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ABSTRACT

We study the rate of escape of stars (\evaporation") from tidally-limited postcollapse globular

clusters having a power-law distribution of stellar masses. We use a multi-mass Fokker-Planck

code and assume a steady tidal �eld. Stellar-dynamical processes cause the inner parts of the

cluster to expand, which in turn causes stars to overow the tidal boundary. Mass loss by

stellar evolution is assumed to be unimportant in these later evolutionary stages. The fraction

of the cluster mass lost per half-mass relaxation time (t

rh

) is roughly constant, in agreement

with simple homologous models with equal-mass stars. If t

rh

is computed in the conventional

way from the mean stellar mass, however, a broad stellar mass function can double the loss of

mass per t

rh

. We discuss implications of our results for the evolution of globular-cluster systems

in our own and other galaxies. In particular, the number of Galactic clusters destroyed by

evaporation alone may be as large or larger than the present cluster population.

Subject headings: globular clusters { stellar dynamics
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1. Introduction

The lifetimes of globular clusters are limited by several processes, of which the most securely calculable

is probably dynamical relaxation. Stars gradually escape from the cluster potential as two-body encounters

replenish the unbound tail of the local velocity distribution (Ambartsumian 1938; Spitzer 1940). This

\evaporation" of stars proceeds even in clusters isolated from external potentials (H�enon 1969, Spitzer &

Thuan 1972). If one assumes that stars evaporate at the Ambartsumian-Spitzer rate and leave the (isolated)

cluster with negligible energy, then the cluster shrivels to zero mass at constant binding energy in 39t

rh

,

where t

rh

is the current half-mass relaxation time (King 1957, 1958). Note that this is a time-invariant

statement, since t

rh

decreases with the cluster mass. Galactic globular clusters are tidally limited, however,

(e.g. Innanen, Harris, & Webbink 1983), except perhaps at large Galactocentric radii (Caputo & Castellani

1984). Therefore it is the mean density of the cluster rather than its binding energy that remains constant

as the mass decreases.

The phenomenon of core collapse and its aftermath also inuence the evaporation rate. Two-body

relaxation removes orbital energy from stars near the core because the velocity distribution is normally

\hottest" near the center. This can lead to a runaway increase in the central density|core collapse|as

reviewed by Spitzer (1987). Core collapse can be postponed by rapid mass loss following the evolution of the

higher-mass stars (cf. von Hoerner 1958; Applegate 1986; Cherno� & Weinberg 1990; henceforth CW) or by

primordial binaries (cf. Spitzer & Mathieu 1980, Gao et. al. 1991, Hut et. al. 1992 and references therein).

If the cluster is not disrupted by these inuences, however, it will eventually su�er core collapse. As the

central density rises, binary formation and other dynamical processes beyond simple two-body relaxation

become increasingly important. These processes can energize the velocity distribution, and at su�ciently

high density they o�set the loss of energy from the core by relaxation and prevent further collapse. Since

two-body relaxation does not generate orbital energy but merely redistributes it, energy production in the

core increases the total energy of the cluster and therefore decrease its binding energy. (The energy we

speak of is in the form of stellar motions within the cluster potential. This energy is \produced" at the

expense of other forms, such as the binding energy of close binaries or, in some scenarios, nuclear reactions

within the stars themselves.) The tidal �eld of the galaxy enforces a �xed mean density upon the cluster

(averaging over the cluster's orbit). As its binding energy decreases, the cluster must shed stars to maintain

its density.

Evaporation by the mechanism we have just described is peculiar to postcollapse because the

energy-production mechanisms in the core are negligible before core collapse. Additional mass may be

lost by processes unrelated to core collapse, such as normal stellar evolution, tidal shocks, close two-body

encounters, and di�usion across the tidal boundary that is not driven by energy changes of the entire cluster.

