
as
tr

o-
ph

/9
50

91
29

   
26

 S
ep

 1
99

5

RESCEU-2/95

UTAP-209/95

September, 1995

NONLINEAR EVOLUTION OF GENUS

IN PRIMORDIAL RANDOM { GAUSSIAN DENSITY FIELD

Takahiko Matsubara and Yasushi Suto

1

Department of Physics, The University of Tokyo, Tokyo 113, Japan.

e-mail: matsu@utaphp1.phys.s.u-tokyo.ac.jp, suto@phys.s.u-tokyo.ac.jp

Astrophys. J., in press

ABSTRACT

The genus statistics is studied using large N -body simulations for several cosmological models.

We consider the e�ects of nonlinear gravitational evolution, smoothing the particle data in fully

nonlinear regime, and the redshift-space distortion on the genus curve. Detailed comparison between

the theoretical prediction in weakly nonlinear theory and the appropriate simulation results shows

that the analytic formula describes the behavior of genus in weakly nonlinear regime fairly accurately.

We also �nd that the redshift-space distortion on genus statistics is small in linear and weakly

nonlinear regimes. We conclude that if weakly nonlinear theory and direct numerical simulations are

combined, the normalized genus curve G(�)=G(0) is a powerful tool to directly check the random-

Gaussian paradigm of the origin of the large-scale structure in the universe.

Subject headings: cosmology: theory | galaxies: formation | gravitation | methods: nu-

merical
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2 NONLINEAR EVOLUTION OF GENUS

1. INTRODUCTION

Since the pioneering work of Gott, Melott, & Dickinson (1986, GMD), topological analysis on

the basis of the genus has been applied in statistical description of the galaxy clustering by various

authors (Gott, Weinberg & Melott 1987; Weinberg, Gott & Melott 1987; Melott, Weinberg & Gott

1988; Gott et al. 1989; Park & Gott 1991; Park, Gott & da Costa 1992; Weinberg & Cole 1992; Moore

et al. 1992; Vogeley et al. 1994; Rhoads, Gott & Postman 1994). When one denotes the Fourier

transform of the density �eld (obtained from the spatial distribution of galaxies, assuming that

galaxies trace mass) by �(k) = j�(k)jexp(i�(k)), the two-point correlation �(r), a more conventional

measure of the galaxy clustering, is de�ned only through the amplitude j�(k)j, or its ensemble average

P (k) � hj�(k)j

2

i. In contrast, the genus statistics G(�) depends on the phase �(k) as well as j�(k)j,

and thus quanti�es information of the galaxy clustering which cannot be described in terms of �(r).

In particular, genus statistics is suited to test the random-Gaussianity of the primordial density �eld

(Hamilton, Gott, & Weinberg 1986).

A practical limitation in performing the test with the observed data comes from the size of the

sample itself. The random-Gaussian nature of the primordial density �eld is lost due to the nonlinear

gravitational evolution, and can be recovered only by smoothing the present galaxy distribution over

a scale much larger than 10h

�1

Mpc. Since the e�ective volume of the currently available surveys

in three dimension is � (100h

�1

Mpc)

3

at most, such a large smoothing signi�cantly reduces the

number of statistically independent samples. This di�culty is removed if one can correct for the

nonlinear e�ect with theory; then one may apply a smaller smoothing length to the limited observed

samples, and thus improve the statistics. In this respect, the analytic expression for genus in a weakly

nonlinear regime from primordial random-Gaussian density �eld (Matsubara 1994b) is of great value

in quantitative comparison between cosmological models and the observations. In particular this

formula signi�cantly increases the possibility of testing the primordial random-Gaussianity with the

current and future galaxy redshift surveys.

Another possible limitation of the galaxy redshift surveys may result from the redshift-space con-

tamination. The proper mapping of the observed data in redshift space to those in real space requires

the information of the peculiar velocity �eld, which is usually complicated and di�cult to obtain in

practice. In fact, it is shown that the two-point correlation functions su�er from the signi�cant

redshift-space contamination (Davis & Peebles 1983; Lilje & Efstathiou 1989; Suto & Suginohara

1991; Matsubara 1994a). Similar e�ect is predicted also on the higher-order statistics (Lahav et

al. 1993; Matsubara & Suto 1994; Suto & Matsubara 1994; Ghigna et al. 1994; Fry & Gazta~naga

1994). Therefore it is important to examine the extent to which the genus statistics is a�ected by

the peculiar velocity �eld. Matsubara (1996) showed that the redshift-space contamination in linear

theory does not change the shape of the genus itself, but suppresses the overall amplitude. Thus it

is interesting to see how the tendency changes in a strongly nonlinear regime.

