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Abstract

We discuss the results of a full relativistic treatment of the hydro-
dynamics of disconnected quark regions during the final stages of the
cosmological quark-hadron transition. In this study, which represents a
further development of a previous analysis of the evaporation of cosmo-
logical quark drops, the effects of long range energy and momentum
transfer via electromagnetically interacting particles are consistently
taken into account. For this purpose, a set of relativistic Lagrangian
equations describing the evolution of the strongly interacting fluids is
coupled to a system of equivalent equations accounting for the hydro-
dynamics of the fluid of electromagnetically interacting particles. The
complete set of equations has then been solved numerically and results
are presented from this. The inclusion of relativistic radiative trans-
fer produces significantly different results, with the formation of high
density regions at the end of the drop evaporation being particularly
relevant. A comparison is made with results obtained for the previ-
ous radiation-free model and the cosmological implications concerning
baryon number concentrations are briefly discussed.
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I. Introduction

A phase transition at which the cosmological plasma of free quarks and gluons
was transformed into a plasma of light hadrons, is thought to have occurred early
in the history of the Universe. The physical conditions for this transition to take
place, date it back to a few microseconds after the Big-Bang, when the Universe
had a mean density of the same order as nuclear matter (ρ ∼ 1015 g cm−3), and
a temperature of the order of 100 − 200 MeV. The quark-hadron transition marks
the end of the exotic physics of the very early Universe and the beginning of the
era of processes and phenomena which have a direct counterpart in the high energy
experiments now being carried out with modern accelerators. It is also the last of the
early Universe phase transitions (at least within the standard picture) and so could
be relevant both as a potential filter for the relics produced by previous transitions
and also as a “best candidate” for the production of inhomogeneities which could
have survived to later epochs.

It has not proved possible to determine the order of the transition directly
from QCD but, rather, its determination depends on heavy lattice gauge calcula-
tions which rely on a number of simplifying assumptions and uncertain parameters.
Because of this, any consistent modelling of the transition is immediately confronted
by a major uncertainty concerning the order of the transition. It is relevant to
note that while a continuous cosmological quark-hadron phase transition [1] would
strongly prevent any dynamical production of primordial inhomogeneities [2], the oc-
currence of these seems to be a rather natural consequence of a first order transition.
We here follow this latter scenario and investigate the hydrodynamical mechanisms
which could lead to the production of inhomogeneities at the end of a first order
cosmological quark-hadron transition. We note that this picture is, in fact, favoured
by recent lattice computations which include the effects of two degenerate light u
and d quarks and a heavier s quark (of up to 400 MeV) [3, 4, 5, 6], and clearly
indicate the existence of a double state signal for the quark gluon plasma.

The aim of the present work is to discuss the final stages of the transition,
which we define to be those when most of the strongly interacting matter in the
Universe is already in the form of light hadrons. The temperature jump between the
quark and hadron phases is then no longer extremely small and the rate at which the
quark-gluon plasma is transformed is no longer controlled by the overall expansion of
the Universe. The quark regions have become disconnected, with a mean separation
comparable with the distance between bubble nucleation sites, and tend to assume
a spherical shape under the effects of surface tension. A new dynamical time scale
for the evolution of the transition then enters and this is directly related to the rate
at which the quark drops shrink by losing material (i.e. by “evaporating”).

In a recent paper [7], we have investigated and discussed the relativistic hy-
drodynamics of an isolated quark drop during the final stages of the transition in
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the simplified picture where long range energy and momentum transfer is not in-

cluded. In particular, we demonstrated the existence of a self-similar solution for

the hydrodynamics of an isolated contracting spherical system and showed how this

is, in fact, attained by an evaporating quark drop. A most important feature turned

out to be the possibility of maintaining a constant quark phase compression during

most of the stages of the drop evaporation. This had the consequence of preventing

any large increase in the final value of the compression factor in the quark phase

(the maximum relative increase computed was of the order of 40%), thus limiting

the possibility of producing significant peaks of baryon number density as the drop

disappears. In that work we considered the fluids of strongly interacting particles

and that of electromagnetically interacting particles as always being coupled, ne-

glecting the effective decoupling which must occur when the drop dimensions are

comparable with the mean free path of the radiation particles.

In the present paper we extend the earlier study to the case where the effects

of long range energy and momentum transfer are not neglected. To do this, a

problem of relativistic radiative transfer needs to be solved at around the time of

the decoupling between the two fluids, and an extended set of equations has to

be solved numerically. In doing this we make use of the experience gained in the

study of the related problem of long range energy and momentum transfer during

the growth of a hadron bubble [8, 9], and also use the mathematical and numerical

apparatus developed there.

The following is a summary of the organization of the paper. In Section II

we review the essential features of the PSTF (Projected Symmetric Trace Free)

tensor formalism [10] adopted for the solution of the relativistic radiative transfer;

in Section III we introduce the set of hydrodynamical equations for the standard

fluids and discuss how these couple to the equivalent ones for the radiation fluid.