We are not concerned here with these other processes. From the theorist's standpoint, the convenience and

importance of the postcollapse energy-driven mass loss is that it depends very little on the nature of the

energy-producing mechanism(s) in the core. The reason for this is that the core is regulated by the rate

at which two-body relaxation can redistribute the energy through the cluster. If energy were produced in

the core faster than two-body relaxation could transport it outwards, then the core would expand, and the

reduction in central density would eventually shut down energy generation. Therefore the rate of change of

the energy of the cluster is ultimately controlled by the relaxation rate near the half-mass radius. [This is

true in the time average despite the phenomenon of gravothermal core oscillations (Sugimoto & Bettwieser

1983; Breeden, Cohn, & Hut 1994 and references therein).] As has often been remarked, a postcollapse

cluster is in this respect analogous to a main-sequence star, whose luminosity is ultimately determined by

opacities rather than nuclear reaction rates.
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Comparison of H�enon's (1961) early results with later work con�rms the picture described above

(cf. also the review by Goodman 1993). Like recent investigators, H�enon used (indeed invented) the

orbit-averaged, isotropized Fokker-Planck equation, and he imposed a steady tidal �eld. He simpli�ed his

problem by adopting equal-mass stars and demanding strictly self-similar evolution. The requirement of

self-similarity led to vanishing core radius and in�nite central density. A central energy ux occurs in his

solution as a sort of eigenvalue of the self-similar equations. The nature and even the density dependence

of the energy-production mechanism was not speci�ed, though H�enon speculated that binaries might be

involved. H�enon's model loses mass at a constant rate, and the lifetime remaining to the cluster is always

22:4t

rh

, where t

rh

is the half-mass relaxation time de�ned by equation (3-2). More recently, Lee & Ostriker

(1987, henceforth LO) have made fully time-dependent calculations with a speci�c form for the central

source, with a nonsingular (but very dense) core, and with an improved treatment of the tidal boundary

conditions. Outside the core, their models evolve much like H�enon's. In particular, well after core collapse

their models lose mass at an almost constant rate and have a \life expectancy" � 20t

rh

. We note that LO

also assumed equal-mass stars. Thus, although core collapse and tidal limitation have important e�ects,

King's (1958) conclusion is qualitatively con�rmed: a (postcollapse) cluster's \life expectancy" against

evaporation is an approximately constant multiple of the current t

rh

.

In the past two decades, most theoretical studies have assumed isolated, rather than tidal, boundary

conditions. Interest has focused on the evolution of the core. Since the observational discovery that a

substantial minority of Galactic clusters appear to have undergone core collapse (Djorgovski & King 1986),

however, a few groups have attempted to �t observations of individual clusters to realistic postcollapse

models (Lee, Fahlman, & Richer 1991, henceforth LFR; Grabhorn, et. al. 1992; Drukier, Fahlman, & Richer

1992). Fitting photometry and star counts has almost always required tidal limits in order to explain the

steepening of the counts in the outskirts of clusters, so these groups have included tidal boundaries in their

evolutionary Fokker-Planck models. They have also adopted several stellar mass components. These may

be required by the radial light pro�les, but they are surely required by deep CCD star counts, which reveal

a broad stellar mass function that varies with radius in the cluster (Richer et. al. 1990).

Multicomponent postcollapse models with tidal limits evaporate at approximately constant rates, just

as the single-component models of H�enon (1961) and LO do. Expressed as a multiple of M

cluster

=t

rh

,

however, LFR's evaporation rate is three or more times larger than LO's. Since the two groups used very

similar assumptions and historically related codes, it seems that multicomponent models evolve more

rapidly than single-component ones. The purpose of the present work is to verify this conclusion.

Many investigations have shown that mass mixtures accelerate the evolution of precollapse clusters. The

main e�ect is mass segregation (or strati�cation), whereby the heavier populations are selectively enhanced

in the core, hastening its collapse (Spitzer 1969, Spitzer & Hart 1971b, Inagaki & Saslaw 1985). There

is also an increase in the precollapse evaporation rate with respect to single-component clusters (H�enon

1969, Spitzer & Shull 1975, Johnstone 1993). But as we have noted, the dominant mass-loss mechanism in

postcollapse is somewhat di�erent from those that operate before collapse, because of energy-generation in

the core. Although multicomponent models have been made of postcollapse gravothermal core oscillations

(Murphy, Cohn, & Hut 1990; Grabhorn et. al. 1992), there has not been a systematic study of the e�ect of

the stellar mass spectrum on the evaporation rate and cluster lifetime in postcollapse. That is the goal of

this paper. We do not attempt a comprehensive account of star-cluster evolution. However, we will discuss

some implications of the enhanced postcollapse evaporation rate for systems of globular clusters.