This paper examines the nonlinear behavior and redshift-space contamination of the the genus

statistics for several models computed with cosmological N -body simulations (Suginohara et al.

1991; Suto 1993). The simulation results are compared with with the theoretical predictions in linear

and weakly nonlinear regimes mentioned-above (Matsubara 1994b, 1996). The plan of the paper
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is as follows; in x2 we brie
y summarize several analytical results related to the genus statistics.

The simulation models and the analysis method are described in x3. Then we present results of

the nonlinear e�ect, redshift-space contamination, and the smoothing e�ect in order. Finally x4 is

devoted to pur conclusions and further discussion.

2. ANALYTIC PREDICTIONS

2.1. Random-Gaussian model

The Gauss-Bonnet theorem states that the genus g de�ned in terms of the Gaussian curvature �

of a compact two-dimensional surface A:

g � �

1

4�

Z

� dA (2.1)

is simply (the number of the holes of the surface) �1. If there are more than one two-dimensional

surface A

i

(i = 1 � I) in the volume V , one may de�ne the genus density G as

G �

1

V

I

X

i=1

g

i

= �

1

4�V

I

X

i=1

Z

A

i

� dA: (2.2)

GMD showed that the genus density of the isodensity surface of the cosmological density �eld can

be a useful statistics to characterize the topology of the large-scale structure in the universe. In this

context it is conventional (Hamilton, Gott & Weinberg 1986) to de�ne the genus density with the

isodensity threshold � as the genus curve G(�). The corresponding isodensity surfaces are where the

density 
uctuations � has the value �� with � being the rms value of the 
uctuations.

Fluctuations on large scales, which are in linear regime, are supposed to retain the Gaussianity if

primordial 
uctuations are random-Gaussian �eld (but see x3.4 below). In this case the genus curve

can be computed analytically (Adler 1981; Doroshkevich 1970; Bardeen et al. 1986; and Hamilton

et al. 1986), and is given by

G(�) =

1

4�

2

 

hk

2

i

3

!

3=2

e

��

2

=2

(1� �

2

): (2.3)

Thus the amplitude of the genus curve for random Gaussian �eld is characterized by

hk

2

i �

Z

k

2

P (k)W

2

(kR)d

3

k

Z

P (k)W

2

(kR)d

3

k

; (2.4)

where P (k) is the power spectrum of the density 
uctuation, and W (kR) is a window function to

smooth the underlying density �eld. Throughout the present analysis we use a Gaussian window

W (kR) = exp(�k

2

R

2

=2) with R being the corresponding smoothing (or �ltering) length. The genus

curve for random-Gaussian �eld (2.3) is positive for j�j � 1, negative for j�j � 1, and approaches zero
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from negative value as j�j increases. These features can be easily understood; the number of holes

exceeds that of isolated regions for smaller j�j where density threshold is around the mean density,

and therefore the topology of the surfaces is sponge-like. On the contrary, the number of isolated

regions dominates that of holes for larger j�j, and the topology becomes meatball-like (GMD). As j�j

increases further, the number of such rare objects rapidly decreases. These qualitative features are

quite generic and, as we will show below, are not signi�cantly a�ected by the gravitational nonlinear

evolution.

2.2. E�ect of weakly nonlinear gravitational evolution

Since the observed density �eld probed by the galaxy distribution has inevitably experienced the

nonlinear gravitational evolution, one cannot compare the observational data directly with the ran-

dom { Gaussian prediction (2.3). Matsubara (1994b) takes into account the e�ect of the nonlinearity

on the genus curve using perturbation theory. We �rst summarize his analytic formula for G(�) in

a weakly nonlinear regime. Then we present speci�c expressions in models with arbitrary density

parameter 
 and the dimensionless cosmological constant � by combining with the second-order

perturbation theory (Bouchet et al. 1992; Bernardeau 1994; Matsubara 1995).

The irreducible or connected parts of higher order correlations h�

n

i

c

(n � 3) (e.g., Bertchinger

1992), which vanish in random { Gaussian �elds, do not vanish for general non-Gaussian �elds.

However if they satisfy the following:

h�

3

i � O(�

4

); (2.5)

h�

n

i

c

� O(�

n+2

) or higher (n � 4); (2.6)

where � is the rms amplitude of the density 
uctuations, then the genus curve in such a �eld is

generally given by (Matsubara 1994b)

G(�) = �

1

4�

2

 

hk

2

i

3

!