Section IV contains a discussion of the solution of the equations at the interface,

where junction conditions and characteristic equations are solved. In Section V we

briefly review the method for the numerical computation and the choice for the initial

conditions. Numerical results are presented in Section VI and Section VII contains a

brief discussion of their cosmological implications regarding the formation of baryon

number inhomogeneities, which may be important in connection with primordial

nucleosynthesis [11, 12] and also with the production of primordial magnetic fields

[13]. Finally, conclusions are presented in Section VIII. We adopt units for which

c = h̄ = k
B
= 1; Greek indices are taken to run from 0 to 3 and partial derivatives

are denoted with a comma.
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II. Relativistic hydrodynamic equations for the

radiation fluid

In the present Section and in the following one, we discuss the formulation

of the system of equations which we use for studying the hydrodynamics of a con-

tracting spherical drop, with radiative exchange of energy and momentum being

included. We consider a “two-fluid” hydrodynamical model, and refer to the fluid

composed of strongly interacting particles as the “standard fluid”, and to the one

composed of electromagnetically interacting particles (mainly photons, electrons,

muons and their antiparticles) as the “radiation fluid”. While the particles of the

first fluid have a typical interaction scale length of the order of 1 fm, the particles

of the second fluid have a larger interaction scale length, probably between 5× 103

and 104 fm. Neutrinos, which have a much larger interaction scale length (of the

order of 1013 fm = 1 cm), provide no effective contribution at the scale which we

are mainly concerned with here and will in general be neglected.

Because of the difference between the scales of the internal interactions in the

two fluids, it is possible to consider two asymptotic regimes during drop evaporation.

When the drop has a radius Rs which is much larger than the mean free path (m.f.p.)

of the radiation fluid particles λ, (Rs ≫ λ), it is reasonable to consider the two fluids

as effectively coupled and behaving dynamically as a single fluid within each phase.

In this case the treatment is simplified and the contribution of the different particle

species can be taken into account by a suitable specification of the number of degrees

of freedom in the equations of state for the two phases. On the other hand, when the

drop has dimensions which are much smaller than the radiation m.f.p., (Rs ≪ λ),

the opposite asymptotic regime is reached, where the drop has become effectively

transparent to the radiation fluid particles. In this case, the decoupling between

the two fluids can be taken into account by eliminating the number of degrees of

freedom of the radiation fluid particles in the equations of state.

During drop evaporation there will be a stage (at Rs ≈ λ) when the two

fluids will start to decouple and long range exchange of energy and momentum will

act in the direction of smoothing the discontinuities produced by the temperature

difference between the two phases. In order to follow the effects of this transient

process, it is necessary to adopt a treatment in which the radiative transfer problem

and the hydrodynamical problem are solved simultaneously. For this purpose we

have implemented the mathematical apparatus developed for studying the related

problem of the progressive coupling between the standard fluid and the radiation

fluid during the growth of a hadron bubble [8, 9] and the reader is referred to
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this work for details of the derivation of the equations. We here limit ourselves to

outlining the assumptions and main results of the PSTF tensor formalism which has

been adopted.

As standard in radiation hydrodynamics, we need to solve the radiative trans-

fer equation, which relates the properties of the radiation field (described by the

photon distribution function) to the sources and sinks of the field and to the dy-

namics of the underlying medium when this is not stationary. For doing this, we

make use of the frequency integrated PSTF tensor formalism in which the relativis-

tic generalization of the radiative transfer equation is transformed into an infinite

hierarchy of partial differential equations involving an infinite number of moments

of the radiation intensity and of the field sources (the latter are referred to as source

functions). A particularly attractive feature of the PSTF tensors, which are suit-

ably defined at each point in the projected tangent space to the fluid four-velocity,

is that they become effectively scalars when a global planar or spherical symmetry is

present. Because of this, the PSTF formalism is particularly suitable for solving the

radiative transfer problem for a contracting quark drop, since in this case, spherical

symmetry enters as a natural consequence of the drop dynamics.

As in any infinite series expansion strategy, all of the properties of the radiation

field are known exactly only when the infinite hierarchy of moments is determined.

However, this is never possible in practice and a truncation at a finite order in the

moment expansion is therefore necessary. This has two main consequences: firstly

it introduces an overall intrinsic approximation in the determination of the radia-

tion variables, and secondly it requires the introduction of a closure relation which

specifies the value of the highest moment used in terms of lower ones. This supple-

mentary equation, which should be derived on the basis of physical considerations,

is somewhat heuristic and the form used for it is typically related to the specific

problem under investigation.

As in [8, 9], we here truncate the infinite hierarchy of moments at the second

order, thus making use of the first three scalar moments w0, w1 and w2 and of

the first two source functions s0 and s1. A truncation at the second order, which

introduces an intrinsic overall error of the order of 15%, has a number of interesting

and convenient features. Firstly, all of the scalar moments retained have direct

physical interpretation, with w0 and w1 being the energy density and flux of the

radiation in the rest frame of the standard fluid, and with w2 representing the shear

stress scalar of the radiation. Secondly, the moments used are only those appearing

explicitly in the stress-energy tensor for the radiation fluid Tαβ
R

, which, at any order,

has the form
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Tαβ
R

= Muαuβ +Mαuβ +Mβuα +Mαβ +
1

3
MPαβ , (1)

where Pαβ is the projection operator orthogonal to the fluid four-velocity uα, and

the first three PSTF moments M, Mα, Mαβ, are related to the equivalent scalar

moments via the expressions

M = w0, (2)

Mα = w1e
α
r̂
, (3)

Mαβ = w2

(

eαr̂ e
β
r̂
−

1

2
eα
θ̂
eβ
θ̂
−

1

2
eαϕ̂e

β
ϕ̂

)

. (4)

Here (e
0̂
, er̂ , eθ̂, eϕ̂) is the orthonormal tetrad carried by an observer comoving

with the standard fluid. A particular advantage of truncating at the second order is

that it is then possible to avoid the use of iterative methods for the derivation of the

equations governing the hydrodynamics of the radiation fluid, which can instead be

derived by means of the standard conservation laws of energy and momentum for

the radiation fluid. We adopt Lagrangian coordinates comoving with the standard

fluid and having their origin at the centre of the drop and write the (spherically

symmetric) line element as

ds2 = −a2dt2 + b2dµ2 +R2(dθ2 + sin2θ dϕ2), (5)

where µ is a comoving radial coordinate and R is the associated Eulerean coordinate.