It has been claimed that the luminosity function of globular clusters is universal among external

galaxies (Harris 1991, and references therein). If this is true, then globular clusters can be used as standard
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candles for distance measurements. Unfortunately, no theoretical justi�cation has been given for the

universality of the luminosity function. In view of our poor fundamental understanding of star formation

at present, it is certainly possible that the properties of primordial clusters may be almost independent

of their host galaxy. Present-day luminosity functions, however, have surely been inuenced by selective

destruction of the more vulnerable clusters. One expects destruction rates to depend upon the galactic

environment (Aguilar, Hut, & Ostriker 1988, henceforth AHO). In our local part of the Galaxy, evaporation

is an important destruction mechanism, and it may be the dominant one (AHO).

H�enon (1961) proposed that the present cluster luminosity function might be explained if all clusters

were in a dynamical state similar to his selfsimilar model, and he suggested that singular cores could have

been overlooked because of the discreteness of cluster stars. It is now recognized that many clusters that

had been thought to have nonsingular cores are probably in a postcollapse state (Djorgovski & King 1986,

Cherno� & Djorgovski 1989). These appear to be a minority among clusters, though a substantial one.

Evaporation is surely not the sole determinant of the cluster luminosity function, but it may well be an

important factor. We discuss this point further in x5.

Harris (1991) also addresses the old question whether the entire Galactic spheroid is composed of

disrupted clusters. He argues against this idea on two grounds: cluster orbits appear to be more isotropically

distributed than those of spheroid stars; and clusters are more metal poor than spheroid stars at the same

galactocentric radii (R). These are strong arguments. Theory indicates, however, that destruction rates

should correlate more strongly with cluster perigalacticon (R

p

) than with present R (e.g., AHO). Therefore,

the orbits of surviving globular clusters are expected to be less eccentric on average than those of primordial

clusters. If the �eld stars in the spheroid came from disrupted clusters, their orbits would be more eccentric

on average than those of the undisrupted clusters. Thus, the sign at least of the kinematic di�erences

between Population II �eld stars and clusters is consistent with theoretical expectation.

According to Zinn (1990), the metallicity o�set between stars and clusters is small or nonexistent

within the Galaxy at R > 7 kpc. If cluster metallicities correlate more strongly with R

p

than with R

(Seitzer & Freeman 1981, Seitzer 1983), then clusters would be expected to be more metal-poor than halo

stars at the same R because of preferential destruction of the more eccentric, and therefore also more

metal-rich, clusters. Under these assumptions, one might also expect the metallicities of local halo �eld

stars to increase with decreasing perigalacticon: indeed, Ryan and Norris (1991) have found evidence for

such a correlation in the data of Carney et. al. (1990).

While these important issues will be settled only by further observational tests, much could be done

by theoreticians to re�ne their estimates of cluster destruction rates. This paper focuses on one destruction

mechanism, postcollapse evaporation, and its sensitivity to the stellar mass function. We describe our

numerical methods, initial conditions, and principal assumptions in x2. Section x3 discusses the de�nition

of the half-mass relaxation time, which is used to normalize the evaporation rate, in the presence of

unequal stellar masses. We describe our evolutionary models in x4 and discuss their implications for cluster

destruction rates in x5.

2. Models and Assumptions

We calculate the dynamical evolution of our cluster models with Fokker-Planck code descended from

that of Cohn (1979, 1980). The code used in the present paper has been modi�ed by LFR to allow for a

multicomponent stellar mass function, a tidal boundary, and three-body-binary heating.
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In the present calculations, the mass function is represented by seven discrete mass groups. This is

considerably more realistic than a single group, but an even larger number might have been worthwhile.

Evaporation of stars beyond tidal boundary is treated as in LO. In particular, we take the tidal �eld

to be steady and approximate it as spherically symmetric. The �rst assumption is justi�ed for a cluster

on a circular orbit in the disk. On eccentric or disk-crossing orbits, tidal shocks may be important at all

phases in the cluster's history (Ostriker, Spitzer, & Chevalier 1972). In general we may expect tidal shocks

to accelerate the cluster's evolution by decreasing its binding energy, and perhaps also by spoiling the

near-equilibrium form of its distribution function (Spitzer & Chevalier 1973; Spitzer & Shull 1975; CW).

