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ABSTRACT
We use a Maximum Entropy technique to reconstruct a map of the microwave sky near the
star Gamma Ursae Minoris, based on data from flights 2, 3 and 4 of the Millimeter-wave
Anisotropy eXperiment (MAX).

Subject headings: cosmology: cosmic background radiation, numerical methods

Introduction

The data from cosmic microwave background (CMB) anisotropy experiments is im-
proving rapidly. The next generation of degree–scale experiments should have the capabil-
ity to map significant regions of the sky. However, due to uneven sky coverage, differencing
strategies, and noise in the data, reconstructing a temperature map from the observations
will be non–trivial. It is therefore of interest to begin developing techniques for this task.

The Millimeter-wave Anisotropy eXperiment (MAX) has now accumulated data on
the temperature anisotropies in the CMB near the star Gamma Ursae Minoris (γUMi)
from 3 separate flights. (Alsop et al. 1992, Meinhold et al. 1993, Devlin et al. 1994). This
data covers ∼ 10◦ × 5◦ on the sky, with the central 5◦ × 2◦ being densely sampled (see
Fig. 1), and thus is ideal for testing algorithms for constructing maps of the microwave
sky.

In studies of CMB anisotropies it has been common to assume that the fluctuations
are gaussian distributed, and that the overall phases of the anisotropy in our universe are
irrelevant. In this paper we would like to consider an alternative approach, in which maps
of the microwave sky in particular regions are made. As an example of the method, we
concentrate on the region of sky near γUMi where a large data set already exists. The
advantage of making CMB maps, apart from the simple desire to map the whole sky in
as many wavebands as possible, is that it allows us to develop a catalog of features for
comparison with other experiments. In addition one can look for properties of the sky
which are not predicted by theories, and could be overlooked in statistical analyses. While
detailed comparison of observations of the same region of the sky by different experiments
should be done by statistical comparison of the raw data sets (e.g. cross-correlation of
the temperature difference maps in current experiments), having a map of the sky in the
region of interest is helpful in planning flights and obtaining a visual representation of the
region to be surveyed. Additionally these maps can be used to correlate phase information
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through the method of constrained realizations (e.g. Hoffman & Ribak 1991, Bunn et
al. 1994) which can allow predictions to be made for other experiments.

Any inversion procedure of this kind, where we attempt to reconstruct a temperature
map from a small region of the sky where only temperature differences are measured,
requires a regularization procedure. For example, to construct a map one needs information
on the long wavelength contributions which are not well constrained by the data set. In
this paper we shall adopt the maximum entropy procedure (MaxEnt), often used in other
branches of astronomy (see below). MaxEnt provides a method for choosing among the
many maps which could lead to the observed data. The advantage of this method for our
purposes is that it reconstructs the “smoothest” maps consistent with the data. If it is
our intent to search for features in the maps, such as hot or cold spots or indications of
non-gaussian structures (such as lines), this is clearly the most conservative regularization.
Whenever the inversion is not unique a choice needs to be made, and we take the stance
that we wish to introduce only those features which are required by the data, even if this
can miss features which are allowed by the data.

Maximum Entropy Method

The main use of the maximum entropy method is to provide a regularized inversion
procedure for noisy and incomplete data. In practice what one does is construct a model,
which in our case consists of the temperature values in Npix = 64× 64 pixels on a 30◦ × 8◦

patch of the sky. We attempt to find the best model sky given data Tk ± σk at some
locations n̂k with k = 1 . . .Nobs. We assume the errors, σk, are gaussian and independent.
In the MaxEnt method we minimize not the χ2 associated with the fit of this “theory” to
the data, but rather the combination

S + λχ2 (1)

where the entropy S will be discussed in detail below and λ is a Lagrange multiplier
which determines the relative weight given to the two terms. The first term (S) will be
extremized when the map is as featureless as possible, while the second tries to make
the model temperature values agree with the data as closely as possible. Maximizing
the combination should lead to the smoothest map consistent with the data, and has
the advantage of being computationally simple. Our result will be the most conservative
picture of deviations from uniformity consistent with the data.

There is a large body of literature on the MaxEnt method. For information on its use in
an astronomical context see e.g. Gull & Daniel (1978), Burch, Gull & Skilling (1983), Corn-
well & Evans (1984), Naryan & Nityananda (1986), Lahav & Gull (1989), Skilling (1991),
Press et al. (1992), or the proceedings of the several MaxEnt workshops and conferences
(and the references therein).

Traditionally, when dealing with intensity maps, one takes the entropy function to
be S = −I log I which requires I ≥ 0. In our case the analogous procedure would be to
use as our model the absolute temperature on the sky (obtained by requiring the data
have an average temperature of 2.726K for example). However, since the temperature
fluctuations in the data are 1 part in 105 this can lead to numerical problems. Using
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simply the temperature differences as our model (i.e. subtracting a mean T from each
point) leads to problems with the evaluation of the logarithm in S. Note however that the
role of the entropy function is to “smooth” the inversion. The overall offset and range of
the pixel values in the model is not relevant to this question. Mathematically we can say
the extremum of the entropy is invariant under rescalings and shifts of the origin, so we
rescale the temperatures before computing the logarithm.

There are other definitions of the entropy which can be used (see Naryan & Nityan-
anda (1986) for a discussion). In the context of Bayesian inference, a choice of S corre-
sponds to a choice of prior information, and the inferences should be robust under changes
in “prior”. We shall stick with the I log I definition since it enforces “smooth” maps.