The PSTF equations can then be written as

− uαT
αβ

R ;β = s0, (6)

Pµα Tαβ
R ;β =

s1
b
, (7)

w2 = f
E
w0. (8)

Equation (8) is the closure relation and specifies a connection between the

second and the zeroth moments in terms of a variable Eddington factor f
E
, which

is an indicator of the degree of anisotropy of the radiation. This Eddington factor

can take values ranging from 0 for complete isotropy (which, for example, is reached

when the radiation fluid and the standard fluids are totally coupled) to 2/3 for
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complete anisotropy (which could, in principle be reached when the two fluids are

effectively decoupled). An expression for f
E
has to be supplied and in doing this it is

important that the correct asymptotic behaviour in any relevant limits is preserved

and that the form chosen provides a suitably smooth join between the physical limits.

Experience has shown [14, 15, 9] that as long as these requirements are met, results

do not usually depend sensitively on the precise form used for f
E
. As in [8, 9], we

have here used for the Eddington factor the expression

f
E
≡

8u2/9

(1 + 4u2/3)

(

λ

λ+R

)

, (9)

which is the product of an exact expression accounting for the Doppler effects of

motion with respect to a uniform radiation field, together with a corrective term

(the one in the large parentheses) which provides the required physical join between

the optically thin and optically thick limits. The scalar source functions s0 and

s1 appearing in (6), (7), represent the sources or sinks of energy and momentum

between the two fluids, and are expressed as

s0 =
1

λ
(ǫ− w0) + (s0)sc , (10)

s1 = −
w1

λ
, (11)

where ǫ is the energy density for radiation in thermal equilibrium with the standard

fluid (i.e. it is the equivalent of a local emissivity), and the term (s0)sc expresses the

contribution to the energy source due to non-conservative scatterings. Assuming a

black-body expression for ǫ, we have

ǫ = gr

(

π2

30

)

T 4
F
, (12)

with gr being the number of degrees of freedom of the radiation fluid and T
F

the

local temperature of the standard fluid. Obtaining a suitable expression for (s0)sc
(which in general depends on the details on the problem under investigation) is

particularly problematic in the present case where the number and the complexity

of all the possible particle interactions prevent us from having an exact and simple

expression. For this reason, we have adopted a phenomenological view and have

expressed (s0)sc in terms of the simple absorption and emission factor

(s0)sc =
α2

λ
(ǫ− w0), (13)
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where α2 is an adjustable coefficient ranging between zero and one. Within a cos-

mological context it is reasonable to assume α2 ≈ 1; a discussion of the differences

caused by varying α2 will be presented in Section VI.

Expressing equations (6) and (7) explicitly in terms of our metric, we obtain

the following two equations of relativistic radiation hydrodynamics

(w0), t+
a

b
(w1), µ+

4

3

(

b, t
b

+
2R, t

R

)

w0+
2a

b

(

a, µ
a

+
R, µ

R

)

w1+

(

b, t
b

−
R, t

R

)

w2 = as0,

(14)

(w1), t +
a

b

(

1

3
w0 + w2

)

,µ
+

4a, µ
3b

w0 + 2

(

b, t
b

+
R, t

R

)

w1 +
a

b

(

a, µ
a

+
3R, µ

R

)

w2 = as1,

(15)

which, together with equation (8) provide a consistent description of the transfer of

energy and momentum via the radiation fluid. During the final stages of the evap-

oration (i.e. for Rs ≪ λ), the drop medium is locally optically thin and the energy

density of the radiation fluid becomes uniform in the Eulerean frame. Under these

circumstances (which are similar to those encountered in the early stages of bubble

growth [9]), there is a tendency for numerical instabilities to appear, related to near

cancellation problems and to almost diverging expressions in the characteristic form

of equations (14) and (15). Experience has shown that a satisfactory numerical so-

lution of the above equations is then possible only if they are rewritten in terms of

new variables, defined by the following transformations

w̃0 = w0 − (w0)
∗ = w0 −

(

1 +
4

3
u2
)

(w0)N , (16)

w̃1 = w1 − (w1)
∗ = w1 +

4

3
uΓ(w0)N , (17)

w̃2 = w2 − (w2)
∗ = w2 −

8

9
u2(w0)N , (18)

where

u =
1

a
R, t , (19)

Γ =
1

b
R, µ =

(

1 + u2 −
2GM

R

)1/2

. (20)
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Here u is the radial component of fluid four velocity in the associated Schwarzschild

(Eulerian) frame, Γ is the general relativistic analogue of the Lorentz factor and M

a generalized mass function. The new “tilde” variables are expressed as differences

between the standard moments and the expressions for these moments resulting

from considering the motion of the fluid relative to a uniform radiation field having

energy density (w0)N in the Eulerean frame. This will here coincide with the initial

value of the radiation energy density in the hadron phase, which we have therefore

taken as the reference value. Making use of (16)–(18), it is then possible to obtain

the following transformed radiation hydrodynamics equations [9]

(w̃0), t + aw̃0

[

1

R2

(

4

3
+ f

E

)

(uR2), R −
3uf

E

R

]

+
Γ

aR2
(w̃1a

2R2), R

+a
4

3R
(w0)N

[

f
E
(
3

4
+ u2)−

2

3
u2
] [

1

R
(uR2), R − 3u

]

+ as0

−
4

3
a(w0)NG

[

4πuR

(

2p − e−
w0

3
+ 2w2 −

u

Γ
w1

)

−
M

R

(

2u, R +
u

R

)]

−
4πaGR

Γ

(

4

3
w0 + w2

)

w1 = 0 , (21)