Until recently, it was widely believed that tidal shocks a�ect only the least bound stars, whose period in the

cluster is longer than the shock timescale, but Weinberg (1994) has shown that adiabatic invariance does

not protect the energies of all of the strongly-bound, short-period stars. We neglect time-dependence of the

tide not because it is unimportant, but because to include it would require additional parameters and would

obscure the physical process we most wanted to study. The assumption of spherical symmetry in the tidal

�eld is unphysical but inescapable in the one-dimensional code that we use. Stellar orbits near steady and

nonsteady tidal boundaries are complex (cf. Keenan 1981, Oh & Lin 1992). The details of the tidal cuto�

should not much a�ect the mass-loss rate in quasisteady postcollapse evolution, however, because the loss

rate is driven by the gradual decrease in cluster binding energy, which in turn is controlled by conditions

well inside the tidal radius, as described in x1. This expectation is supported by the experiments of LO,

who found that large changes in their parametrization of the tidal boundary yielded negligible changes

in postcollapse evaporation rate. Although the structure and extent of the outer parts of the cluster are

undoubtedly sensitive to the nature of the tidal cuto�, these are not our present concern.

Heating of the stellar velocity distribution in the central parts of the model is attributed to binaries

formed in three-body processes. We have included the heating e�ect of binaries without explicitly following

their formation and evolution. Our results are independent of the choice of central energy source, as long

as the source provides the energy ux demanded by two-body relaxation near the half-mass radius.

The initial density pro�le is a King model with dimensionless central potential W

0

= 7 and hence a

concentration parameter c � log(r

t

=r

c

) = 1:53. This is an arbitrary choice: we have few constraints on

the primordial structure and concentration of Galactic globulars. Relaxation being an entropy-increasing

process, however, postcollapse evolution is insensitive to initial conditions apart from the cluster orbit, the

total cluster mass, and the stellar mass function. As a check, we have performed parallel calculations with

W

0

= 4 and obtained similar results. We assume, of course, that the initial conditions are such as to permit

a postcollapse phase. If the initial concentration parameter is too low, the cluster may disrupt before core

collapse or it may not reach core collapse in a Hubble time.

A uniform local mass function of Salpeter type is assumed throughout the cluster:

N (m)dm = Cm

�(1+x)

dm; m

min

< m < m

max

: (2-1)

Thus there is no mass segregation in our initial conditions. We regard x = 1:35 as the standard choice, but

we have made calculations for a range of values of the exponent x. The values of the cuto�s m

min

and m

max

are also very important to the evolution. We have taken m

max

= 0:7M

�

, the turno� mass; remnants of

more massive stars are ignored. We choose the lower cuto� m

min

so that � � m

max

=m

min

is either 3 or 7.

The e�ect of stellar evolution on the dynamical evolution of globular clusters is an important subject

that has not been considered here. CW have demonstrated that globular clusters can be vulnerable to

early tidal disruption because of mass loss by rapidly-evolving high-mass stars. The strength of this e�ect
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depends on the slope and extent of the initial mass function. In fact, clusters are much less easily disrupted

if one uses m

min

smaller than Cherno� & Weinberg's value of 0.4M

�

(Drukier 1993). In any case, mass loss

by unperturbed stellar evolution is relatively unimportant after core collapse. The evolutionary timescale

of the turno� stars is directly proportional to the cluster age, but in a tidally-limited postcollapse cluster,

t

rh

decreases in proportion to the cluster mass, hence linearly in time. If we accept Faber & Gallagher's

(1976) stellar-mass-loss rate of 1:5� 10

�11

(L

B

=L

�

)M

�

yr

�1

, where L

B

is the total B-band luminosity of

an old stellar population, then the timescale for mass loss from evolved stars is �

�

= 7 � 10

10

�

�

yr, where

�

�

is the mass-to-light ratio of the cluster in solar units. The timescale for postcollapse evaporation is

�

evap

�

< 22:4t

rh

, which is

�

< 2� 10

10

yr since t

rh

�

< 10

9

yr for Galactic postcollapse clusters (x4).

