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Abstract

A new solution to the coupled gravitational and scalar field equa-
tions for a condensed boson field is found in Newtonian approxima-
tion. The solution is axially symmetric, but not spherically symmet-
ric. For N particles the mass of the object is given by M = Nm −
0.02298N3G2

N
m5, to be compared with M = Nm− 0.05426N3G2

N
m5

for the spherically symmetric case.
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Recent developments in particle physics and cosmology suggest that
evolving scalar fields may have played an important role in the evolution
of the early universe, for instance in primordial phase transitions, and that
they may make up the missing dark matter. Models for galaxy formation
using cold dark matter and the inflationary scenario suggest that the ratio
of baryonic (luminous) matter to dark matter can be of the order of 10 %.
These facts naturally raise the question whether cold gravitational equilib-
rium configurations of massive scalar fields - Bose stars - may exist and
whether such configurations are dynamically stable. For bosonic fields in-
teracting only via gravity spherically symmetric equilibrium solutions were
studied by Kaup [1] as well as Ruffini and Bonazzola [2] by solving the cou-
pled Einstein-Klein-Gordon equations. They analyzed only the zero-node
solutions, corresponding to the lowest energy state. The results of ref.[1,2]
have been confirmed and extended later on. For reviews we refer to ref.[3,4].
Recently the suggestion has been made, that the halo of galaxies is itself a
condensed bosonic object[5,6]. This model was studied in the Newtonian ap-
proximation, where reasonable agreement with experimental rotation curves
was found. All studies sofar have been restricted to non-rotating objects,
i.e. spherically symmetric solutions. In this letter we make a first approach
in studying axially symmetric solutions. For simplicity we restrict ourselves
here to the Newtonian approximation.

The Newtonian treatment of self-gravitating bosons of mass m interact-
ing only gravitationally has been studied in ref.[2,7]. For condensed bosons
at T=0 the equations reduce to two coupled equations for the gravitational
potential and the Schrödinger field. The gravitational potential V satisfies
the Poisson equation

∆V = 4πGNρ (1)

where the mass density is given by

ρ = Nmψ∗ψ (2)

The one particle wave function ψ is determined by the Schrödinger equation

−∆ψ + 2m(E +mV )ψ = 0 (3)

together with the normalization

∫
d3rψ∗ψ = 1 (4)
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After rescaling
x̂ = 2m3GNx (5)

φ =
√
4π(2m3GNN)−3/2ψ (6)

V̂ = (2G2

NN
2m4)−1V (7)

Ê = (2G2

NN
2m5)−1E (8)

the system of equations reduces to the simple form

∆V̂ = φ2 (9)

and
∆φ− V̂ φ = Êφ (10)

The search for a solution is then reduced to looking for an eigenfunction
with the correct norm ∫

∞

0

φ2
Ê
d3r = 4π (11)

In the case of a spherically symmetric solution the equations can be reduced
to a set of ordinary differential equations. These can be solved relatively
simply. In our case we are also interested in solutions, that have only an
axial symmetry. Here the system of equations cannot be reduced to ordinary
differential equations. To solve the resulting equations, we used the method
of finite elements [8,9]. In practice the following procedure was adopted. The
equations were rewritten in cylindrical coordinates. As boundary condition
we took

φ(r, z) = 0 for r2 + z2 = R (12)

When R is large enough this gives a sufficient approximation for the condi-
tion φ→ 0 at infinity. Furthermore there is the condition

∂rφ(r = 0, z) = 0 (13)

It is to be noticed that the equations are invariant under the parity transfor-
mation z → −z, V̂ → V̂ , φ→ ±φ. The solutions therefore fall into positive
and negative parity classes. Using this symmetry it is therefore sufficient to
solve the equations in a quadrant in the r,z plane with the following bound-
ary conditions:
Dirichlet for φ and V̂ at r2 + z2 = R,
Neumann for φ and V̂ at r = 0 and for V̂ at z = 0.
For positive parity one has then the Neumann condition for φ at z = 0, while
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for negative parity one has the Dirichlet condition. With these conditions the
problem is well defined in a finite domain and can be solved with the finite
element method. Because the equations are partial differential equations
one can typically find this way the lowest energy solutions corresponding to
the given boundary conditions. The solution for positive parity is given in
the figures 1 and 2 . The corresponding eigenvalue is given by Ê = 0.081385,
which is in perfect agreement with the results in the literature and the in-
tegration after imposing spherical symmetry. This good agreement proves
that the finite element method can be satisfactorily applied to this prob-
lem. The corresponding results for the negative parity solution is given in
figures 3 and 4. We found an energy value of Ê = 0.034465. These numbers
correspond to the following mass formulae,

M = Nm− 0.05426N3G2

Nm
5 (14)

for the spherically symmetric case and

M = Nm− 0.02298N3G2

Nm
5 (15)

for the axially symmetric case. The maximum masses and particle numbers
are given by

M = 1.6524m2

P l/m and N = 2.4786m2

P l/m
2 (16)

respectively

M = 2.5391m2

P l/m and N = 3.8086m2

P l/m
2 (17)
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Figure Captions

1. Presented is the behaviour of the funktion φ(r, z) for the spherically
symmetric case. The straight line corresponds to the z-axis. The semi-
circle corresponds to r2 + z2 = 50. Outside the plotted area φ ≈ 0.

2. Presented is the behaviour of the gravitational potential. Outside the
plotted region one has asymptotically V̂ = (r2 + z2)−1/2

3. The same as fig.(1), but for the axially-symmetric case. Here the semi-
circle is at R=100.

4. The gravitational potential for the axially-symmetric case.
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