(w̃1), t + 2w̃1

a

R
(uR), R + aΓ

(

w̃0

3
+ w̃2

)

, R
+ Γ

(

4

3
w̃0 + w̃2

)

a, R +
3aΓw̃2

R

+as1 +
4

3
a(w0)NΓG

[

4πR

(

p+
w0

3
+ w2 −

u

Γ
w1

)

+
M

a2R2
(a2R), R

]

−
8πaGRw1

2

Γ
= 0 . (22)

where ρ is the relative compression factor, and e and p are the energy density and the

pressure of the standard fluids. Note that it has been convenient here to replace the

the partial derivatives with respect to µ by the equivalent derivatives with respect

to R and that, for compactness, the radiation variables which are multiplied by the

gravitational constant G are not transformed according to (16)–(18). Equations (21),

(22) represent our final form of the hydrodynamical equations for the radiation fluid

and need to be solved together with the corresponding hydrodynamical equations

for the combined fluids, which will be discussed in the next Section.
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III. Relativistic hydrodynamic equations for the

standard fluid

The formal derivation of the hydrodynamical equations for the standard flu-

ids is more standard. For this purpose in fact, it is possible to make use of the

ordinary conservation equations for energy and momentum of the combined fluids

(i.e. standard fluid plus radiation fluid) together with the continuity equation for

the standard fluid. The equations which are then obtained, can be rewritten in a

more familiar form by combining them with the Einstein field equations expressed

in terms of the metric (5) and of a “total” stress-energy tensor (the sum of the one

for the radiation fluid and of the one for the standard fluid). The set of equations

is then [8]

u, t = −a

[

Γ

b

(

p, µ + bs1
e+ p

)

+ 4πGR

(

p+
1

3
w0 + w2

)

+
GM

R2

]

, (23)

(ρR2), t
ρR2

= −a

(

u, µ − 4πGbRw1

R, µ

)

, (24)

e, t = wρ, t − as0, (25)

(aw), µ
aw

= −
wρ, µ − e, µ + bs1

ρw
, (26)

M, µ = 4πR2R, µ

(

e+w0 +
u

Γ
w1

)

, (27)

b =
1

4πR2ρ
, (28)

w =
(e+ p)

ρ
, (29)

where a and b are the metric coefficients and w is the specific enthalpy of the standard

fluids. The compression factor ρ expresses the variation in the proper volume of

comoving elements of the standard fluid and for a classical standard fluid it can

be replaced by the rest mass density. The set of equations (19)–(20) and (23)–(29)

needs to be supplemented with equations of state for both phases of the strongly

interacting matter. For small net baryon number and taking the hadronic medium to
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consist of massless point-like pions, it is appropriate to describe the hadron plasma

as an ultra-relativistic fluid, for which

eh = (gh + gr)

(

π2

30

)

T 4
h , ph =

1

3
eh , (30)

while the quark phase can be effectively described by the Bag model equation of

state

eq = (gq + gr)

(

π2

30

)

T 4
q +B , pq = (gq + gr)

(

π2

90

)

T 4
q −B , (31)

where B = (π2/90)(gq − gh)T
4
c is the “bag” constant, Tc is the critical temperature

for the transition and gq, gh, gr represent the number of effective degrees of freedom

of the quark matter, the hadronic matter and the radiation particles respectively.

Note that equations (30)–(31), (with gq = 37, gh = 3, and gr = 9), apply when

one considers the standard fluids and the radiation fluid as totally coupled, which

is the case when the drop has dimensions Rs ≫ λ. However, at the decoupling, and

for all the subsequent stages of the drop evaporation, they need to be corrected by

removing the additional number of degrees of freedom of the radiation fluid particles.

Equations (23)–(31), together with equations (19)–(22) and (8) represent the

full system of hydrodynamical equations in the presence of long range energy and

momentum transfer via electromagnetically interacting particles. However, the nu-

merical solution of these equations must necessarily take into account the presence

of a discontinuity between the phases of the strongly interacting matter at the drop

surface. For this reason an appropriate treatment needs to be made of the conditions

at the phase interface, and the way this has been accomplished is illustrated in the

next Section.

IV. Solution at the interface

The presence of an interface dividing the two phases of the strongly interacting

matter introduces a number of complications when the set of the hydrodynamical

equations discussed in the previous Sections is to be solved numerically. A first

complication is related to the nature of the drop surface and to the way in which it

should be described. Given the lack of detailed knowledge of the microphysics within

the phase interface and the fact that the width of the interface is generally small
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compared with the typical radial scale of the problem, it is convenient to treat it as
a discontinuity surface across which rapid variations in the fluid variables occur. It
is then possible to join the solution of the hydrodynamical equations on either side
by imposing a number of relativistic junction conditions. For the particular case of
a discontinuity surface with associated physical properties, (a non-vanishing stress
energy tensor and an intrinsic curvature), the junction conditions can best be derived
using the Gauss–Codazzi formalism [16, 17, 9]. Assuming that the surface tension
σ is independent of temperature, (σ = σ0T

3
c , with 0 ≤ σ0 ≤ 1), the conservation of

energy and momentum across the interface are expressed as

[(e+ p)ab]± = 0, (32)

[eb2µ̇2
S
+ pa2]± = −

σf2

2

{

1

ab

d

dt

(

b2µ̇
S

f

)

+
f, µ
ab

+
2

fR
(bµ̇

S
u+ aΓ)