3=2

e

��

2

=2

�

H

2

(�) + �

�

S

6

H

5

(�) +

3T

2

H

3

(�) + 3UH

1

(�)

�

+O(�

2

)

�

: (2.7)

In the above expression, H

n

(�) � (�)

n

e

�

2

=2

(d=d�)

n

e

��

2

=2

are the Hermite polynomials, and S, T ,

and U are de�ned as

S =

1

�

4

h�

3

i;

T = �

1

2hk

2

i�

4

h�

2

r

2

�i; (2.8)

U = �

3

4hk

2

i

2

�

4

hr� � r�r

2

�i:

In fact the conditions (2.5) and (2.6) are satis�ed in a weakly nonlinear cosmological density �eld from

primordial random-Gaussian �eld; higher-order perturbation analysis (Fry 1984; Goro� et al. 1986;

Bernardeau 1992) predicts the following hierarchical relation among correlations:

h�

n

i

c

� O(�

2n�2

) (n � 2): (2.9)
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Therefore we can use the general formula (2.7) to compute the genus curve in such weakly nonlinear

regimes. The generalized skewness S, T and U can be evaluated also by perturbation theory (Mat-

subara 1994b). If one uses the Gaussian window with the smoothing length R, they are explicitly

computed as

S =

1

4�

4

[(2 + K)L

220

+ 3L

131

+ (1�K)L

222

] ;

T =

1

60�

4

[5(5 + 2K)L

240

+ 3(9 + K)L

331

+ 15L

151

+10(2�K)L

242

+ 3(1�K)L

333

]; (2.10)

U =

1

140�

4

[7(3 + 2K)L

440

+ 21L

351

� 5(3 + 4K)L

442

� 21L

353

� 6(1�K)L

444

] :

Here we introduce the following integrals:

L

��n

(R) �

hk

2

i

2�(�+�)=2

�

4

R

Z

1

0

dx

Z

1

0

dy

Z

1

�1

d�e

�R

2

(x

2

+y

2

+�xy)

x

�

y

�

P

n

(�)P (x)P (y) (2.11)

= (�)

n

p

2�

hk

2

i

2�(�+�)=2

�

4

R

R

Z

1

0

dx

Z

1

0

dye

�R

2

(x

2

+y

2

)

x

��1=2

y

��1=2

I

n+1=2

(xyR

2

)P (x)P (y);

(2.12)

where �

R

is the rms amplitude of the Gaussian smoothed density 
uctuation with R, P

n

is the

Legendre polynomial, and I

�

is a modi�ed Bessel function.

The above results (2.10) to (2.12) hold for arbitrary cosmological models with 
 and �. The

latter e�ect manifests only through K = K(
; �) which very weakly depends on 
 and � (Bouchet

et al. 1992; Bernardeau 1994). The explicit form for K is derived by Matsubara (1995) as

K(
; �) =




4

�

�

2

�

�

Z

1

0

dxX

�3=2

�

�1

+

3

2

�

Z

1

0

dxX

�3=2

�

�2

Z

1

0

dxX

�5=2

; (2.13)

where

X(x) � 
=x + �x

2

+ 1� 
� �: (2.14)

In two special models of our interest, K(1; 0) = 3=7 = 0:4286 and K(0:2; 0:8) = 0:4335.

For the power-law 
uctuation spectra P (k) / k

n

, S, T and U can be written down explicitly in

terms of the hypergeometric function as

S = 3F

�

n + 3

2

;

n + 3

2

;

3

2

;

1

4

�

� (n + 2� 2K)F

�

n + 3

2

;

n + 3

2

;

5

2

;

1

4

�

;

T = 3F

�

n + 3

2

;

n + 5

2

;

3

2

;

1

4

�

� (n + 3�K)F

�

n + 3

2

;

n + 5

2

;

5

2

;

1

4

�

+

(n� 2)(1�K)

15

F

�

n + 3

2

;

n + 5

2

;

7

2

;

1

4

�

; (2.15)

U = F

�

n + 5

2

;

n + 5

2

;

5

2

;

1

4

�

�

n + 4� 4K

5

F

�

n + 5

2

;

n + 5

2

;

7

2

;

1

4

�

:
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The expressions for S in equations (2.10) and (2.15) are derived by  Lokas et al. (1994) which are

equivalent to the other form independently derived by Matsubara (1994b). Similarly we transform

the expressions for T and U presented in Matsubara (1994b; eqs. [16] and [18]) using the function

L

��n

(R), which are given in equations (2.10) and (2.15).

