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ABSTRACT

Accretion disks in close binary systems are subject to a tidally driven

parametric instability which leads to the growth of internal waves near the

outer edges of such disks (Goodman 1993). These waves are important in

understanding the torque exerted on a disk by tidal forces and may play a role in

the structure of the disk at small radii. Here we calculate the growth rate of this

instability, including the effects of vertical structure and fluid compressibility.

We find growth rates which are only slightly different from Goodman’s original

results, except that near the vertical resonance radius the growth rate can have

an extremely broad and strong peak when the disk is stably stratified in the

vertical direction. Higher order modes, in the sense of increasing number of

vertical nodes, have similar growth rates. Our results differ from a previous

calculation along these lines by Lubow et al. (1993). The difference is mostly

due to their neglect of radial gradients in the tidally distorted streamlines.

1. Introduction

In a recent paper, Goodman (1993) pointed out that a tidally perturbed accretion

disk would be subject to a parametric instability driven by the ellipticity of the distorted

flow lines. This instability drives the creation of a standing wave pattern of low frequency

waves with an amplitude that rises sharply near the outer edge of the disk. These waves are

G-modes, or buoyancy waves, whose restoring force comes partly from vertical stratification

of the fluid due to the vertical entropy gradient and partly from the radial stratification in

the disk due to the steep radial gradient in specific angular momentum. Waves dominated

by the former force are usually referred to as G-modes or (in a terrestrial context) internal

waves. Waves dominated by the latter force are usually referred to as inertial waves. Here

we will refer to them as internal waves. An overview of their properties in disks can be

found in Vishniac and Diamond (1994, see also the references contained therein).

http://arxiv.org/abs/astro-ph/9508038v1
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The generation of these waves is important for at least three reasons. First, the

waves created in this manner carry negative angular momentum, relative to the angular

momentum of the disk, and so their generation corresponds to a torque on the disk. This

torque acts as a sink for the angular momentum transported outward in an accretion disk

and will be important in determining its outer radius. Second, this process will lead to a

strong inward flux of such waves in regions where the tidal forces are weak. The dissipation

of these waves at small radii provides a weak, but potentially significant mechanism

for angular momentum transport (Vishniac & Diamond 1989). Third, these waves can

generate dynamo activity and angular momentum transport which, in an ionized disk, can

dominate the angular momentum transport mediated directly by the waves (Vishniac, Jin,

& Diamond 1990, Vishniac & Diamond 1992). This last process will be insignificant if the

Balbus-Hawley instability drives a dynamo with a growth rate comparable to Ω (Balbus

& Hawley 1991) but this claim is inconsistent with phenomenological models of ionized

accretion disks in binary systems (see, for example Smak 1984a, Smak 1984b, Meyer &

Meyer-Hoffmeister 1984, Huang & Wheeler 1989, Mineshige, & Wood 1989, Mineshige &

Wheeler 1989, Cannizzo 1994, Cannizzo, Chen, & Livio 1995).

The physical basis of instability is closely related to a three dimensional instability

of an incompressible fluid with elliptical flow lines (Pierrehumbert 1986, Bayly 1986,

Landman, & Saffman 1987). An observer moving with the fluid in an accretion disk will see

the tidal forces as inducing a set of time-dependent stresses whose comoving frequency, ω̄,

is m(Ω− Ωb), where m is the dimensionless azimuthal wavenumber of the tidal force, Ω is

the local orbital frequency in the disk, and Ωb is the binary orbital frequency. A realistic

tidal force will have components at all values of m, but the strongest components will

have small values of m. If we consider the m = 2 component then we see that an internal

wave with ω̄ = Ω − Ωb and m = 1 can interact with this component of the tidally induced

stress to produce a wave traveling in the opposite direction, with the same m and ω̄. In

Goodman’s paper he showed that this process could lead to exponential growth as each

component of the standing wave amplifies the other. Since this process is inherently local

no special boundary conditions are required. It is necessary that the waves be confined

to the midplane of the disk, since the waves will need to maintain coherence over a radial

distance comparable to their group velocity divided by the instability growth rate, but

internal waves are naturally confined in this manner.

The significance of this instability depends on its growth rate. A small growth rate

not only implies weaker waves, but makes the instability vulnerable to suppression from

dissipative effects, including turbulent dissipation from any other instabilities present.

Goodman (1993) calculated the growth rate to leading order in the tidal forces for an

adiabatic fluid in a disk without vertical structure assuming that the induced fluid motions
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were incompressible. He found that at small r the growth rate was given by

σ(r) ≈
15

4

GM2

a3Ω(r)
, (1)

where M2 is the mass of the secondary (mass-losing) star, and a is the semi-major axis

of the binary orbit. This result is consistent with the growth rate found by Ryu and

Goodman (1994), who used a different approach and who also carried out a two dimensional

simulation to look at the nonlinear saturation of the instability. Goodman also found a

singularity in the growth rate near the vertical resonance discovered by Lubow (1981). This

resonance occurs at the radius where

Ω(r) =
Ωb

1− (γ + 1)1/2/2
, (2)

where γ is the adiabatic index of the gas in the disk. This singularity is due to pumping of

the waves by vertical motions rather than the ellipticity of the flow lines, but is a natural

part of the parametric instability in accretion disks.