}±

, (33)

where [A]± = A+−A−, {A}± = A++A−, µ
S
is the interface location, µ̇

S
= dµ

S
/dt,

f = (a2 − b2µ̇2
S
)1/2 and the superscripts ± indicate quantities immediately ahead of

and behind the interface. Note that the energy density and the pressure appearing
in (32), (33) are the sum of those for the standard fluids and for the radiation
fluid when these are totally coupled. At the decoupling however, and for all the
following stages of the drop evaporation, it is necessary to supplement the equations
(32), (33) (which will then refer to the standard fluids only), with the equivalent
junction conditions for energy and momentum of the radiation fluid. Assuming that
there is no interaction of the radiation fluid with the matter in the phase interface,
the energy and momentum junction conditions for the radiation are then just the
continuity conditions

[

abµ̇
S

(

4

3
+ f

E

)

w̃0 − (a2 + b2µ̇2
S
)w̃1 + (w0)N

{

abµ̇
S

(

1 +
4

3
u2
)(

4

3
+ f

E

)

+
4

3
uΓ(a2 + b2µ̇2

S
)

}]±

= 0 , (34)

[{

a2
(

1

3
+ f

E

)

+ b2µ̇2
S

}

w̃0 − 2abµ̇
S
w̃1

+(w0)N

{(

1 +
4

3
u2
)[

a2
(

1

3
+ f

E

)

+ b2µ̇2
S

]

+
8

3
abuΓµ̇

S

}]±

= 0. (35)

Other supplementary junction conditions follow from continuity across the interface
of the metric quantities R, dR/dt, and ds
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[R]± = 0, (36)

[au+ bµ̇
S
Γ]± = 0, (37)

[a2 − b2µ̇2
S
]± = 0, (38)

and from the time evolution of the mass function M

d

dt
[M ]± = 4πR2

S

[

bΓµ̇
S

{(

e+ w0 +
u

Γ
w1

)}

−

au

{

p+

(

1

3
+ f

E

)

w0 +
Γ

u
w1

}]±

, (39)

where the initial jump in mass across the interface is taken to be [M ]± = 4πR2
S
σ.

The concept of the phase interface as a perfect discontinuity surface needs

careful interpretation in the context of a numerical calculation and in this case it

is important to bear in mind that the interface should not be considered as strictly

infinitesimal. In the present situation, in which the computer code follows the drop

evaporation with an increasing spatial resolution through a number of orders of

magnitude in radius, the interface should be thought of as having an effective width

which is always smaller than the minimum length scale resolvable on the grid. This

means that the numerical code will treat as discontinuous any change in the physical

variables which cannot be resolved on the grid. This feature is particularly relevant

at the decoupling, because at that stage the long range energy and momentum

transfer introduces features of the flow on length scales which were not previously

resolved when the standard fluids and the radiation fluid were considered as coupled.

When the decoupling is allowed to start, the effective width of the phase interface

is abruptly decreased to that appropriate for the strongly interacting matter alone

and, as a consequence, changes across it which were previously discontinuous are

allowed to smooth down and assume the profiles produced by the radiative transfer.

In nature, the change between the two different situations is progressive and regular,

but when described on an finite grid, it occurs discontinuously. Doing this requires

particular care and in the next Section we discuss the details of the computational

strategy which has been implemented in order to perform this change.

A further complication regarding the solution at the interface arises because

of the dynamical properties of the drop surface treated as a reaction front. General
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considerations about the nature of the transition [18, 19, 17] lead us to consider

the transition as taking place by means of a weak deflagration front (i.e. by means

of a discontinuity surface moving subsonically relative to the media both ahead

and behind) [20, 21]. Weak deflagrations are intrinsically under-determined and

require the specification of one additional condition giving the rate at which the

quark matter is transformed into hadrons at the phase interface [21]. A simple and

satisfactory expression can be obtained by setting the hydrodynamical flux F
H

into

the hadron region equal to the net thermal flux F
T
into it

F
H
= −

awµ̇
S

4πR2
S
(a2 − b2µ̇2

S
)
=

(

α1

4

)

(gh + gr)

(

π2

30

)

(T 4
q − T 4

h ) = F
T
, (40)

where α1 is an accommodation coefficient (0 ≤ α1 ≤ 1) containing information

about the “transparency” of the phase interface to the thermal flux and is, at least

in principle, calculable from theory.

It is very important to ensure that the correct causal structure is preserved

when following the motion of a weak deflagration front as a discontinuity surface. A

careful numerical investigation reveals that the only satisfactory way of accomplish-

ing this is by making use of a characteristic method in which the system of partial

differential equations is rewritten as a system of ordinary differential equations along

specific curves in the space-time (the characteristic curves). The correct causal con-

nection is then preserved as the characteristic curves are the world-lines along which

information propagates through the media. We here make use of the same system

of characteristic equations employed for the growth of a hadronic bubble and for

compactness their lengthy expressions will not be repeated here (we refer the reader

to [8, 9], where the details of their mathematical derivation is also given). Figure 1

shows the Lagrangian space-time configuration of the characteristic curves adjacent

to the interface for evolution of the system from time level t to a subsequent time

level t+∆t, with different line types distinguishing the different types of fluid. Note

that, the gradients of the corresponding characteristics on the two sides of the phase

interface can be different and that the difference between the sound speeds in the

radiation fluid [(1/3 + f
E
)1/2] and in the standard fluid (cs), is greatly magnified in

the figure.

Figure 1. The configuration of characteristic curves near the phase interface
drawn in the Lagrangian coordinate frame.
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As discussed above, the solution of the hydrodynamical equations at the phase

interface is rather complicated and requires great care. However, once the set of

radiation fluid and standard fluid hydrodynamical equations is solved along the

characteristic curves (which are shown schematically in Figure 1) and the relevant

junction conditions are imposed across the phase interface, a consistent numerical

evolution of a weak deflagration front can then be computed.