2.3. Redshift-space distortion in linear theory

As described in Introduction, peculiar velocity �eld may signi�cantly distort the shape and ampli-

tude of the genus curve computed in redshift space. Matsubara (1996) proved that in a linear regime

the genus curves for primordial random-Gaussian 
uctuations have the same shape as functions of

� while their overall amplitudes are di�erent. More speci�cally, the genus curve in redshift space,

G

(s)

(�), is related to its real space counterpart G

(r)

(�) as

G

(s)

(�)

G

(r)

(�)

=

3

p

3

2

p

u(1 � u); (2.16)

where

u =

1

3

1 +

6

5

f +

3

7

f

2

1 +

2

3

f +

1

5

f

2

: (2.17)

The function f is the logarithmic derivative of the linear growth rate D(t) with respect to the scale

factor a and given as follows :

f(
; �) �

d ln D

d ln a

= �1� 
=2 + � +

�

Z

1

0

dxX

�3=2

�

�1

(2.18)

� 


0:6

+

�

70

(1 +




2

): (2.19)

The empirical �tting formula in the second line is derived by Lahav et al. (1991), which implies that

f is approximately given by 


0:6

(Peebles 1980) and �-dependence is quite weak for parameters of our

interest. In this case equation (2.16) is close to unity and redshift space contamination is negligible;

for (
, �) = (1,0) and (0.2, 0.8), values of equation (2.16) are 0.944 and 0.987, respectively. Therefore

it is interesting to see to what extent this insensitivity to the redshift-space contamination in linear

theory changes in weakly nonlinear and fully nonlinear regimes.

3. GENUS ANALYSIS OF NUMERICAL SIMULATIONS

3.1. Simulation models and method of analysis

The analysis below is based on the four data sets from cosmological N -body simulations with

random-Gaussian initial conditions. Three models are evolved in the Einstein-de Sitter universe with

the scale-free initial 
uctuation spectra (at expansion factor a = 1:0):

P (k) / k

n

(n = �1; 0; and 1): (3.1)
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The last model corresponds to a spatially-
at low-density cold dark matter (LCDM) model. In this

speci�c example, we assume 


0

= 0:2, �

0

= 0:8, and h = 1:0 (Suginohara & Suto 1991). The

amplitude of the power spectrum in the LCDM model at a = 6 is normalized so that the top-hat

smoothed rms mass 
uctuation is unity at 8h

�1

Mpc. In fact this LCDM model can be regarded to

represent a speci�c example of the most successful cosmological scenarios so far (e.g., Suto 1993). All

models are evolved with a hierarchical tree code implementing the fully periodic boundary condition

in a cubic volume of L

3

. The physical comoving size of the computational box in the LCDM model

is L = 100h

�1

Mpc. The number of particles employed in the simulations is N = 64

3

, and the

gravitational softening length is �

g

= L=1280 in comoving. Further details of the simulation models

and other extensive analyses are described in Hernquist, Bouchet & Suto (1991), Suginohara et al.

(1991), Suginohara & Suto (1991), Suto (1993), Matsubara & Suto (1994), and, Suto & Matsubara

(1994).

The computation of the genus from the particle data is performed using the code kindly provided

by David Weinberg (Weinberg 1988; Gott et al. 1989). In short the procedure goes as follows; (i)

the computational box is divided into N

3

c

(= 128

3

) cubes, and the density �

g

(r) at the center of each

cell is computed using Cloud-In-Cell density assignment. (ii) the Fourier-transform:

~�

g

(k) �

1

L

3

Z

�

g

(r)exp(ik � r)d

3

r; (3.2)

is convolved with the Gaussian �lter, and transformed back to de�ne a smoothed density of each cell

(with the �ltering length R

f

):

�

s

(r;R

f

) =

L

3

8�

3

Z

~�

g

(k)exp(�k

2

R

2

f

=2� ik � r)d

3

k: (3.3)

(iii) the rms amplitude of the density 
uctuations is computed directly from the smoothed density:

�(R

f

) �

q

h(�

s

=��� 1)

2

i; (3.4)

where �� is the mean density of the particles. (iv) The isodensity surface of the critical density:

�

c

� [1 + ��(R

f

)] �� (3.5)

is approximated by the boundary surface of the high-density (�

s

> �

c

) and low-density (�

s

< �

c

)

cells. (v) Then the genus of the surface is computed by summing up the angle de�cit D(i; j; k) at

the vertex of cell (i; j; k) (cf., eq. [2.1]):

g

s

(�) = �

1

4�

N

c

X

i;j;k=1

D(i; j; k): (3.6)

The way to compute D(i; j; k) is detailed in Gott et al. (1986). The genus curve G(�) is de�ned to

be the number of genus per unit volume as a function of the threshold �. (vi) We repeated the above

procedure 50 times using the bootstrap resampling method in order to estimate the statistical errors

of G(�).
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It should be noted that earlier papers (e.g., Gott et al. 1989; Rhoads, Gott, & Postman 1994;

Vogeley et al. 1994) de�ned �

c

(�) so that the volume fraction on the high-density side of the isodensity

surface is equal to

f =

1

p

2�

Z

1

�

e

�t

2

=2

dt: (3.7)

Both methods yield equivalent value for � only if the density �eld is strictly random-Gaussian.