More recently, Lubow, Pringle, and Kerswell (1993) repeated the growth rate

calculation including the effects of an isothermal vertical structure. They found a reduced

growth rate at all radii, by about an order of magnitude, which they ascribed to the

stabilizing effects of the vertical stratification. However, their calculation differed in other

respects as well. In particular, they neglected vertical motions, which eliminated the

singularity, and they treated the flow lines as locally self-similar, which eliminated radial

derivatives of the tidal distortions. They also suggested that the instability could be

suppressed by a suitable choice of radial boundary conditions, but further work by Ryu et

al. (1995) has shown that the instability is purely local and relatively insensitive to radial

boundaries.

In this paper we present an improved calculation of the linear growth rate of this

instability, including the effects of vertical structure, compressibility , and variations in

the local adiabatic index γ, while retaining tidally induced vertical motions and radial

derivatives of flow lines. We show that a full calculation is reasonably consistent with

Goodman’s original estimate for the growth rate of the parametric instability in a realistic

disk. However, there is one interesting difference. Vertical stratification greatly increases the

amplitude and width of the peak in the growth rate associated with the vertical resonance.

In §2 we derive the necessary formulae for calculating the linear growth rate. In §3

we present our results for disks with different vertical structures and adiabatic indices and

compare our results with previous work. In §4 we discuss the implications of this work and

some directions for future research.
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2. The Growth Rate Formalism

The response of an accretion disk to tidal perturbations is an example of the more

general situation where one has a set of modes of a system and one perturbs the evolution

operator. In this case the basic modes are the m = ±1 standing internal waves of an

accretion disk and the perturbation is the change in the evolution operator for these waves

due to the tidal distortions. If a frequency eigenstate of the system is represented by some

state vector Ai then its unperturbed evolution is given by

∂tAi = LijAj = iω̄Aj , (3)

where we have used implicit summation and ω̄ is the comoving frequency, i.e. we treat the

mode evolution from the point of view of an observer moving with the fluid. It is useful to

define an adjoint state vector and corresponding eigenmodes, Ãi, using the adjoint of Lij ,

i.e.

∂tÃi = −L†
ijÃj = iω̄Ãj . (4)

When iL is a hermitian operator the two sets of eigenvectors are identical. We can define

an inner product, 〈ÃA〉, in the usual way as

〈ÃA〉 ≡
∫

Ã∗
iAidV, (5)

where the integral is over the volume of the system.

When the system is perturbed so that L → L + ∆L then the eigenfunctions are

perturbed as well. We can invoke the normalization constraint, i.e.

〈ÃA〉 = 〈(Ã+ ∆̃)(A+∆)〉, (6)

to show that

〈Ã+ ∆̃|L+∆L|A +∆〉 = i(ω̄ + δω)〈ÃA〉 = iω̄〈ÃA〉+ 〈Ã|∆L|A〉, (7)

or

iδω =
〈Ã|∆L|A〉

〈ÃA〉
. (8)

In order to solve for the growth rate we need to find the unperturbed eigenvectors A and Ã

and calculate the matrix elements due to tidal perturbations of the disk.

We will assume that we are dealing with standing waves whose radial structure can

be approximated by a plane wave of the form cos(krr + φ), where φ is an arbitrary phase
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function, and whose azimuthal wavenumber is ±1/r. The latter is a requirement for an

exact resonance with the m = 2 component of the tidal force. More generally we do not

need an exact resonance to drive the instability, but we will restrict ourselves to that case

in this paper. Waves with a low kθr ≡ m of order unity will show secular radial variations

on scales ∼ r/m (Vishniac & Diamond 1989). As long as we restrict ourselves to kr ≫ kθ,

as we do here, then we can ignore this effect.

We will restrict ourselves to adiabatic perturbations of a disk with arbitrary vertical

structure. The evolution of radial plane wave perturbations of the disk, with radial

wavenumber kr, are described by the following equation.

d

dt

















vr
vθ
vz
χ

δ

















=

















0 2Ω 0 −Sikr 0

−Ω/2 0 0 0 0

0 0 0 −S[(ln(Sρ))′ + ∂z ] −zΩ2

− c2s
S
ikr 0 1

S
(zΩ2 − c2s∂z) 0 0

−ikr 0 −(ln(ρ)′ + ∂z) 0 0

































vr
vθ
vz
χ

δ

















, (9)

where a prime denotes a derivative in the ẑ direction, S ≡ P 1/γ/ρ, cs(z) is the sound speed,

ρ(z) is the density, P (z) is the pressure, δ is the fractional density perturbation, and χ is

the pressure perturbation divided by P 1/γ.