V. Numerical strategy and initial conditions

For following the evaporation of a quark-gluon drop and taking into account

the progressive exchange of energy and momentum which at a certain stage will take

place between the radiation fluid and the strongly interacting fluids, we have here

made use of the experience and numerical codes developed for studying the related

problems of radiative transfer for a growing hadron bubble [9] and of evaporation of

a quark drop in the absence of long range energy and momentum transfer [7]. The

result of this has produced a code which embodies the main features of the previous

ones and we will briefly describe this here, referring the reader to the previous papers

for further details.

As with its predecessors, the present code makes use of a composite numer-

ical technique in which a standard Lagrangian finite-difference method is used to

solve the hydrodynamical equations in the bulk of each phase, while a system of

characteristic equations and a set of junction conditions are solved in the regions

adjacent to the phase interface. The grid is Lagrangian and spherically symmetric

with its origin at the centre of the drop. In order to follow the solution over a num-

ber of orders of magnitude in the spatial coordinate µ, the grid has variable spacing

with the width of each successive zone being twice that of the previous one (i.e.

∆µj+1/2 = 2 ∆µj−1/2), apart from the two central zones which have equal width.

The specification of the initial conditions for the system of hydrodynamical

equations has been guided by the existence of a self-similar solution for an isolated

contracting physical system which was demonstrated in [7]. When there is no in-

trinsic length scale influencing the problem (as in the case of an isolated evaporating

spherical drop for which surface tension is not yet playing a significant role), it is

possible to write the set of hydrodynamical equations in terms of a single dimen-

sionless independent variable and to find a similarity solution. The time evolution of

the system is scale independent and reproduces itself at any instant. It is important

to stress that this is a general feature of the similarity solution and holds for any

dimensions of the system satisfying the above assumptions.
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However, in the case of an evaporating quark drop during the cosmological

phase transition, we do not expect the self-similarity to hold at all stages. Rather,

it is necessary to establish an interval in the drop dimensions within which such

self-similar behaviour is expected to take place. While the lower limit in the drop

radius can easily be estimated from the magnitude of the surface tension σ associated

with the phase interface (the surface tension introduces a natural length scale and

the drop evaporation is no longer scale free when surface effects become relevant),

the definition of the upper limit is more uncertain. In this case, it is necessary to

determine an initial scale at which the quark drops can be considered physically

disconnected, so that the distance between the centers of two neighbouring drops is

larger than the sum of their respective “sonic radii” (see [7] for a definition). The

value of this is not yet established and its determination would require a detailed

hydrodynamical study of the intermediate stages of the transition, which we consider

to be the ones after the hadron bubbles have coalesced and the quark regions have

started to become disconnected. Simple geometrical considerations suggest that

the mean separation between quark regions at bubble coalescence would be of the

order of the mean separation of bubble nucleation sites (e.g. between 1 cm and 102

cm). Bearing in mind the uncertainty in this, we here take a conservative view and

consider a quark drop of initial dimensions Rs,0 = 105 fm, much below the above

range. Considering such a small quark drop implies restricting our analysis to the

very final stages of the transition, but it is then that the self-similarity is expected

to break down and a change in the hydrodynamical evolution is expected to occur.

As initial conditions for the time evolution with the full hydrodynamical equa-

tions we therefore use the general form of the self-similar solutions, which is de-

termined once the degree of supercooling in either one of the two phases has been

established. It is worth noticing that the supercooling does not need to be extremely

small as is the case during bubble percolation and coalescence. In fact, during the

very final stages of the transition considered here, the quark volume fraction in the

Universe has become very small and the confinement processes are no longer able

to supply the energy necessary to maintain the increased hadron volume fraction at

essentially Tc against the cooling produced by the expansion of the Universe [22].

All of the models which we present here refer to a quark drop having initial temper-

ature T̂q = Tq/Tc = 0.998, surrounded by a hadron plasma at initial temperature

T̂h = Th/Tc = 0.990. A degree of supercooling of 1% in the hadron phase is, in our

view, reasonable and allows numerical simulations to be performed within accept-

able time costs. Moreover, it should be noted that results obtained with a smaller

degree of supercooling (e.g. down to 0.1%) show only minimal overall differences for

e, ρ and w0 (always below a few percent). The situation is different if the degree of
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supercooling is chosen to be larger. In this case, which probably has no cosmological

relevance, the hydrodynamical evolution can be rather different and would follow

the lines discussed in [7].

As mentioned in Section IV, an important feature of the present simulations is

the transition between total coupling of the radiation and standard fluids and their

effective decoupling. While in nature this process would take place in a rapid but

gradual way, the start of it is necessarily discontinuous when simulated by means of

a numerical calculation on a grid. For this reason it has been necessary to introduce

a free parameter Rd, referred to as the “decoupling radius”, fixing the drop radius

at which the change is made from one regime to the other. For drop radii Rs > Rd

the two fluids are considered as totally coupled and moving as a single fluid. The

phase interface is taken to have a width related to the m.f.p. of the radiation fluid

particles and the characteristics of the radiation fluid are taken to coincide with

the ones of the standard fluids. In practice the coupling is treated by adding the

number of degrees of freedom of the radiation fluid particles to the number of degrees

of freedom in the two phases of the strongly interacting matter and by setting to

zero the contribution of the source functions s0 and s1 and the energy flux w1. Also,

the jump in w0 at the interface is then calculated in terms of that for e. Conversely,

for drop radii Rs < Rd the two fluids are considered as not being totally coupled

and the calculation of the radiation fluid variables adjacent to the interface is made

using the radiation characteristics which are now distinct from those of the standard

fluids. At this stage the radiation fluid evolves separately from the standard ones

and long range energy and momentum transfer can start to take place.

