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Abstract

The standard calculation of the spectrum of density perturbations pro-
duced during inflation assumes that there is only one real dynamical degree
of freedom during inflation. However, there is no reason to believe that this
is actually the case. In this paper we derive general analytic formulae for
the spectrum and spectral index of the density perturbations produced
during inflation.
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1 Introduction

During inflation [1] vacuum fluctuations on scales less than the Hubble radius
in scalar fields with effective masses much less than the Hubble parameter1 are
magnified into classical perturbations in the scalar fields on scales larger than the
Hubble radius. These classical perturbations in the scalar fields can then change
the number of e-folds of expansion and so lead to classical curvature/density per-
turbations after inflation. These density perturbations are thought to be respon-
sible for the formation of galaxies and the large scale structure of the observable
Universe as well as, in combination with the gravitational waves produced during
inflation, for the anisotropies in the cosmic microwave background.

The standard calculation [7, 8, 9, 10, 11] of the spectrum of density pertur-
bations produced during inflation assumes that there is only one real dynamical
degree of freedom during inflation. Although this is the case in most of the mod-
els of inflation constructed up to now, it is by assumption rather than prediction.
When one tries to construct models of inflation [3, 5, 12] that might arise naturally
in realistic models of particle physics, such as the low energy effective supergrav-
ity theories derived from superstrings, one often gets more than one dynamical
degree of freedom during inflation. The standard calculation is then generally not
applicable.

In this paper we derive general analytic formulae for the spectrum and spectral
index of the density perturbations produced during inflation. This work is based
on earlier work by Starobinsky [13]. See also [14]. While this work was in slow
preparation three other related papers [15, 16, 17] appeared in the archives. After
this work was completed another related paper [18] appeared in the astro-ph
archive.

2 Gravity

We assume the gravitational part of the action to be

S = −1

2

∫

R
√−g d4x . (1)

It seems unlikely that non-Einstein gravity is relevant to inflation because the
inflation that inflated the observable Universe beyond the Hubble radius must
have occurred at an energy scale well below the Planck scale. We therefore do
not consider it. We set MPl = 1/

√
8πG = 1 throughout the paper.

1All scalar fields generically acquire effective masses at least of the order of the Hubble
parameter in the early Universe [2, 3, 4]. However, this can be naturally avoided for some scalar
fields during inflation in certain classes of supergravity theories [5, 6].
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2.1 The background

The background metric is

ds2 = dt2 − a(t)2δijdxidxj . (2)

Two important quantities are the Hubble parameter

H =
ȧ

a
(3)

and the number of e-folds of expansion

N =
∫

Hdt . (4)

2.2 R
Scalar linear perturbations to the metric can be expressed most generally as [19,
20, 9]

ds2 = (1 + 2A)dt2 − 2∂iB dxidt − a(t)2 [(1 + 2R)δij + 2∂i∂jE] dxidxj . (5)

We follow [20] most closely. R is the intrinsic curvature perturbation of the
constant time hypersurfaces. On comoving hypersurfaces, Ṙc = HAc. On flat
hypersurfaces, Rf ≡ 0.

2.3 N
Let {Σ(t)} be a foliation of spacetime with hypersurfaces Σ(t) labeled by a certain
coordinate time t and let vµ be the unit vector field normal to Σ(t). Then θ = vµ

;µ

is the volume expansion rate of the hypersurfaces along the integral curve γ(τ) of
vµ. For each integral curve, define

N =
∫

γ(τ)

1

3
θdτ , (6)

where τ is the proper time along the curve.

2.4 R and N
From [20]

1

3
θ = H

(

1 − A +
1

H
Ṙ +

1

3H

1

a2
∂i∂iSg

)

, (7)

where Sg = a2Ė−B. (If one Fourier expands Sg, Sg = σg/q, where q = k/a, in the
notation of [20].) Assuming that the anisotropic stress perturbation is negligible,
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which is the case for scalar field, radiation or dust perturbations, then the spatial
trace-free part of the Einstein equations gives

1

H
Ṡg + Sg =

1

H
(A + R) . (8)

From this equation we see that Sg is at most of order A/H or R/H so that it
is clear that the last term in Eq. (7) is negligible compared with the other terms
on superhorizon scales, that is for q2 ≪ H2 when the perturbations are Fourier
expanded. From now on we work on superhorizon scales, and so we get

1

3
θ ≃ H

(

1 − A +
1

H
Ṙ
)

. (9)

Also, from Eq. (5),
dτ = (1 + A) dt . (10)

Therefore

N =
∫

γ(τ)
H
(

1 − A +
1

H
Ṙ
)

(1 + A) dt =
∫

γ(τ)

(

H + Ṙ
)

dt , (11)

and so
δN ≡ N − N = ∆R . (12)

In particular, if we choose a foliation such that the initial hypersurface is flat and
the final one is comoving, we get