3. Half-mass Relaxation Time

This is conventionally de�ned following Spitzer & Hart (1971a, henceforth SH):

t

rh

�

0:0600M

1=2

r

3=2

h

G

1=2

m log(0:4N )

; (3-2)

where M � total cluster mass; r

h

� half-mass radius (the radius of a sphere containing half the cluster

mass); N � total number of stars; and m is a characteristic stellar mass. For a cluster with a broad mass

spectrum, such as the ones considered in this paper, the actual value of t

rh

deduced from this expression

will depend importantly on the choice of the characteristic mass m. This is usually taken to be either the

mean mass,

�m �

2

4

m

max

Z

m

min

N (m)mdm

3

5

,

2

4

m

max

Z

m

min

N (m)dm

3

5

; (3-3)

or something close to the turno� mass, which we identify with m

max

. The turno� mass has the advantage

of being readily observable, modulo uncertainties in cluster age, metallicity, and distance. The mean mass,

which may better represent the typical star if the mass function is steep, is di�cult to determine because

of the faintness of the less massive stars, and because mass segregation requires that the mass function be

sampled at many radii within the cluster.

Nevertheless, in this theoretical paper, we calculate t

rh

using the mean mass (3-3) for m. Since lighter

stars evaporate more quickly than heavier ones, �m decreases as our model clusters evolve.

Because this paper is directed towards the dimensionless evaporation rate (4-8), which is inversely

proportional to t

rh

, it is useful to examine more closely the assumptions underlying formula (3-2). SH de�ne

a local reference relaxation time,

t

rf

�

v

3

mf

3� n

f

m

2

f

; (3-4)

in which

n

f

�

X

k

n

k

; v

2

mf

�

P

k

n

k

m

k

v

2

mk

n

f

; m

f

�

P

k

m

k

n

k

n

f

= �m; (3-5)

where n

k

and v

mk

are the local number density and velocity dispersion of stars with mass m

k

. The quantity

� = 11:8G

2

log(0:4N ), and

 �

P

k

m

5=2

k

n

k

m

5=2

f

n

f

: (3-6)
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TABLE 1

POWER-LAW MASS FUNCTIONS

� = 3 � = 7

x �m=M

�

�

 �m=M

�

�

 

0 .425 1.188 .308 1.584

0.5 .404 1.198 .265 1.694

1.0 .384 1.204 .227 1.755

1.35 .372 1.204 .205 1.753

2.0 .350 1.195 .175 1.659

2.5 .336 1.183 .159 1.541

To obtain (3-2), SH take  = 1, as if all stars had the same mass; they replace m

f

n

f

by the mean mass

density within r

h

(= 3M=8�r

3

h

); and they estimate

v

2

mf

� 0:4

GM

r

h

: (3-7)

To the extent that the tidal contribution to the virial equations is small, (3-7) is equivalent to estimating

the binding energy of the cluster by E

cluster

� 0:2GM

2

=r

h

. Although in principle the numerical coe�cient

in this last relation depends upon the cluster's density pro�le, in practice it varies by much less than a

factor of two over a broad range of pre- and postcollapse theoretical models.

The dimensionless mass moment  is substantially larger than unity in our initial models based upon

the mass function (2-1). Table 1 indicates the variation of �m and of  with x for our standard ratio of cuto�

masses, � � m

max

=m

min

= 7. Evidently,  is almost independent of the choice of the mass-function slope

x, but it increases with �. We have emphasized this point because, as we discuss in x4, the evaporation

rate �

e

is typically a factor of two larger for our multimass models than for analogous single-mass clusters.

Incorporating an appropriately-averaged de�nition of  in the de�nition of t

rh

would substantially reduce

this factor.

4. Results

Because of the relatively high central concentration of the initial conditions we have chosen, our models

reach core collapse within one half-mass relaxation time. Because of the di�usive nature of dynamical

relaxation, the later evolution of our models is largely independent of the initial density pro�le. It depends

mainly on the tidal �eld, the total initial mass, and the parameters of the initial mass function (2-1): the

slope, x, and the ratio of mass cuto�s, � � m

max

=m

min

.

Although many aspects of the postcollapse evolution of these multicomponent models might be worth

exploring, our interest is in the dimensionless evaporation rate

�

e

� �

t

rh

M

dM

dt

: (4-8)



{ 8 {

Fig. 1.| The dimensionless evaporation rate (4-8) plotted against time for various mass-function slopes x

and cuto� ratios � � m

max

=m

min

: (a) � = 3; (b) � = 7.

Strictly self-similar evolution requires �

e

=const. H�enon's (1961) single-component self-similar model has

�

e

= 0:0446. Lee & Ostriker (1987), who did not assume self-similarity, and who treated the tidal boundary

condition in greater detail than H�enon did, found nearly the same �

e

in late postcollapse. The run of �

e

against time for � = (3; 7) and for several values of x is shown in Figure 1.