If we take the perturbation to have a well-defined comoving frequency, consistent with

our approximation of the perturbation as a plane wave, we get the following second order

equation in z for χ

(

χ′ ln

[

S2ρ

N2 − ω̄2

])′

+ (ω̄2 −N2)

(

1

c2s
+

k2r
Ω2 − ω̄2

)

χ = 0, (10)

where N2 is the square of the Brunt-Väisälä frequency, defined by

N2 ≡ zΩ(lnS)′. (11)

This equation has an apparent singularity when ω̄2 = N2, but closer examination shows

that there are always two linearly independent and regular solutions passing through this

point. The only boundary condition is the requirement that χ vanish as |z| → ∞. The

other variables can be found in terms of χ using equation (9). Since terms of order m/(rkr)

are negligible, they are

vr =
−krω̄S

ω̄2 − Ω2
χ, (12)

vθ =
−ikrS

ω̄2 − Ω2

Ω

2
χ, (13)



– 6 –

vz =
iω̄S

ω̄2 −N2
∂zχ, (14)

and

δ =
∂zS

ω̄2 −N2
∂zχ+

S

c2s
χ. (15)

There will be an infinite number of solutions that satisfy this boundary condition, just

as there are an infinite number of harmonics of the resonant mode of a box. However,

modes with many vertical nodes, or alternatively modes with large kz, will be more easily

saturated due to nonlinear processes. Here we will consider only a few of the lowest order

modes. In order to study the parametric instability we need to look at the standing wave

pattern formed by the superposition of outgoing and ingoing waves. For a given ω̄ and kr
this involves an overall phase factor of the form

χ ∝ cos(krr + φ) cos(ω̄t + θ + ψ), (16)

where φ and ψ are phase constants and θ is the azimuthal coordinate. The angle φ is

irrelevant and may vary from one annular region to another. (The instability only requires

a limited amount of radial coherence.) Phase factors for the other components of the state

vector can be derived from equations (12) through (15). Given a model for the vertical

structure of a disk the vertical eigenfunctions can be calculated from these equations in a

straightforward manner.

The evolution of the adjoint state vector is given by

d

dt

















ṽr
ṽθ
ṽz
χ̃

δ̃

















=

















0 Ω
2

0 −ikr
c2s
S

−ikr
−2Ω 0 0 0 0

0 0 0 − (2−γ)
S
zΩ2 − c2s

S
∂z (ln ρ)′ − ∂z

−ikrS 0 S((ln ρ)′ − ∂z) 0 0

0 0 zΩ2 0 0

































ṽr
ṽθ
ṽz
χ̃

δ̃

















, (17)

where the tilde variables are defined by this equation. Note that we have used the relation

∂z(c
2
s/S) = −

(γ − 1)

S
zΩ2 (18)

in deriving equation (17). The vertical structure equation, analogous to equation (10) is

∂2z

(

c2s
S
χ̃

)

−∂z

(

c2s
S
χ̃

)

(ln(Gρ))′+
c2s
S
χ̃

(

−Ω2

c2s
G+

k2rΩ
2

ω̄2 − Ω2

(

1−
ω̄2

Ω2
+ z∂z

(

ln

(

z

Gρ

))))

= 0,

(19)

where

G ≡ 1−
ω̄2

Ω2
−

z2k2rΩ
2

Ω2 − ω̄2
. (20)
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Equation (19) has an apparent singularity at G = 0. However, as before, one can show that

there exists two linearly independent and well-behaved solutions that pass through this

point. The other adjoint variables are given by

ṽr =
−krω̄

ω̄2 − Ω2

(

c2sχ̃

S

(

1−
Ω2k2rz

2

G(ω̄2 − Ω2)

)

−
z

G
∂z

(

c2s
S
χ̃

))

, (21)

ṽθ =
−i2krΩ

G(ω̄2 − Ω2)

(

c2s
S
χ̃

(

1−
ω̄2

Ω2

)

− z∂z

(

c2s
S
χ̃

))

, (22)

ṽz =
−iω̄

Ω2G

((

c2sχ̃

S

)

Ω2k2rz

ω̄2 − Ω2
+ ∂z

(

c2s
S
χ̃

))

, (23)

and

δ̃ = −
z

G

((

c2sχ̃

S

)

Ω2k2rz

ω̄2 − Ω2
+ ∂z

(

c2s
S
χ̃

))

. (24)

These equations can be solved, once again invoking χ̃ → 0 as |z| → ∞. Alternatively,

we can notice that there is a close relationship between the state vector and the adjoint

state vector. The fact that 〈ÃA〉 is a constant suggests that we should be able to equate the

state norm with some conserved state property, e.g. the energy. In fact, if we compare ṽr
and (1/2)ρvr then we can show that equations (10), (12), (19), and (21) imply that the two

variables satisfy the same second order differential equation in z. The boundary condition

at |z| → ∞ does not distinguish between solutions that differ only by a complex factor, but

the phase and amplitude of the adjoint state vector is undefined in any case. We conclude

that we can take ṽr = (1/2)ρvr. With this choice, we can use equations (12) through (15)

and (21) through (24) to show that

















ṽr
ṽθ
ṽz
χ̃

δ̃

















=



















1
2
ρvr

2ρvθ
1
2
ρvz

1
2
ρ
(

S2

c2s
χ− S

c2s
zΩ2∆z

)

1
2
ρzΩ2∆z



















, (25)

where

∆z ≡
vz
iω̄
. (26)

The meaning of this choice is clearer if we note that equation (25) implies that

〈ÃA〉 =
1

2
ρ
(

|vr|
2 + 4|vθ|

2 + |vz|
2
)

+
|δP |2

2ρc2s
−

1

2
ρzΩ2∆z∗

(

δP

γP
− δ

)

. (27)
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Furthermore

−
1

2
ρzΩ2∆z∗

(

δP

γP
− δ

)

= −1
2
ρzΩ2∆z∗

(

δS
S

)

= −1
2
ρzΩ2∆z∗ (−∆z∂z lnS)

= 1
2
ρN2|∆z|2. (28)

Therefore,

〈ÃA〉 =
1

2
ρ
(

|vr|
2 + 4|vθ|

2 + |vz|
2
)

+
|δP |2

2ρc2s
+

1

2
ρN2|∆z|2, (29)

which is to say that using this convention the norm of the state is the locally measured

energy density. Goodman (1993) used the local energy density in his calculation of the

perturbation growth rate, but, consistent with his neglect of compressibility and vertical

structure, left out the last two terms.