It is worth pointing out that while in the above procedure the decoupling

between the two fluids starts in a discontinuous manner, the decoupling in itself

is gradual and is governed by the radiation hydrodynamic equations. The abrupt

switch is certainly an approximation but, as discussed in next Section, it is a rather

good one and numerical results show that the hydrodynamical evolution quickly

recovers from the perturbation introduced by the sudden decoupling.
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VI. Numerical results

A. The standard parameters

This Section is devoted to the presentation of the results obtained from the

numerical integration of the hydrodynamical equations for the radiation and the

standard fluids. We first present results for a standard set of the parameters of the

problem and will discuss later the changes introduced when these parameters are

allowed to vary. We here consider an isolated quark drop of initial radius Rs,0 = 105

fm, surrounded by a hadron plasma at temperature T̂h = 0.99, and to which is

associated a phase interface with surface tension parameter σ0 = σ/T 3
c = 1. (We

assume Tc = 150 MeV). Moreover, we consider the phase interface as a perfect

black-body (i.e. α1 = 1) and the non conservative scattering contribution in the

first source function as maximal (i.e. α2 = 1). The decoupling radius is related to

the m.f.p. of the radiation fluid particles and we here set Rd = λ = 104 fm.

Figures 2 and 3 show the time evolution of the radial component of the Eulerian

four-velocity u and the energy density e of the standard fluids. The phase interface

is represented by the vertical discontinuity, with the quark phase always being to

the left of it and with the different curves referring to different stages during the

contraction. The decoupling is allowed to start at a drop radius of 104 fm; as can

be seen from the graphs, the solution is not particularly perturbed by the new

conditions and quickly returns to a regular behaviour.

Figure 2. Time evolution of u, the radial component of the fluid four-velocity in
the Eulerian frame. The quark phase is to the left of the vertical discontinuity.
The decoupling between the radiation fluid and the standard fluids is allowed
to start at Rs = 104 fm

Figure 3. Time evolution of the profile of the energy density e in the standard
fluid.

These graphs are quite similar to the ones presented in [7] even though in this

case the self-similar solution during the contraction is more weakly preserved after

the decoupling. When the drop reaches dimensions comparable with the intrinsic
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length scale σ/wq ≈ 102 fm, the self-similar behaviour is irreversibly lost and the

evaporation then proceeds through the accelerated stages already observed in [7].

This is related to the contribution of the surface tension which has become over-

whelming and produces a compression within the quark phase with a consequent

temperature increase. Despite the reduced dimensions of the drop surface, the in-

creased temperature jump between the two phases of the strongly interacting matter

is able to preserve a considerable hydrodynamical flux away from the surface (the

outward velocity is increased), thus allowing for an increasingly rapid evaporation

which ends with the complete disappearance of the drop. Note that the treatment

of the phase interface as a discontinuity surface is no longer correct when the drop

radius reaches 1 fm and so our results for the smallest radii should only be treated

as indicative.

Figures 4 and 5 show the time evolution of the radiation energy density w0

and of the radiation energy flux w1. Before the decoupling starts, w0 obviously

follows the self-similar evolution of the energy density of the standard fluids and the

energy and momentum transfer between the two types of fluid is so efficient that

they can be considered as in local thermodynamic equilibrium, giving (w1 = 0). The

situation changes when the drop becomes smaller then 104 fm. At this stage the

decoupling starts and this has the effect of smearing out the step in the radiation

energy density which was present before. Now the radiative transfer is able to carry

away the energy stored within the radiation fluid in the quark phase.

As can be seen from the small diagrams in Figures 4 and 5, which show the

evolution of w0 and w1 immediately after the decoupling has started, this process

is quite rapid and before the drop radius has decreased by one order of magnitude,

the radiation energy density profile has flattened out, equalizing with the value at

infinity. The energy flux w1 deviates from zero and becomes positive as soon as the

decoupling starts and then progressively decays as the step in the radiation energy

density is smeared out. This process is somewhat similar to the rapid release of

the radiative energy contained within an optically thick, hot but non-emitting gas

sphere which suddenly starts to become optically thin and is allowed to emit.

Figure 4. Time evolution of the radiation energy density w0. The dashed
curves are the result of dominant Doppler effects at the very end of the drop
evaporation. The curves in the small diagram show the rapid evolution of
energy density immediately after the decoupling has started.
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Figure 5. Time evolution of radiation energy flux w1. The curves in the
small diagram show the rapid increase of the energy flux immediately after the
decoupling has started.

The dashed curves in Figure 4 correspond to the very final stages of the drop

evaporation (i.e. for drop dimensions of the order of a few fm). The increase in

the radiation energy density which is seen there is related to the motion of the La-

grangian observers with respect to an essentially uniform radiation field and there-

fore has a pure Doppler nature (it can be shown that under these circumstances

w0 ≃ (1 + 4u2/3)(w0)N and w1 ≃ −(4Γu/3)(w0)N , [8]). Note that Doppler contri-

butions are always present after the decoupling and are more evident in the energy

flux, where they enter at the first order in u and are responsible for the increasing

negative flux observed for drop radii smaller than 103 fm.

Some of the most interesting effects produced by the decoupling between the

radiation fluid and the standard fluids regard the evolution of the compression factor

ρ. As discussed in [7], a key property of the self-similar solution is that of preserving

the values of the compression factor in the two phases of the strongly interacting

matter. This reflects a perfect balance between the competing effects of the com-

pression which would tend to be produced by the reduction in size of the quark drop

and the evaporation processes which extract matter from it. As pointed out in [7],

an increase in the compression within the quark phase is possible only when the

self-similar solution is broken and this can occur either when the long range energy

and momentum transfer takes place or, later on, when the drop radius becomes

comparable with the intrinsic length scale related to the surface tension. If the de-

coupling between the radiation fluid and the standard fluids is neglected, (as in [7]),

the compression produced is purely hydrodynamical and this takes place only during

the very final stages of the drop evaporation. In that case, the relative increase of

ρ+, (the compression factor immediately ahead of the phase interface), at the end

of the contraction of a standard quark drop with σ0 = 1 and initial T̂h = 0.99, was

computed to be of the order of 40%.