Except where otherwise noted, t

rh

and �

e

have been determined using the mean mass of the stars still

bound to the cluster. Thus the mean mass changes with time because lighter stars evaporate more rapidly

than heavier ones (see below).

The ripples in the �

e

curves arise from inaccuracies in the iterative recomputation of the cluster

potential (cf. Cohn 1980). We have repeated selected runs with more iterations per step, and this reduced

the ripples without changing the running average of �

e

. We believe that the sharp upturn at the end of

many of the curves is also caused by numerical di�culties in recomputing the potential. The upturn occurs

after the cluster has lost more than 90% of its initial mass.

Although �

e

is not exactly constant in Figure 1, it is approximately so at late times. Clusters with
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Fig. 2.| The fraction of the cluster mass remaining, versus time in units of the estimated time of complete

evaporation. (a) � = 3; (b) � = 7.

a relatively small range of stellar masses evaporate only slightly faster than single-component model [Fig.

1(a)]. Broader initial functions, however, signi�cantly increase the evaporation rate. At � = 7, �

e

is 2 � 3

times larger than its value in single-component clusters [Fig. 1(b)].

The time axis in Figure 1 has been normalized to the extrapolated time t

ev

at which the cluster

entirely disintegrates. Recall that in tidally-limited self-similar evolution, dM=dt itself is constant, so that

the cluster mass declines linearly to zero in �nite time (King 1958): If one ignores the slow variation of the

logarithm in (3-2), then t

rh

/ M=

p

G��

h

at �xed �m, where ��

h

is the mean mass density within r

h

. Self

similarity requires that ��

h

be proportional to the mean density within the tidal radius, which is constant, so

t

rh

/ M . Since �

e

is constant, it follows from (4-8) that dM=dt is constant, and the time remaining before

disintegration is always a constant multiple of the current half-mass relaxation time: t

ev

� t = �

�1

e

t

rh

(t).

Although our models are not self-similar, dM=dt is approximately constant, so we can estimate t

ev

rather accurately, even though the computation cannot be continued until M ! 0 (Fig. 2). Figure 3 shows

the time remaining before disintegration in units of the current t

rh

, versus t=t

ev

. In self-similar cluster,

these curves would be constants, equal to �

�1

e

, but since our models are not self-similar, the data in Figure

3 are not completely equivalent to those in Figure 1. These curves are smoother than the earlier ones

because they do not require numerical di�erentiation of M (t); on the other hand, a small error in the

estimate of t

ev

can cause (t

ev

� t)=t

rh

(t) to bend sharply upwards or downwards at the end of the evolution.

Examining Figures 1&3, one sees that the clusters with relatively narrow mass function, � = 3, evaporate

25� 50% faster than H�enon's (1961) self-similar model. For the broad mass functions with � = 7, however,
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Fig. 3.| The \life-expectancy" of multicomponent clusters in units of instantaneous half-mass relaxation

time, versus time. Solid line: 99% (by number) \main-sequence" stars of mass 0:7 M

�

, and 1% \neutron

stars" of twice the mass. Dotted line: x = 0. Short-dashed line: x = 1. Long-dashed line: x = 1:35 (Salpeter

slope). Dot-dashed line: x = 2. (a) � = 7 (except for MS+NS model). (b) � = 3.

the \life-expectancy" of a postcollapse model is � 5 � 8t

rh

instead of 22:4t

rh

, unless the slope of the mass

function is very at, x < 1.

As expected, lighter stars escape the cluster more rapidly than heavier ones. This is illustrated in the

particular case (x; �) = (1:35; 7) by Figure 4, which shows the evaporation rate for each mass component

separately. The total evaporation rate �

e

is an average of these individual rates, weighted by the contribution

of each component to the mass of the cluster. At early times, �

e

traces the loss rate of the predominant

lighter components; but at late times when the balance of the population has shifted towards the heavier

stars, �

e

reects their losses.

Since the present-day mass functions of globular clusters are not easily determined observationally, a

submultiple of the turno� mass is often used instead of the unknown mean mass in estimating the half-mass

relaxation time. In our models with � = 7 and x 2 f0; 1; 2g, if we compute t

rh

using m = m

max

instead of

�m in (3-2), then the dimensionless life-expectancy (t

ev

� t)=t

rh

depends much more strongly on time than

it does in Figure 3 and is (necessarily) always larger. In the latter half of the model's lifetime, however,

(t

ev

� t)=t

rh

� 15, which is still somewhat smaller than the equal-mass value of 22:4.