It remains to find the operator ∆L and calculate the matrix elements 〈Ã|∆L|A〉.

We will start with the lagrangian displacements produced by the tidal forces. We

follow Goodman in using first-order epicyclic theory to calculate the radial and angular

displacements. The radial and azimuthal displacements are

ξr =
1

4ω̄2 − Ω2

(

dΦ2

dr
+

2Ω

rω̄
Φ2

)

cos(2ω̄t + 2θ), (30)

and

ξθ =
−1

2(4ω̄2 − Ω2)

(

2Ω

rω̄

dΦ2

dr
+

4ω̄2 + 3Ω2

r2ω̄2
Φ2

)

sin(2ω̄t + 2θ), (31)

where ω̄ = Ω−Ωb, θ is measured relative to the axis running between the two stars, and Φ2

is the azimuthal m = 2 Fourier component of the tidal potential. It is given by (Brouwer &

Clemence 1961)

Φ2 = −q
GM1

a
b
(1/2)
2 (r/a), (32)

where q is the mass ratio for the system, M1 is the primary stellar mass, and b
1/2
2 (r/a) is a

Laplace coefficient. The vertical displacement follows from examining the response of the

disk to long radial wavelength perturbations to the local vertical gravity. This gives

ξz =
z cos(2ω̄ + 2θ)

4ω̄2 − (γ + 1)Ω2

(

(γ − 1)Ω2
(

1

r
∂r(rξr) +

1

r
∂θξθ

)

−
1

r

d

dr

(

dΦ2

dr

)

+
4

r2
Φ2 −

3ξr
r
Ω2

)

.

(33)

This differs from the expression in Goodman (1993) in two respects. First, the sign of the

Φ2 terms are reversed. Second, there is an additional term proportional to ξr which comes

from the change in vertical gravity induced by radial motions. Writing these displacements
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as a set of coefficients of the angular functions cos(2ω̄t + 2θ) and sin(2ω̄t + 2θ) we find the

tidally induced eulerian velocity perturbations are

∆vr = (Ωξθ − 2ω̄ξr) sin(2ω̄t+ 2θ) (34)

∆vθ =
(

Ω

2
ξr + 2ω̄ξθ

)

cos(2ω̄t + 2θ) (35)

and

∆vz = −2ω̄ξz sin(2ω̄t + 2θ). (36)

In addition, we need to know the tidally induced perturbations to the pressure, density, and

entropy. These are

∆S

S
= −ξ∂z lnS

= −ξzN2

zΩ2

= −∂zξz
Ω2 N

2 cos(2ω̄t+ 2θ), (37)

∆ρ

ρ
= −~∇ · ~ξ − ξz∂z ln ρ

= −
(

1
r
∂r(rξr) +

2
r
ξθ + ∂zξz (1 + z∂z ln ρ)

)

cos(2ω̄t+ 2θ) (38)

and
∆P

P
= γ

(

∆S

S
+

∆ρ

ρ

)

(39)

Here we have used the assumption that the tidal perturbations are adiabatic. This

assumption may not always be valid, but since we have already employed it in deriving the

dispersion relation for the waves, we have not further compromised our results by using it

here. In any case, this assumption should be reasonable as long as the cooling time for

the disk is much greater than the orbital time. The radial and vertical derivatives of these

expressions can be calculated in a straightforward manner.

It is convenient to rewrite the components of the state vectors as coefficients of phase

factors, following equation (16). For both the state vector and its adjoint the phase factors

have the form
















sin(krr + φ) sin(ω̄t+ θ + ψ)

− sin(krr + φ) cos(ω̄t + θ + ψ)

− cos(krr + φ) sin(ω̄t + θ + ψ)

cos(krr + φ) cos(ω̄t+ θ + ψ)

cos(krr + φ) cos(ω̄t+ θ + ψ)

















. (40)

The definitions of the state vector and adjoint state vector components are then modified by

dividing through by i for every factor of ω̄ or kr. Note that when we are done constructing
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our standing wave patterns there is no distinction left between Ã and Ã∗. Finally, we note

that matrix elements which involve products of the form cos(krr) sin(krr) will not vanish

exactly. Instead,

〈sin(krr)F (r) cos(krr)〉 = −
1

4
〈k−1
r ∂rF (r)〉. (41)

When the matrix element involves a factor of kr such terms will contribute to the total

growth rate at the same order as other terms. This point is particularly significant since the

radial gradients of the tidal perturbations can be much larger than the tidal perturbations

divided by r. We note that in performing the necessary integration by parts we have

neglected secular radial variations in the eigenmodes, which will arise from radial variations

in density and pressure.

