovering the underlying �eld, whose sta-tistical behavior is determined by the prior model. However, commonly the cosmologistanalyzing a data set is primarily interested in estimating the free parameters that deter-mine the model and only then to estimate the �eld itself. The Bayesian approach, which inthe case of GRFs coincides with the minimal variance solutions, provides one with a uni-�ed way of estimating both parameters of a model and a particular realization of the �eld.Having this, the generalized WF approach (i.e., including CRs and posterior Bayesianlikelihood analysis) seems to establish a comprehensive framework of analyzing the (lin-ear) LSS structure of the universe. This should be further studied and extended to thenon-linear regime of non-Gaussian random �elds.AcknowledgmentsWe would like to especially thank V. Bistolas and C. Scharf for helping with theapplications of the method. We thank E. Bunn, A. Dekel, D. Lynden-Bell and R. Shethfor helpful comments and discussions. KBF acknowledges a SERC postdoctoral fellowship.YH has been partially supported by The Hebrew University Internal Funds. YH and SZacknowledge the hospitality of the Institute of Astronomy in Cambridge. OL acknowledgesthe hospitality of the Hebrew University, where this work began.34
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Figure CaptionsFigure 1: Harmonic reconstruction of the projected counts of an IRAS-like CDM simula-tion, using the raw all-sky coe�cients clm up to lmax = 15 in Galactic Aito� projection.The contour levels of the projected surface number density are in steps of 100 galaxiesper steradian. The mean projected density is 392 galaxies per steradian.Figure 2: Wiener �ltering of the all-sky harmonic map shown in Figure 1, assuming thestandard CDM prior and the simulation shot noise (392 galaxies per steradian).Figure 3: The Wiener factor versus the harmonic number l, where the Wiener factor isthe ratio, <a2l>th<a2l>th+<�2a> evaluated for a standard CDM model with the same selectionfunction as IRAS 1.2 Jy sample. The shot noise is �2a = 392 galaxies per steradian.Figure 4: Density reconstruction of the Mock IRAS CDM catalogue in the supergalacticplane. The reconstruction is performed within a sphere of radius 60Mpc=h. a) Theunderlying density �eld as taken from the N-body simulation. b) The `observed' map.c) The MV reconstructed map. The contours are spaced with �� = 0:1 with solid(dashed) lines denoting positive (negative) contours. The heavy solid line stands for� = 0. All the maps have been smoothed over 10Mpc=h. Figure d. is a scatter plot ofthe MV reconstructed density versus the true density within a sphere of radius 40Mpc=h.Figure 5: Harmonics reconstruction of the projected counts of the Mock IRAS 1.2 Jycatalogue with a 'Zone of Avoidance' jbj = 15�, using the observed coe�cients clm, upto lmax = 15. The contour levels and the mean projected density are the same as inFigure 1.Figure 6: The sorted spectrum of the singular values of the matrix B, for the jbj = 15�case. The 'knee' suggests how to choose the cuto� for the SVD, �min=�max = 0:565, atthe mode 184, which corresponds to an e�ective lmax � 13.Figure 7: The reconstructed alm's using WF and the cuto� shown in Figure 6 for theSVD. 38
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