We close this section with some results that may bear on the question why multicomponent clusters

should evolve more rapidly than single-component ones. We suggested in x3 that part of the explanation
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Fig. 4.| The evaporation rates of individual mass groups for x = 1:35, � = 7. �

e;k

� �t

rh

m

k

_

N

k

, where

N

k

� number of bound stars of mass m

k

.

may lie in the omission of the dimensionless mass moment  from the de�nition (3-2) of t

rh

. The

original de�nition (3-6) of  is appropriate only locally, or when mass segregation is absent. A plausible

generalization of this quantity to inhomogeneous clusters is

�

 �

P

k

m

5=2

k

N

k

�m

5=2

N

; (4-9)

where N

k

is the number of stars in mass component k. Figure 5 displays the evolution of

�

 in several of our

models with � = 7. Table 1 predicts that

�

 � 1:7 initially, but the computed values are somewhat larger

because of the discreteness of our seven mass groups. Except for the attest mass function, x = 0,

�

 is

roughly constant until the �nal stages of cluster disintegration. If we were to reduce t

rh

by inserting

�

 in

the denominator of (3-2), just as the local moment  occurs in the local reference time (3-4), then �

e

would

be increased by the same factor of

�

 � 2, and it would then take much the same value in our self-similar

models as it does in H�enon's single-component one. It is not clear, of course, that the

�

 correction is

appropriate for a radially inhomogenous cluster.

The evolution rate of a cluster model depends not only upon the relaxation timescale, but also upon

the degree to which the distribution function departs from local \thermal" equilibrium. It has been argued

that precollapse multicomponent clusters cannot approach equilibrium very closely, even in their cores,

unless the mass function is quite narrow or very steep (Spitzer 1969, 1987; Vishniac 1978; Inagaki 1985).

We might expect something similar to be true of postcollapse clusters also. Therefore, Figure 6 displays the
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Fig. 5.| The dimensionless moment (4-9) of the current mass function versus time, for � = 7 and x as

marked.

run of the dynamical \temperature" kT / m

k

v

2

k

with radius for each mass component separately, well into

the postcollapse phase of our standard model. At the half-mass radius, the spread in temperature among

mass groups is

�

> 3.

5. Discussion

We have found the post-core-collapse evaporation rate of clusters with extended stellar mass functions

can be 2-3 times greater than that of clusters with equal-mass stars, if the rate is measured with respect

to the half-mass relaxation time computed from the mean stellar mass. Even if t

rh

is computed from the

\turno�" mass rather than the mean mass, the evaporation rate at late times is still slightly larger than the

classical equal-mass result.

As remarked in x1, several destructive processes put globular clusters at risk: mass loss and disruption

through evolution of high-mass stars, tidal shocks in the Galactic disk, tidal shocks by the bulge, decay of

cluster orbits by dynamical friction, and evaporation. Because the initial mass functions, densities, central

concentrations, and galactocentric orbits of primordial clusters are unknown, one cannot reliably estimate

how many clusters may already have perished.

AHO have estimated the present destruction rate by each of the processes mentioned above, using

the observed properties of present-day clusters. These rates are clearly subject to fewer observational



{ 13 {

uncertainties than the destruction rate of a hypothetical primordial population. AHO conclude that

evaporation dominates the present-day destruction rate, which they put at � 4 clusters per Hubble time.

Although we agree with AHO's general approach and with their qualitative conclusions, we believe, based

upon the results reported here, that evaporation is even more important than AHO have estimated.

Djorgovski (1993) lists several physical parameters for all known Galactic globulars. Among these

parameters, he provides t

rh

, calculating it for an assumed mean stellar mass �m = 0:33M

�

. Djorgovski

identi�es 30 clusters (out of 143) as postcollapse candidates. Because of inadequate data, no t

rh

is given for

6 of the postcollapse clusters. Of the remaining 24, all but 2 have t

rh

� 1:0Gyr. If the cluster system is

13Gyr old, then these 22 clusters will disappear within the next Hubble time.