We are now ready to write down expressions for the matrix elements which enter into

equation (8). The tidally perturbed radial acceleration equation is

∂tvr = 2Ωvθ−
1
ρ
∂rP −

(

∆vr∂r +
∆vθ
r
∂θ +∆vz∂z + ∂r∆vr

)

vr +
(

2∆vθ
r

− 1
r
∂θ∆vr

)

vθ

−vz∂z∆vr +
∆ρ
ρ
S∂rχ+ 1

ρ
∂r∆P. (42)

Taking into account the radial phase factors given in equation (16) we can use this to write

the top row of ∆L as

∆Lri =

(

−
1

2
∂r∆vr −∆vz∂z −

∆vθ
r
∂θ,

2∆vθ
r

−
1

r
∂θ∆vr, 0,

∆ρ

ρ
S∂r, 0

)

. (43)

This gives a contribution to the growth rate, following equation (8) of

〈ṽr|∆L|A〉 =
sin(2ψ)

8

∫∞
−∞ ṽr

(

vr
(

−∂r∆vr
2

− ∆vθ
r

)

−∆vz∂zvr −
(

2∆vθ
r

− 2∆vr
r

)

vθ

−χkr
∆ρ
ρ
S
)

dz

= sin(2ψ)
8

∫∞
−∞ ṽr

(

vr
(

ω̄∂rξr −
Ω
2
∂rξθ +

(

3
4
Ω− 2ω̄

)

ξθ
r
− 2Ω ξr

r

)

+ ∂zvr2ω̄ξz

−2vθ
r

(

ξr
(

Ω
2
+ 2ω̄

)

+ ξθ (2ω̄ − Ω)
)

+χkrS
(

ξr
r
+ ∂rξr +

2
r
ξθ + ∂zξz (1 + z∂z ln ρ)

)

)

dz. (44)

Similarly, the tidally perturbed azimuthal acceleration equation is

∂tvθ = −Ω
2
vr −

(

∂r∆vθ +
∆vθ
r

)

vr −
(

∆vr∂r +
∆vθ
r
∂θ +∆vz∂z +

∆vr
r

+ ∂θ∆vθ
r

)

vθ
−vz∂z∆vθ, (45)

which implies a contribution to the growth rate of

〈ṽθ|∆L|A〉 =
sin(2ψ)

8

∫∞
−∞ ṽθ

(

vr
(

∂r∆vθ +
∆vθ
r

)

+ vθ
(

−1
2
∂r∆vr +

∆vr
r

− ∆vθ
r

)
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+∆vz∂zvθ

)

dz

= sin(2ψ)
8

∫∞
−∞ ṽθ

(

vr
(

Ω
2
∂rξr + 2ω̄∂rξθ −

Ω
4
ξr
r
+ (2ω̄ − 3Ω) ξθ

r

)

+vθ
(

−Ω
2
∂rξθ + ω̄∂rξr +

(

7
4
Ω− 2ω̄

)

ξθ
r
− 2(Ω + ω̄) ξr

r

)

−2ω̄ξz∂zvθ

)

dz. (46)

The tidally perturbed vertical acceleration equation is

∂tvz = −S
(

∂z ln
(

S
ρ

)

+ ∂z
)

χ− zΩ2δ

−vr∂r∆vz −
1
r
∂θ∆vz − vz∂z∆vz −

(

∆~v · ~∇
)

vz

+∆ρS
(

−zΩ2

c2s
+ ∂z

)

χ+ δ
ρ
∂z∆P + 2δ∆ρ

ρ
zΩ2, (47)

which implies a contribution to the growth rate of

〈ṽz|∆L|A〉 =
sin(2ψ)

8

∫∞
−∞ ṽz

(

vz
(

−∂z∆vz +
1
2
∂r∆vr −

∆vθ
r

)

−∆vz∂zvz

−∆ρ
ρ
S
(

−zΩ2

c2s
+ ∂z

)

χ− δ
(

1
ρ
∂z∆P + 2∆ρ

ρ
zΩ2

)

)

dz

= sin(2ψ)
8

∫∞
−∞ ṽz

(

vz
(

Ω
2
∂rξθ − ω̄∂rξr + Ω ξr

r
−
(

3
4
Ω + 2ω̄

)

ξθ
r
+ 2ω̄∂zξz

)

+2ω̄ξz∂zvz −
∆ρ
ρ
S
(

−zΩ2

c2s
+ ∂z

)

χ

+zΩ2
(

(γ − 2)∆ρ
ρ
+ γ∆S

S
− ∂zξz

(

2 + z∂z ln ρ+
γz2Ω2

c2s

))

δ
)

dz. (48)

The tidally perturbed pressure evolution equation is

∂tχ = − c2s
S
∂rvr +

1
S
(zΩ2vz − c2s∂zvz)

+P−1/γ

(

(−~v · ~∇)∆P − γ∆P ~∇ · ~v −∆~v · ~∇(P 1/γχ)− γ ~∇ · (∆~v)P 1/γχ
)

, (49)

which implies a contribution to the growth rate of

〈χ̃|∆L|A〉 = sin(2ψ)
8

∫∞
−∞ χ̃

(

− c2s
S

∆P
P
krvr +

c2s
S

(

∂z∆P
γP

+ ∆P
P
∂z
)

vz
((

γ − 1
2

) (

∂r(r∆vr)
r

− 2∆vθ
r

)

+∆vz
(

−zΩ2

c2s
+ ∂z

)

+ γ∂z(∆vz)
)

χ
)

dz.