δN(Σf (t1), Σc(t2); γ(τ)) = Rc(t2) (13)

for a given curve γ(τ).
Now take t1 to be some time during inflation soon after the relevant scale has

passed outside the horizon and t2 to be some time after complete reheating2 when
Rc has become constant. The relevant scale is assumed to be still well outside the
horizon at t = t2. Then one may regard N as a function of the field configuration
φa(t1, x

i) on Σ(t1) and the time t2,

N = N
(

φa(t1, x
i), t2

)

. (14)

Note that in general N depends on both φa(t1) and φ̇a(t1), but as t1 is during
inflation we use the slow roll approximation to eliminate the dependence on φ̇a(t1).
Therefore

Rc(t2, x
i
2) = δN =

∂N

∂φa
δφa

f(t1, x
i
1) , (15)

where xi
1 and xi

2 are the spatial coordinates of γ(τ) on Σf (t1) and Σc(t2), re-
spectively. One can of course choose the spatial coordinates on the hypersurfaces
by the condition B = 0 to make xi

1 = xi
2. Since the perturbations in both θ

and the density are negligibly small on comoving hypersurfaces on superhorizon
scales, Σc(t2) may be regarded as a hypersurface of constant Hubble parameter
or constant energy density.

2We do not consider the case of isocurvature perturbations that persist until the present.
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3 Scalar fields

We assume the scalar field part of the action to be

S =
∫
[

1

2
habg

µν∂µφa∂νφ
b − V (φ)

]√−g d4x . (16)

where gµν is the spacetime metric and hab is the metric on the scalar field space.

3.1 The background

The background scalar fields are spatially homogeneous

φa = φa(t) . (17)

The following formula will be useful

∂N

∂φa
φ̇a = −H . (18)

The background equation of motion for the scalar fields is

Dφ̇a

dt
+ 3Hφ̇a + habV,b = 0 , (19)

where DXa = dXa +Γa
bcX

bdφc and Γa
bc = 1

2
had (hdb,c + hdc,b − hbc,d). We assume

that the scalar potential is sufficiently flat, i.e. satisfies

V ;aV;a ≪ V 2 and
√

V ;abV;ab ≪ V , (20)

where the semicolon denotes the covariant derivative in the scalar field space.
Then the scalar field dynamics will rapidly approach slow roll given by

3Hφ̇a ≃ −habV,b , (21)

or
φ̇a

H
≃ −V ;a

V
. (22)

We assume that slow roll has been attained for all epochs of interest.

3.2 δφa

The equation of motion for the Fourier modes of scalar field perturbations on flat
hypersurfaces is

D2δφa
k

dt2
+ 3H

Dδφa
k

dt
− Ra

bcdφ̇
bφ̇cδφd

k
+ q2δφa

k
+ V ;a

;bδφ
b
k

=
1

a3

D

dt

(

a3

H
φ̇aφ̇b

)

hbcδφ
c
k

(23)
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where k is the comoving wavenumber, q = |k|/a, and the scalar field space curva-
ture Ra

bcd = Γa
bd,c−Γa

bc,d +Γa
ceΓ

e
db −Γa

deΓ
e
cb. Let ∆φ denote the characteristic

curvature radius of the scalar field space. We assume habφ̇
aφ̇b/(∆φ)2 ≪ H2 or

V ;aV;a

V 2
≪ (∆φ)2 . (24)

This is automatic if ∆φ ∼ 1 as is typically the case. Then modes well outside the
horizon, i.e. with q2 ≪ H2, satisfy the slow roll equation of motion

3H
Dδφa

k

dt
− Ra

bcdφ̇
bφ̇cδφd

k
+ V ;a

;bδφ
b
k

= 3φ̇aφ̇bhbcδφ
c
k
. (25)

4 Calculation of the spectral index

Fourier expansion of Eq. (15) gives

Rk(t2) =
∂N

∂φa
δφa

k
(t1) . (26)

For scalar field perturbations generated from vacuum fluctuations during inflation

δφa
k

=
∑

α

φaα
k aα

k
, (27)

where aα
k

is a classical3 random variable satisfying

〈aα
k
aβ
l

†〉 = δαβδ3(k − l) , (28)

α runs over the number of scalar field components, and φaα
k is real and satisfies

∑

α

φaα
k φbα

k =
H2

2k3

(

hab + ǫab
)

(29)

where, assuming the slow roll conditions Eqs. (20) and (24), ǫab is small and
slowly varying with respect to a at fixed k/a. Therefore the spectrum of curvature
perturbations is given by

2π2

k3
PRδ3(k − l) = 〈Rk(t2)R†

l
(t2)〉 (30)

=
∂N

∂φa

∂N

∂φb
〈δφa

k
(t1)δφ

b
l

†
(t1)〉 (31)

=
∑

α

∂N

∂φa

∂N

∂φb
φaα

k φbα
k δ3(k − l) , (32)

3We are outside the horizon so everything is classical.
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or

PR =
k3

2π2

∑

α

∂N

∂φa

∂N

∂φb
φaα

k φbα
k . (33)

The spectral index is then given by

nR − 1 =
d lnPR

d ln k
= 3 +

k3

2π2PR

∑

α

∂N

∂φa

∂N

∂φb

D
(

φaα
k φbα

k

)

∂ ln k
. (34)

Note that
∑

α φaα
k φbα

k , which is given by Eq. (29), is to be evaluated at a fixed
time t1. The k-dependence of the spectrum (apart from the trivial k3 factor) is
hidden in the small term ǫab. We will exploit the fact that ǫab is small and slowly
varying with respect to a at fixed k/a in order to evaluate it as follows.