Since we are interested in the departure from the primordial Gaussianity, we decided to adopt the

straightforward de�nition (3.5) throughout the present analysis. As a matter of fact, the previous

authors intentionally avoided to use equation (3.5); the contours of �xed volume fraction partly

compensate the nonlinear gravitational evolution, and may be suitable to examine the topology

without explicit knowledge of evolution of the one-point density probability (Vogeley et al. 1994).

On the other hand, now we know the e�ect of gravitational evolution explicitly from the formula (2.7)

at least in a weakly nonlinear regime. That is why our present analysis is based on the straightforward

de�nition (3.5) unlike the previous work.

3.2. Non-Gaussian signature due to nonlinear gravitational evolution

Since we are interested in the shape of the genus curve, we factor out the overall amplitude of

G(�) which is proportional to the second moment of the power spectrum (eq.[2.4]). To be more

speci�c, we de�ne the normalized genus curve by G

(r)

(�)=G

(r)

(0) in real space and G

(s)

(�)=G

(r)

(0)

in redshift space. This procedure is suitable for our purpose; while each realization in simulation

models would inevitably di�er from the theoretical 
uctuation power spectrum to some extent, we

know that this e�ect can be completely separated out by the above normalization at least in a weakly

nonlinear regime (see, eq.[2.7]). In practice, we �rst compute G(�) at 51 bins (in equal interval) for

�3 � � � 3. Then we estimate the amplitude of G

(r)

(0) by �

2

-�tting the 7 data points around � = 0

to the weakly nonlinear formula (2.7) so that thus computed value of G

(r)

(0) is less a�ected by the

statistical 
uctuation at one data point. This procedure works in a weakly nonlinear regime, but the

overall normalization of the resulting curves may be somewhat arbitrary as the nonlinearity increases

where the formula (2.7) is no longer valid. This should be remembered in the comparison below.

The normalized genus curves G(�)=G(0) are plotted in Figures 1 to 3 for power-law models with

n = 1, 0, and �1, respectively. We select three di�erent sets of the expansion factor a (= 1 at the

initial epoch) and the �ltering length R

f

for each model so that the resulting �(R

f

) covers weakly,

fairly and fully nonlinear regimes (in upper, middle, and lower panels, respectively). The mean values

of G(�)=G(0) from the 50 bootstrap resampling analyses in real space are plotted in �lled circles with

the corresponding 1� statistical error. Open triangles indicate the results in redshift space which will

be discussed in the next subsection. For comparison we plot the weakly nonlinear formula (eqs.[2.7]

to [2.15]) in solid curves, together with the random-Gaussian prediction (2.3) in dotted curves. As

expected, our simulation results and the weakly nonlinear formula agree quite well (middle panels

in Figs.1 to 3). In fact, the simulation results are in reasonable agreement when �0:2

<

�

��

<

�

0:4

for all models, even though the perturbative method breaks down as � approaches unity. Note that
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0
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1.5
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G

(ν
)/

G
(0

)
n = 1a = 2.63

σr = 0.044
σs = 0.057

(a)

-1

-.5

0

.5

1

1.5

2

G
(ν

)/
G

(0
)

a = 18.2
σr = 0.25
σs = 0.26

(b)
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-1
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.5

1

1.5

2

ν

G
(ν

)/
G

(0
)

a = 77.7
σr = 0.78
σs = 0.57

(c)

Figure 1: Normalized genus curves for n = 1 power-law model (


0

= 1, �

0

= 0) in real space,

G

(r)

(�)=G

(r)

(0) (�lled circles), and in redshift space, G

(s)

(�)=G

(r)

(0) (open triangles). The dotted

curve corresponds to the theoretical prediction for random-Gaussian �eld (2.3), while the solid curve

takes account of weakly nonlinear evolution (eq.[2.7]). The Gaussian window function with the

�ltering length R

f

= L=25 is used. The error bars represent the 1� statistical error estimated with

the 50 bootstrap resampling analyses. (a) a = 2:63, �

r

= 0:044, �

s

= 0:057; (b) a = 18:2, �

r

= 0:25,

�

s

= 0:26; (c) a = 77:7, �

r

= 0:78, �

s

= 0:57.
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Figure 2: Same as Figure 1 for n = 0 power-law model. (a) a = 2:07, �

r

= 0:076, �

s

= 0:10; (b)

a = 8:80, �

r

= 0:30, �

s

= 0:34; (c) a = 37:6, �

r

= 1:0, �

s

= 0:74.
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Figure 3: Same as Figure 1 for n = �1 power-law model. (a) a = 2:62, �

r

= 0:27, �

s

= 0:34; (b)

a = 6:91, �

r

= 0:69, �

s

= 0:69; (c) a = 18:2, �

r

= 1:9, �

s

= 1:2.