= sin(2ψ)
8

∫∞
−∞ χ̃

(

− c2s
S
kr

∆P
P
vr −

zΩ2

S

(

∆P
P

− ∂zξz
(

2 + z∂z ln ρ+
z2γ
c2s

))

vz

+ c2s
S

∆P
P

dvz
dz

+ χ
(

2ω̄
(

z2Ω2

c2s
− γ

)

∂zξz+
(

γ − 1
2

) (

2Ωb
ξr
r
− ξθ

(

Ω
2
+ 4ω̄

)

+ Ω∂rξθ − 2ω̄∂rξr
)

)

− 2ω̄ξz
dχ
dz

)

dz (50)
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Finally, the tidally perturbed density evolution equation is

∂tδ = −∂rvr − vz∂z ln(ρ)− ∂zvz −
∆ρ
ρ

(

∂rvr +
vr
r

)

− ∂r
(

∆ρ
ρ

)

vr

−∆ρ
ρ

1
r
∂θvθ −

vθ
r
∂r
(

∆ρ
ρ

)

− ∆ρ
ρ
∂zvz −

vz
ρ
∂z∆ρ− δ(~∇ ·∆~v +∆vz∂z ln ρ). (51)

which implies a contribution to the growth rate of

〈δ̃|∆L|A〉 = sin(2ψ)
8

∫∞
−∞ δ̃

(

−∆ρ
ρ
krvr + vz

∂z∆ρ
ρ

+ ∆ρ
ρ
∂zvz

+
(

1
2r
∂r(r∆vr)−

∆vθ
r

+∆vz∂z ln ρ
)

δ +∆vz∂zδ
)

dz

= sin(2ψ)
8

∫∞
−∞ δ̃

(

−∆ρ
ρ
krvr + vz

(

−∂zξz (∂z ln ρ− z(∂z ln ρ)
2 + z∂2z ln ρ) +

∆ρ
ρ
∂z ln ρ

)

+∆ρ
ρ
dvz
dz

+ δ
((

−1
4
Ω + 2ω̄

)

ξθ
r
+ (Ω− ω̄) ξr

r
+ Ω

2
∂rξθ − ω̄∂rξr − 2ω̄ξz∂z ln ρ

)

−2ω̄ξz
dρ
dz

)

dz (52)

In order to calculate the growth rate for a given vertical structure, we need to solve for

the vertical eigenfunctions using equations (10) through (15), and the adjoint eigenfunctions

using equations (19) through (24) or, more economically using equation (25), and substitute

these results into equations (44), (46), (48), (50), and (52) using equations (37), (38) and

(39). Finally, we need to add up the matrix components and divide by the state norm given

by

〈ÃA〉 =
1

4

∫ ∞

−∞

(

ṽrvr + ṽθvθ + ṽzvz + χ̃χ+ δ̃δ
)

dz. (53)

3. Results

We are now in a position to calculate the growth rates for the parametric tidal

instability for a range of input parameters. Although our formalism allows us to take

any vertical structure we will confine ourselves to presenting results only for adiabatic

and isothermal vertical structures. These two cases should give us a sense of the range of

possible results. We start with adiabatic disks. In this case the vertical structure is given by

P = P0

(

1−
(

z

H

)2
)

γs
γs−1

, (54)

ρ = ρ0

(

1−
(

z

H

)2
) 1

γs−1

, (55)
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with

H =

(

2P0

ρ0Ω2

)1/2

, (56)

c2s = γ
P0

ρ0

(

1−
(

z

H

)2
)

, (57)

and

N2 = 0. (58)

The adiabatic index for the vertical structure is not necessarily the same index that appears

in the perturbation equations. The latter describes the response of fluid elements on short

time scales to changes in the ambient pressure, whereas the former is an attempt to model

the vertical structure. In the preceding equations we have distinguished the two by using

γs when we mean the vertical structure parameter. This class of models has the peculiar

property that the boundary occurs at |z| = H rather than |z| = ∞. Consequently we have

to modify our boundary conditions and take the solution which is least divergent near

|z| = H i.e. χ goes to a constant value near the vertical disk boundaries. An unfortunate

consequence is that the fluid velocities are also constant, while the sound speed goes to

zero. This is manifestly unphysical, but not too surprising. One expects the adiabatic

approximation to break down far from the disk midplane. Fortunately the results of our

calculation are weighted by the mode energy, and therefore by the local density, which

drops to zero faster than the sound speed. It seems safe to assume that adding on an

isothermal atmosphere will have little impact on our results as long as the column density

in the atmosphere remains a small fraction of the total column density.

In figure 1 we show the growth rate for the parametric instability in units of qΩb for

an adiabatic disk with γs = γ = 5/3. as a function of r/a, where a is the semi-major axis

of the binary orbit. In this figure we plot the results for the three lowest order modes of

internal waves. The primary mode has one zero in χ and none in vz, i.e. the disk material

bobs up and down as the wave passes by. In fact, in the limit where γs = γ = 1, vz is not

a function of z at all. (However, in this case vr does have a vertical mode. The material

above and below the midplane are moving in opposite directions radially during each cycle.)