Our destruction rate of 22 clusters per Hubble time is a conservative estimate because we have

considered only a single destructive process, and because we have made estimates only for a limited

sample of clusters with postcollapse morphology and known relaxation times. AHO used a di�erent

technique to estimate the total destruction rate for their sample of 83 clusters. For each cluster, they

estimated a destruction time associated with each of the destruction processes they considered. Then

they summed the reciprocals of these times over their entire sample. If we apply this procedure to our

sample of 24 postcollapse clusters and consider only evaporation, the result is 132 clusters per Hubble time

(= 13Gyr)|comparable to the entire present-day population|whereas AHO found only 4 clusters per

Hubble time!

Our cluster mortality rate is much higher than AHO's for several reasons. AHO assigned to postcollapse

only those clusters marked \pcc" by Cherno� & Djorgovski (1989), and not those marked \pcc?". Our

philosophy is that clusters centrally concentrated enough to be suspected of postcollapse will soon be in

postcollapse even if they are not there yet. In fact, all of Cherno� & Djorgovski's \pcc?" clusters have

nominal concentration parameters c � log(r

t

=r

c

) � 1:75. For comparison, our theoretical models collapsed

in < t

rh

(0) starting from c = 1:5. (It should be noted, however, that the early evolution of our models

is accelerated by mass segregation. Mass segregation has probably been completed in the high-c Galactic

clusters.) Therefore we have included Djorgovski's (1993) \c?" as well as his \c" clusters in our postcollapse

sample. Also, AHO used 22:4t

rh

as the evaporative destruction time for their 11 postcollapse clusters, and

40t

rh

for the rest, whereas we assume 10t

rh

on the basis of our multicomponent models. On the other hand,

we have neglected destruction mechanisms that AHO allow for. In particular, as AHO have pointed out,

disk and bulge shocking were probably more important for the primordial cluster population than they are

for the present one because of selective destruction of clusters on highly eccentric orbits.

The following simple test supports the conclusion that our \postcollapse" sample will evaporate in

< H

�1

0

. The shortest-lived part of the Galactic cluster population should be in a statistical steady state,

since it will have been continually replenished from the reservoir of longer-lived clusters. If the steady-state

assumption is true of our postcollapse sample, then these clusters should be uniformly distributed in

their evaporation times, �t

ev

� t

ev

� t. Thus for example, there should be twice as many clusters with

�t

ev

� 2Gyr as with �t

ev

� 1Gyr. To the extent that �t

ev

is a universal multiple of t

rh

, the postcollapse

sample should also be uniformly distributed in t

rh

. To test this, Figure 7 displays the cumulative distribution

of t

rh

for our postcollapse sample, and compares this with a uniform distribution having the same median

t

rh

, t

rh;med

= 10

8:51

Gyr. The observed sample is somewhat more clustered around the median than it

should be if it were truly uniform. Also, the theoretical distribution does not allow for any clusters with

t

rh

> 2t

rh;med

, so the agreement is poor at the high-t

rh

end; but at this end the steady-state assumption

is least reliable, because �t

ev

! H

�1

0

. Notwithstanding these minor disagreements, the �t appears very

satisfactory overall.
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Fig. 6.| Dynamical temperature m

k

v

2

k

=3 of mass component k versus radius in model for x = 1:35, � = 7

at t=t

ev

= 0:64.

In summary, we conclude that a signi�cant fraction|not less than a sixth, and probably much more|of

the present-day Galactic cluster system will disappear within the next Hubble time. Therefore, the present

cluster population may di�er systematically from the primordial one. This need not be inconsistent with

a universal extragalactic cluster luminosity function. But it would seem to require either that destruction

rates as well as primordial cluster properties are constant among galaxies, or that both of these vary among

galaxies but conspire to produce similar results today. In our opinion, even the question whether the entire

spheroid is formed from disrupted clusters should be regarded as open, because of possible correlations

among cluster mortality, metallicity, and orbital eccentricity.

We thank Luis Aguilar for discussions concerning halo metallicity gradients, J.P. Ostriker for discussions

of tidal shocks, and an anonymous referee for useful criticisms. J.G. was supported in part by a grant from

the David and Lucille Packard Foundation. HML was supported by the Basic Science Research Institute

Program BSRI-93-591.
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Fig. 7.| Solid line: cumulative distribution of 24 \postcollapse" clusters with respect to half-mass relaxation

time. Dashed line: a uniform distribution extending from t

rh

= 0 to twice the median t

rh

of the solid curve.
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