12 NONLINEAR EVOLUTION OF GENUS

G(�) = 0 for �

<

�

� 1 in Figures 1 to 3 simply re
ects the fact that corresponding critical density

(3.5) becomes negative, and therefore the regions are not physically interesting.

Incidentally this agreement can be interpreted as yet another credibility of the N-body simulation

method presented here. In fact, the simulations have been checked against theoretical predictions

mainly via comparison of the evolution of the amplitude of the 
uctuations j�(k)j (i.e., P (k) and �(r);

Suginohara et al. 1991; Suto 1993). Our present analysis is the �rst quantitative con�rmation that

N -body simulations faithfully reproduce the evolution of phases through the detailed comparison

with the perturbation theory.

3.3. Redshift-space distortion

Matsubara (1996) showed that the genus curve G(�) is fairly insensitive to the redshift-space

distortion (x2.3). This tendency was also noticed earlier in numerical simulations by Melott, Weinberg

& Gott (1988). Let us examine this point in details with our simulation results. First note that the

genus curve in redshift space (open triangles in Figs. 1 to 3) is normalized by G

(r)

(0) in real space for

the proper comparison with results in real space; thus their ratio is independent of the normalization

factor G

(r)

(0).

As predicted in linear theory (x2.3), the redshift contamination is quite small where the rms


uctuation in real space �

r

(R

f

) is small. Linear theory predicts (Kaiser 1987) that the 
uctuations

in real and redshift spaces, �

r

and �

s

, should satisfy

�

s

�

r

=

r

1 +

2

3

f +

1

5

f

2

: (3.8)

Results shown in the upper panels of Figures 1 to 3 correspond to �

s

=�

r

= 1:30 (n = 1), 1:32 (n = 0),

and 1:26 (n = �1) while equation (3.8) predicts

p

28=15 � 1:37. Similarly G

(s)

(�)=G

(r)

(�) =

39

p

69=343 � 0:94 is predicted in linear theory (eq.[2.16]), while our results suggest 0:99 (n = 1),

0:94 (n = 0), and 0:82 (n = �1).

The redshift-space distortion becomes noticeable in weakly nonlinear regimes, and tends to sup-

press the overall amplitude, i.e., jG

(s)

(�)=G

(r)

(�)j more strongly than the prediction in linear theory

(eqs.[2.16] to [2.19]). In a fully nonlinear regime �

r

� 1, G

(s)

(�) seems to approach the random-

Gaussian prediction (dotted curves in Figs. 1 to 3). This feature originates from the fact that the

velocity dispersions in virialized clusters are large and act e�ectively as the extra smoothing of the

density �eld if computed in redshift space. This observable e�ect should be kept in mind in exam-

ining the primordial random-Gaussianity from the galaxy redshift surveys in limited volume size;

obviously large homogeneous samples are important even in this respect.

Before closing this subsection, let us comment on the redshift distortion due to the cosmological

expansion or general relativistic e�ect which becomes important as the sample depth of the galaxy

redshift survey increases. In the Friedmann{Lemâ�tre model, the comoving distance to the object at
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z is given by

d

C

=

c

H

0

8

>

<

>

:

(


0

+ �

0

� 1)

�1=2

sin(�

p




0

+ �

0

� 1); for 


0

+ �

0

> 1

�; for 


0

+ �

0

= 1

(1� 


0

� �

0

)

�1=2

sinh(�

p

1� 


0

� �

0

); for 


0

+ �

0

< 1

(3.9)

where

� �

Z

z

0

h




0

(1 + z)

3

+ (1� 


0

� �

0

)(1 + z)

2

+ �

0

i

�1=2

dz: (3.10)

For z � 1, d

C

is approximately given by

d

C

=

cz

H

0

�

1 +

2�

0

� 


0

� 2

4

z + O(z

2

)

�

: (3.11)

Therefore the deviation from the simple linear Hubble law becomes appreciable even at relatively

low z; at z = 0:1 (� 300h

�1

Mpc), the cosmological redshift-space distortion becomes �7:5% in the

Einstein-de Sitter model. Thus even for redshift surveys extending up to z = 0:1, this systematic

e�ect dominates the statistical peculiar velocity e�ect (� 3% for v = 1000km/sec at z = 0:1, for

instance). Although one can compute the genus of the observed sample in d

C

space rather than in

z space using equation (3.9) directly, it is not clear how the analytic expression (2.7) which neglect

the cosmological evolution (or general relativity) can be compared with such results. In any case the

result should be sensitive to the assumed set of 


0

and �

0

. Note, however, that this problem is not

speci�c to the genus statistics, but should be taken into account in the two-point and higher-order

correlation analyses as well.