We see that the second and third harmonics are almost indistinguishable in this plot,

and the primary mode shows large differences only for radii close to, or greater than, the

vertical resonance radius. The fundamental mode shows a stronger response to the vertical

resonance and a significantly larger growth rate for larger radii. At small radial distances

our results converge to Goodman’s asymptotic formula for the higher order modes. The

primary mode is weaker by about 23%. The vertical resonance peak is basically similar to

the peak in his plot, but the zero in the growth rate occurs at a radius just outside the

resonant radius, whereas in his calculation it was on the opposite side of the peak. The
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source of this discrepancy is not clear. It is not due to our disagreement concerning the sign

of the Φ2 terms in equation (33).

In figure 2 we show the growth rate in units of qΩb for the fundamental mode and for

γ = γs = 5/3, 1.2 and 1.0. This last case is equivalent to taking an isothermal vertical

structure and assuming isothermal perturbations. The two most significant effects of

changing the adiabatic index are that the vertical resonance is pushed outwards and the

peak around it is broadened.

A more realistic, but still idealized, model is to assume an isothermal vertical structure

for the disk. In this case we have P ∝ ρ, S ∝ ρ1−1/γ ,

ρ = ρ0 exp

(

−ρz2Ω2

2P

)

, (59)

c2s = γ
P

ρ
, (60)

and

N2 =
ρz2Ω4

P

(

1−
1

γ

)

. (61)

In figure 3 we show the growth rate in units of qΩb for the first three internal wave

modes for an isothermal disk with γ = 5/3. We see that the response to the vertical

resonance is much larger in this case, by a factor of about 5/2 for the fundamental mode.

This carries over into a smaller response well beyond the radius of the vertical resonance.

At much smaller radii the growth rates are similar to the adiabatic case, the only difference

being that the primary mode is reduced from the higher order modes even more, by about

36%.

In figure 4 we show the growth rate in units of qΩb for the fundamental mode in an

isothermal disk with γ = 5/3, 1.2 and 1.0. As before, lowering γ broadens the vertical

resonance peak and moves it outward.

The modest differences between this calculation and Goodman (1993) for the adiabatic

disk with γ = 5/3 are explainable in terms of the additional effects included in this paper.

On the other hand, our results are very different from Lubow et al. (1993). We have

used a different calculational approach, and included the tidally induced vertical motions

and pressure and density fluctuations. However, while these effects are quantitatively

important, leaving them out does not produce a dramatic reduction in our growth rates,

except near the vertical resonance. The most important difference seems to be our inclusion

of radial derivatives in the tidal stresses. We can make a crude comparison between our

two calculations by setting ∆ρ = ∆P = ξz = 0, and taking ∂rξr = ξr/r and ∂rξθ = ξθ/r.
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In figure 5 we show the growth rates for the fundamental mode in an isothermal disk with

γ = 5/3. The top curve shows the results of our complete calculation, also seen in figure

3. The next curve shows the results of removing tidally induced vertical motions, and

density and pressure fluctuations. The bottom curve shows the results adding to this the

assumption that the streamlines are locally self-similar, i.e. the radial derivatives of ~ξ are

found by setting ξr and ξθ proportional to r in the interaction matrix. We note that at

small r the bottom curve is more than a factor of 5 below the top one. This is a dramatic

reduction, although this result still lies about 30% above the the reduction obtained by

Lubow et al.. The remaining discrepancy is apparently due to the difficulty in entering

precisely equivalent assumptions into our program, due to our somewhat different methods

for evaluating the interaction matrix. We conclude that the bulk of the difference between

the results of Goodman (1993) and Lubow et al. (1993) stems from the latter’s neglect

of radial derivatives of the streamline perturbations, not from their inclusion of vertical

structure.

4. Conclusions

We have calculated the linear growth rate of a tidally induced parametric instability in

accretion disks. Our results take into account only leading order terms in the tidal distortion

of an accretion disk, but include compressibility, vertical structure, vertical motions, and

radial derivatives of the tidal distortions. Our basic conclusion is that the original results

of Goodman (1993), derived under a simpler set of assumptions, are basically correct.

For a disk with adiabatic vertical structure we see only small deviations except near the

vertical resonance, where we find the zero in the growth rate lies just outside the radius

of the vertical resonance, rather than just inside it. This difference is unlikely to have any

significant dynamical effects. For a disk with isothermal vertical structure we find a general

enhancement of the growth rate near the vertical resonance, by a factor of about 2.5. This

implies that the net torque on an accretion disk may depend significantly on its vertical

structure.