This leads us to consider the relative weight assigned to the entropy and the χ2, which
is given by λ. Often one assigns to λ the value required so that the χ2 of the best fit model
is approximately equal to the number of data points. (In this case λ is a Lagrange multi-
plier introduced to enforce the χ2 constraint while maximizing the entropy.) This can be
implemented straightforwardly during the solution of the MaxEnt inversion. Alternatively
(Gull 1989, Lahav & Gull 1989) one can use the eigenvalues of the Hessian matrix, which
is less arbitrary since it can be justified from Bayesian considerations. Generally the re-
sulting map is independent of the choice of λ over a large range, and hence we will stick
with the former prescription even though it has an element of arbitrariness.

Having fixed λ one proceeds to solve the data by an iterative method. A more generic
and powerful alternative is a maximum search algorithm (Burch et al. 1983, Cornwell
& Evans 1985); however, we have found the iterative solution to converge stably and
rapidly to the desired solution, obviating the need for complicated strategies. Let us call
tj the temperature values in our “model” map, where j runs from 1 to Npix. Let Bk,j

be the beam profile function which acts on the model pixels and predicts the measured
temperature differences τk =

∑
j tjBk,j (k = 1 . . .Nobs). One now starts with a uniform

map and iterates the equation (Gull & Daniell 1978)

tj = exp

[
−const1 + λ

Nobs∑

k=1

Bk,j
Tk − τk

σ2
k

]
+ const2 (2)

where recall Tk ± σk are the temperature differences to be fit. This equation comes from
extremizing Eq.(1) with respect to the tj , and the values of the constants specify the zero
and range of the temperature scale. We have chosen these constants so that unmeasured
parts of the map are assigned zero temperature offset.

MAX Data Set

The MAX experiment is a sub–degree scale CMB anisotropy experiment which mea-
sures temperature differences on the sky over a range of frequencies. In the following we
shall assume that all of the signal seen in the γUMi scan is purely that of CMB anisotropies,
so we co-add all the frequency channels to increase the signal-to-noise ratio. If this turns
out not to be the case, the method could also be implemented for each frequency separately.

The temperature “differences” are defined by performing a sinusoidal chop, at a fre-
quency of ν = 6Hz, with amplitude α0 = 0◦.65 parallel to the scan direction of the
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telescope. The signal is demodulated at the first harmonic of the chop frequency so that
the temperature assigned to the point n̂ is

T̃ (n̂) ≡ −3.34

∫ 1/ν

0

dt ν sin(2πνt) Θ
(
n̂ cosα(t) + î sinα(t)

)
(3)

where α(t) = α0 sin(2πνt), î is a unit vector lying along the chop direction and perpendic-
ular to n̂, and Θ(n̂) is the beam–smoothed temperature at n̂. See Srednicki et al. (1993)
for more details. To obtain an effective beam profile we replace Θ in the above with the
beam weight function, which we take to be a gaussian of width 0◦.5FWHM. The beam
width varied slightly from flight to flight, which we have included in the analysis.

The data available from the MAX group has had an offset subtracted from each ‘scan’.
This has the effect of modifying the long wavelength modes reconstructed by our procedure.
Since these modes are not well constrained by the data in any case, we have not tried to
correct for this effect.

Results and Conclusions

We show in Fig. 2a our estimated map, which is consistent (by construction) with
the 3 MAX–γUMi data sets. The pixels are distributed exponentially in temperature,
presumably reflecting our assumption of gaussian beams. The RMS of the non-zero por-
tions of the map is consistent with the expected fluctuations in a model such as CDM. In
Fig. 2b we show a realization of a standard CDM sky, smoothed on 0◦.5 and with power
on wavelengths larger than the box removed. The maps are qualitatively similar, though
there is a large degree of arbitrariness in statistical comparison which makes it difficult
to compare quantitatively. Our map appears to have more small–scale structure and less
large–scale structure than the CDM map, possibly reflecting that our procedure recon-
structs small–scale power better than large–scale power. This is not unexpected given the
small amount of sky (∼ 25 square degrees) for which we have data. To test this we have
simulated a MAX data set using our standard CDM model and used the same algorithm
to reconstruct a map based on this synthetic data. The resulting map (not shown) is very
similar to Fig. 2a, having an exponential pixel distribution and more small–scale power
than Fig. 2b. A detailed study of the biases in this reconstruction method still remains to
be done.

In conclusion we have presented a method for constructing temperature maps of the
CMB which can be easily applied to differencing experiments which cover only a small
fraction of the sky. As an application of this method we have constructed the “most likely”
picture of the microwave sky consistent with the data in the region near γUMi. While
comparison of scans and model testing should be done statistically using the differenced
data, this method allows one to check for features which are contrary to expectations and
to plan future observations.
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Figure Captions

Fig. 1: The region of sky, near γUMi, covered by the second, third and fourth flights of
the MAX experiment. The solid circles represent data from the second flight, triangles
those from the third and squares those from the fourth. For reference we show the beam
pattern as the two circles (labelled plus and minus) for the MAX differencing strategy in
the lower right. The apparent elliptical shape is due to the axis ranges chosen for the plot.
Also shown (lower left) is the size of the pixels used in the map.

Fig. 2: (a) The reconstructed sky temperature, in µK. Since the MAX experiment mea-
sures only temperature differences, the “zero” of the temperature scale is arbitrary. (b)
A sky simulated using a CDM model normalized to COBE and with Ω0 = 1, H0 =
50 kms−1Mpc−1 and ΩB = 0.05, smoothed on 0◦.5 and with power on wavelengths larger
than the box removed.
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