3.4. Smoothing e�ect of nonlinear distribution

The normalized genus curve G(�)=G(0) in a weakly nonlinear regime (eq.[2.7]) is characterized

only by the amplitude of the density 
uctuations �. In reality, however, � is dependent on both

the epoch (or the expansion factor a) and the �ltering length R

f

in smoothing the data. Thus it is

possible that two di�erent sets of a and R

f

yield the same value of �. Since the nonlinear evolution

and the smoothing operation do not commute, it is of interest to ask whether those two di�erent

realizations give the same genus curve. In other words, to what extent can one suppress the strongly

nonlinear contamination simply by smoothing the data with large �ltering length ?

To answer this, we tried to �nd di�erent sets of a and R

f

which gives the same value of � for n = 0

power-law model. The resulting G(�)=G(0) curves are shown in Figure 4a. This panel corresponds

to the rms 
uctuation amplitude �

r

= 0:08, and shows that the genus curves at later epochs and

with larger R

f

deviate from the theoretical Gaussian prediction. In order to see the signi�cance of

this result, we have to check to what extent the error bars estimated from the bootstrap method is

reliable, and also how the large �ltering length a�ects the computation of the genus for samples in

the �nite volume.

For those purposes we performed two experiments. The �rst experiment divided the original cube

into eight subcubes of half the boxsize, L=2, and computed directly the mean and the variance of the
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Figure 4: Smoothing e�ect on genus curves. (a) genus curves for n = 0 power-law models which have

the same rms 
uctuation amplitude �

r

but for a di�erent set of expansion factor a and the Gaussian

smoothing length R

f

. The dotted and solid curves indicate the corresponding random-Gaussian

(eq.[2.3]) and weakly nonlinear (eq.[2.7]) predictions for �

r

= 0:08. (a, R

f

=L, �

r

) = (2.07, 0.039,

0.0801), (4.27, 0.063, 0.00805), and (8.80, 0.098, 0.0806) plotted in �lled circles, open circles, and open

squares, respectively. (b) Comparison with the means and error bars for n = 0 power-law model

estimated from the bootstrap resampling method (�lled circles) and from eight subsamples (open

circles) for (a, R

f

=L, �

r

) = (2.07, 0.039, 0.0801). The dotted curve corresponds to the theoretical

prediction for random-Gaussian �eld (2.3), while the solid curve takes account of weakly nonlinear

evolution (eq.[2.7]). (c) E�ect of the �ltering length on the computation of genus curves for n = 0

power-law model at a = 2:07. R

f

=L = 0:02) (crosses; �

r

= 0:20), 0:04(triangles; �

r

= 0:076),

0:08(squares; �

r

= 0:027), and 0:15 (circles; �

r

= 0:0096).
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genus for eight subsamples arti�cially assuming the periodic boundary condition for each subcube.

Then we estimate the mean and the variance for the original cube by averaging the means and adding

the variances of the eight subsamples, respectively. The result is plotted in open circles with error

bars (1 standard deviation) in Figure 4b. This should be compared with the mean (�lled circles) and

the 1� error on the basis of the 50 bootstrap resampling analyses presented throughout this paper.

Although the mean values derived from subsamples seem somewhat noisy, they are consistent with

the bootstrap estimate and the perturbation theory (solid curve) within the error bars. In particular

the two methods lead to almost the same error bars. This implies that the bootstrap estimate of the

genus curve is reliable in the present context.

The second experiment checks the e�ect of increasing �ltering length. Figure 4c shows results of

n = 0 power-law model at a = 2:07 for R

f

=L = 0:02 (crosses), 0:04(triangles), 0:08(squares), and

0:15 (circles). Since �

r

decreases with increasing R

f

, the resulting genus curves should approach

the random-Gaussian prediction (dotted curve) for larger R

f

. In fact this is basically the case for

�

>

�

0, but not for �

<

�

0. This unphysical result would be ascribed to the e�ect of the �nite volume

size of the present simulation; as R

f

approaches the boxsize L, the number of independent sampling

volumes is reduced and the genus curve becomes more sensitive to the power of the large wavelength

mode in one particular realization of our simulation models. Therefore the tendency shown in Figure

4a seems to be largely explained by the �nite volume e�ect. In order to answer more de�nitively the

question we addressed in this subsection, we need much larger simulations and/or many independent

realizations which should be deferred to a future work.

Before closing the section, let us emphasize that the weakly nonlinear theory and numerical

simulations are useful in a complementary manner to probe the statistics of the primordial density

�eld using the genus curve; the former provides reliable, albeit with limited applicability, and de�nite

predictions while the latter can in principle take into account fairly realistic e�ects including the

higher-order nonlinear contribution, redshift-space distortion, sample-to-sample variation, and the

�nite volume e�ect of the observational sample. For speci�c predictions of the G(�)=G(0) based

on relatively realistic cosmological scenarios, we plot the results for LCDM model in Figure 5. The

�ltering length R

f

is 6h

�1

Mpc. If galaxies trace mass, a = 6 corresponds to the present epoch (z = 0).