One lingering question regarding these results is the meaning of the infinite growth

rate for the instability in the neighborhood of the vertical resonance. This singularity is a

consequence of the divergence in ξz at that radius. In reality there are two effects which

limit this divergence. First, strong vertical motions within a narrow annulus will lead to the

emission of sound waves (Lubow 1981). First, equation (2) was derived neglecting radial
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gradients. If we define an effective radial wavenumber for the growth rate by

Kr ≡ ∂r ln σ(r), (62)

then the tidal pumping of the vertical resonance will saturate due to the emission of sound

waves from the resonant region when

KrVgroup =
c2sK

2
r

2ω̄
≈ σ(r). (63)

Near the vertical resonance the growth rate is approximately

σ(r) ≈ A
(

r

∆r

)

q
Ω2
b

Ω
, (64)

where ∆r is the distance to the resonant radius and A is a function of γ and the vertical

disk structure. We see that the half-width of the annulus within which damping by acoustic

emission is important is

∆r ≈
Ω

2(Ω− Ωb)

c2s
qA(γ)Ω2

br
∼

H2

qrA
, (65)

where H ∼ cs/Ω is the disk thickness and we have ignored the distinction between Ωb and Ω

in the last (highly approximate) expression. Within this annulus the effective growth rate is

σlim ≈
2r2(Ω− Ωb)

c2s

(

Aq
Ω2
b

Ω

)2

∼ (qA)2Ωb

(

r

H

)2

. (66)

We see that as (H/r) → 0 acoustic emission becomes ineffective at removing the effects of

this singularity.

The second damping mechanism is due to nonlinear broadening of the vertical

resonance. The resonance width will increase as the advective terms in the acceleration

equation become important. In physical terms, the strong vertical oscillations of the disk

will excite higher order harmonics, which will interfere with the resonant excitation of the

fundamental mode. This is a purely one dimensional effect and does not depend on radial

gradients in the tidal forcing. We can approximate its effects by inserting a term of the

form C04ω̄
2(∂zξz)

2 into the denominator of equation (33) where C0 is a constant of order

unity. This implies a limit on ∂zξz of order

(∂zξz)lim ∼

(

q
Ω2
b

Ω2

)1/3

. (67)
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Since the denominator of the leading factor in equation (33) goes as −12Ωbω̄(∆r/r)

this implies that this damping mechanism will be effective within an annular width of

approximately

∆r ≈ r
C0ω̄

12Ωb
(∂zξz)

2
lim ∼ r

C0ω̄

12Ωb

(

q
Ω2
b

Ω2

)2/3

. (68)

The instability growth rate within this annulus will be limited to

σlim ∼ A

(

q
Ω2
b

Ω2

)5/3
12ΩbΩ

C0(Ω− Ωb)
. (69)

Comparing equations (65) and (68) we note that acoustic emission will tend to be the

most important damping process when the disk is not too thin, or when the tidal instability

is driven only weakly. There is no general rule as to which will be more important in

accretion disks in compact binary systems, and it is possible that for some systems acoustic

emission may dominate during outbursts while nonlinear broadening is important during

quiescence. In either case the ratio of the torque exerted within the annulus dominated

by the vertical resonance to the torque exerted on the rest of the disk at a similar radius

can be estimated by comparing the cube of the growth rate weighted by the annulus width

(Goodman 1993). We have
σ3
lim∆r

σ(r)3r
∼
(

4A

15

)3 ( r

∆r

)2

. (70)

For γ = 5/3 A ≈ 4.0 for an isothermal disk and 1.7 for an adiabatic disk. This suggests

that the vertical resonance can dominate the torque on a disk and that accretion disks will

have a tendency to have an outer radius that lies within this annulus. This tendency should

be particularly noticeable when the disk structure is isothermal and/or γ is relatively small

(so that Ωb/Ω is relatively large). However, apart from the vertical resonance σ(r) rises

sharply with r and the torque per area, which goes as H2σ(r)3 rises even more sharply.

This makes it possible for the dominant contribution to the torque on a disk to come from

the outer edge of the disk provided that this lies a significantly greater radius than the

vertical resonance.

In this paper we have assumed that the orbital motion of gas within the disk deviates

from perfect circles only to the minimal extent required by tidal forces. For most systems

this is a reasonable assumption, but there are particularly cases where it is likely to

fail. For example, SU Uma stars exhibit superoutbursts which are probably due to the

expansion of the outer edge of the disk through the 3 : 1 orbital resonance (Whitehurst

1988). Lubow (1991a, 1991b) has shown that at this radius the disk is vulnerable to an

elliptical instability. Under these conditions the tidal parametric instability discussed here
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can exist as a secondary instability, implying a dramatic rise in the generation of internal

waves during a superoutburst.
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Fig. 1.— Growth rates for the parametric instability in units of qΩb as a function of r/a

for an adiabatic accretion disk with γ = 5/3. The solid line is for the minimal vertical

wavenumber. The dotted and dashed lines are for the second and third wavenumbers.
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Fig. 2.— Growth rates for the minimal vertical wavenumber mode in an adiabatic disk for

γ = 5/3 (solid line), γ = 1.2 (dotted line), and γ = 1.0 (dashed line).
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Fig. 3.— Growth rates for an accretion disk with an isothermal vertical structure and

γ = 5/3. The solid line is for the minimal vertical wavenumber. The dotted and dashed

lines are for the second and third wavenumbers.
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Fig. 4.— Growth rates for the minimal vertical wavenumber mode in an isothermal disk for

γ = 5/3 (solid line), γ = 1.2 (dotted line), and γ = 1.0 (dashed line).
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Fig. 5.— Growth rates for the minimal vertical wavenumber mode in an isothermal disk

with γ = 5/3. The solid line is full result. The dotted line shows the effect of suppressing

vertical motion and tidal perturbations to density and pressure. The dashed line results

from also assuming ~ξ ∝ r.