D

∂ ln k

∣

∣

∣

∣

a=constant
=

D

∂ ln a

∣

∣

∣

∣

k/a=constant
− D

∂ ln a

∣

∣

∣

∣

k=constant
, (35)

Eq. (29) gives

D

∂ ln a

(

∑

α

φaα
k φbα

k

)∣

∣

∣

∣

∣

k/a=constant

= −
(

3 − 2
Ḣ

H2

)

∑

α

φaα
k φbα

k , (36)

and the slow roll equation of motion Eq. (25) gives

Dφaα
k

∂ ln a

∣

∣

∣

∣

∣

k=constant

=

(

φ̇aφ̇b

H2
hbd +

1

3
Ra

bcd
φ̇bφ̇c

H2
− V ;a

;d

V

)

φdα
k . (37)

Substituting into Eq. (34) then gives

nR − 1 = 2
Ḣ

H2
− 2

k3

2π2PR

∑

α

∂N

∂φa

(

φ̇aφ̇b

H2
hbd +

1

3
Ra

bcd
φ̇bφ̇c

H2
− V ;a

;d

V

)

φdα
k φeα

k

∂N

∂φe
.

(38)
Now from Eq. (29)

∑

α

φaα
k φbα

k ≃ H2

2k3
hab , (39)

and so from Eq. (33)

PR =
(

H

2π

)2

hab ∂N

∂φa

∂N

∂φb
, (40)

therefore from Eq. (38)

nR − 1 = 2
Ḣ

H2
− 2

∂N
∂φa

(

φ̇aφ̇d

H2 + 1
3
Ra

bc
d φ̇bφ̇c

H2 − V ;ad

V

)

∂N
∂φd

hef ∂N
∂φe

∂N
∂φf

. (41)
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Therefore, from Eqs. (18) and (22),

nR − 1 = 2
Ḣ

H2
− 2

1 + ∂N
∂φa

(

1
3
Rabcd V;bV;c

V 2 − V ;ad

V

)

∂N
∂φd

hef ∂N
∂φe

∂N
∂φf

, (42)

=

[

2(ln V );a
;b +

(

2
3
Ra

cbd − ha
bhcd

)

(lnV );c(ln V );d
]

N;aN
;b

N;eN ;e
. (43)

5 Summary

The spectrum of gravitational waves produced during inflation is [21]

Pg =
(

H

2π

)2

, (44)

where, here and below, the right hand side of the equation is to be evaluated
at the time when the relevant scale passed through the Hubble radius during
inflation, i.e. at aH = k. The spectrum of curvature perturbations produced
during inflation is

PR =
(

H

2π

)2

hab ∂N

∂φa

∂N

∂φb
, (45)

where N is the number of e-folds of expansion from a given point in scalar field
space during inflation to some reference energy density or Hubble parameter dur-
ing radiation domination, i.e. after complete reheating.4 The spectral index of
the gravitational waves is [8]

ng = 2
Ḣ

H2
. (46)

The spectral index of the curvature perturbations is

nR − 1 = 2
Ḣ

H2
− 2

1 + ∂N
∂φa

(

1
3
Rabcd V;bV;c

V 2 − V ;ad

V

)

∂N
∂φd

hef ∂N
∂φe

∂N
∂φf

, (47)

=

[

2(ln V );a
;b +

(

2
3
Ra

cbd − ha
bhcd

)

(lnV );c(ln V );d
]

N;aN
;b

N;eN ;e
. (48)

Using Eq. (18) we see that inflation predicts

Pg

PR

≤ |ng| , (49)

so that the ratio of gravitational wave to curvature perturbation contributions to
the cosmic microwave background anisotropy satisfies R ∼< 5|ng|. 5 Note that

4We do not consider the case of isocurvature perturbations that persist until the present.
5We follow [16] in using the factor of ∼ 5. The results of this paper, and in particular

Eq. (49), are not valid for an inflationary model that cannot be realized using any number of
interacting scalar fields minimally coupled to Einstein gravity [22].
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the spectral index depends on the curvature of the space of scalar fields as well
as the potential, though as (in the opinion of EDS) realistic models of inflation
tend to give (V ′/V )2 ≪ |V ′′/V | this may be difficult to observe. An interesting
point is that in models with more than one dynamical degree of freedom there is
generally not a unique inflationary trajectory and so the initial conditions might
play a role in determining the spectrum and hence be observable.
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