Thus a = 4 and 5 correspond to z = 0:5 and 0:2, respectively. The reasonable agreement between

simulation and theory con�rms the validity of the weakly nonlinear formula in 


0

< 1 and � 6= 0

models. Note that the results shown in Figures 1 to 4 are in the Einstein - de Sitter universe (


0

= 1

and � = 0). The disagreement at a somewhat quantitative level, especially at a = 6, can be explained

by the combined e�ects of the relatively large �

r

which limits the validity of the weakly nonlinear

formula (2.7), statistical 
uctuations, and the signi�cant departure from the random-Gaussian �eld

before smoothing as mentioned above.

4. DISCUSSION AND CONCLUSIONS

Genus statistics has been known as an important measure to quantify the topology of the large-

scale structure in the universe. Its practical ability in constraining theoretical models, however, was

limited mainly for two reasons; one is due to the fact that the currently available data are insu�cient
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Figure 5: Same as Figure 1 for low-density cold dark matter model (


0

= 0:2, �

0

= 0:8, h = 1:0). The

adopted Gaussian �ltering length R

f

corresponds to 6h

�1

Mpc (comoving). The top-hat smoothed

rms mass 
uctuation at a = 6 is unity at 8h

�1

Mpc. (a) a = 4, �

r

= 0:41, �

s

= 0:48; (b) a = 5,

�

r

= 0:51, �

s

= 0:57; (c) a = 6, �

r

= 0:63, �

s

= 0:67.
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to unambiguously determine the genus curve from the observations, and the other is the lack of the

theoretical prediction which properly takes account of the nonlinear gravitational e�ect. Actually

the above two are closely related. In order to obtain statistically robust estimate of the genus from

the limited spatial extent of the current observations, one has to use a relatively small �ltering length

in smoothing the data. Thus nonlinear gravitational e�ect becomes important. This di�culty was

largely overcome with the analytic formula (Matsubara 1994b) to describe the genus in a weakly

nonlinear regime. In addition the wide galaxy redshift surveys available in near future like Sloan

Digital Sky Survey will improve the former.

This paper examined the validity of the formula using the large N -body simulations. In doing

so we computed the genus curve in more realistic contexts including the nonlinear e�ect beyond

the perturbative method, smoothing e�ect of the particle data in fully nonlinear regime, and the

redshift-space distortion. We �nd that our simulation results are basically in good agreement with

the weakly nonlinear formula derived by Matsubara (1994b), and that the redshift-space distortion

on genus statistics is small in linear and weakly nonlinear regimes. Therefore we conclude that genus

statistics, especially the normalized genus curve G(�)=G(0), is an important tool to test the random-

Gaussianity of the primordial density �eld if weakly nonlinear theory and direct numerical simulations

are appropriately combined for the proper comparison with the real observations. Nevertheless

there remain other potentially important questions concerning the genus statistics which include the

selection e�ect in the magnitude-limited samples, biasing e�ect, the redshift-space distortion not only

due to the peculiar velocity �eld of galaxies but also due to the cosmological expansion, and the �nite

volume e�ect. Unfortunately a realistic evaluation of these e�ects requires much larger simulation

data and we should defer such an analysis to future work.

In summary, the genus curve G(�) is a useful measure of galaxy clustering which is complementary

to the two-point correlation function �(r) in many respects; the normalized genus curve G(�)=G(0)

mainly quanti�es the topology or the phase of the large-scale structure and is fairly insensitive to the

underlying 
uctuation spectrum. The latter is directly related to �(r) which, on the contrary, contains

no information of the phases �(k). Once G(�)=G(0) in a weakly nonlinear regime is determined, one

can test the random-Gaussianity of the primordial density �eld, but it is almost independent of

the underlying model and cosmological parameters (Matsubara 1994b ; see also x2.2). On the other

hand, �(r) is best suited to describe the galaxy clustering in fully nonlinear regime, and can constrain

nature of dark matter, 


0

, and �

0

among others by comparison with numerical simulations (Davis et

al. 1985; Suto 1993). With future data of the wide survey of galaxy redshift, G(�)=G(0) will enable

us to directly check the random-Gaussian paradigm of the origin of the large-scale structure in the

universe.

We thank David Weinberg for providing us the routines to compute genus curve from numerical

data, and for stimulating discussions. We also thank an anonymous referee for pointing out a �nite

volume e�ect in computing the genus curve which signi�cantly improves discussion presented in x3.4.
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