The situation changes dramatically if the radiative transfer between the stan-

dard fluids and the radiation fluid is consistently taken into account. Figure 6 shows

the time evolution of the compression factor in both phases of the strongly interact-

ing matter. With the magnified scale it is not possible to see the initial values of

the compression factors which are ρh = 0.253 for the hadron phase and ρq = 1.0 for

the quark phase, (our reference value). It is evident that as soon as the decoupling

is allowed to take place at 104 fm, the compression within the quark phase starts to
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increase progressively and, at the end of evaporation, it has reached values which

are more than two orders of magnitude larger (an increase of ∼ 5× 104 % !). The

small diagram in Figure 6 traces the values of the compression just ahead of the

phase interface (ρ+) and just behind it (ρ−).

Figure 6. Time evolution of standard fluid compression factor ρ. The curves in
the small diagram represent the values of the compression factor immediately
ahead of the phase interface (ρ+) and immediately behind it (ρ−).

The explanation for this striking behaviour is related to the fact that the long

range radiative transfer is able to extract energy from within the quark phase without

extracting the strongly interacting matter. As a consequence, the relation between

the compression factor and the pressure (and hence between the compression factor

and the temperature) is altered and the evaporation evolves in a radically non-

adiabatic manner. The main effect produced by the radiative transfer is then that

of reducing the specific entropy of the quark-gluon plasma, so that it is possible to

enhance the quark compression without significantly changing its temperature.

It is interesting that the growth in the quark compression factor continues to

occur also after the radiation energy density in the quark phase has been levelled

down to the value in the hadron phase and the outward energy flux from the quark

phase has become very small (i.e. even for Rs < 103 fm). This is due to the

fact that when the energy density of the radiation fluid within the quark phase has

reached the same value as in the hadron phase, there is a local temperature difference

between the radiation fluid and the quark-gluon plasma which drives a very small

but finite energy flux from the quark plasma into the radiation fluid, where it is then

redistributed very efficiently. In this way the process of entropy extraction from the

quark phase is able to operate even when the outward radiation energy flux from

the quark phase is very small.

A limit to this mechanism is, of course, introduced by the intrinsic dimensions

of the drop and by the length scale for the interactions of the particles of the radiation

fluid. If the drop is too small, it becomes effectively transparent to the radiation

particles and the entropy extraction is no longer efficient; at this stage the decoupling

between the two fluids can be considered to be complete. For the typical quark drop

under consideration here, this happens at about 102 fm, where the increase in the

compression factor temporarily slows down (see the small diagram in Figure 6). At
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this stage the solution would become self-similar again, but for the fact that the

quark drop is now small enough for the surface tension to take over and dominate

the final stages of the evaporation, producing the last compression enhancement.

In the next Section it will be shown that it is possible to recover the self-similar

solution again after the total decoupling has taken place if a suitable choice of the

decoupling radius and of the m.f.p. λ is made (Figure 11).

A special comment should be made concerning a result which we consider to

be particularly important. As discussed before, our treatment of the long range

energy and momentum transfer between the radiation fluid and the standard fluids

leads to an increase in the compression factor of the quark phase by about two orders

of magnitude. It should be kept in mind, however, that this peak value is limited

to a very small volume (of the order of 1 fm3) and that it would be dispersed by

the rarefaction wave following the complete disappearance of the drop (see [7] for

a description of the rarefaction wave and Section VII for further discussions). As

a consequence, if a relic inhomogeneity from the transition is to be investigated,

this should rather concern the compression seen in the hadron phase before the

disappearance of the drop.

Figure 7 shows the final profile of the compression factor ρ computed when

the quark drop has reached a radius of 1 fm. It is interesting to note that besides the

large peak in the quark phase, the compression factor has been increased also in the

hadron phase, where it appears as a plateau of comparatively smaller magnitude.

However, if one selects a vertical scale with greater resolution and normalizes the

values of the compression factor to the background hadron compression (see the

small diagram of Figure 7), it is clear that the plateau does indeed have a specific

profile, with a maximum about two orders of magnitude larger than the background

value. More important, the hadron compression extends over a much larger length

scale, which coincides with the interaction length scale of the radiation fluid particles.

Figures 6 and 7 could give a misleading impression as they seem to show that the

most important effect is the compression increase in the quark phase whereas, in

fact, the relative compression increase in the hadron phase is also substantial and is

more significant in that it extends over a volume which is twelve orders of magnitude

larger.

Figure 7. Final profile of the compression factor ρ; the computation has been
stopped when the quark drop has a radius of 1 fm. The small diagram shows,
with a different vertical resolution, the same profile after it has been normalized
to the value of the hadron compression at infinity.
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The compression increase in the hadron phase is not produced directly by

the radiation, but rather results from the fact that “over-compressed” quark fluid

elements (with decreased specific entropy) give rise to “over-compressed” hadron

fluid elements after they have undergone the phase transformation in accordance

with the junction condition (32). (Note that the entropy increase which naturally

occurs across the phase interface is much smaller that the decrease introduced by

the radiation fluid, so that fluid elements in the hadron phase near the drop have

smaller specific entropy than those far from it). A key point to stress is that the

over-compressed hadron plasma is in pressure balance (and therefore in temperature

balance) with the surrounding hadron medium. This is a consequence of the decrease

of specific entropy which took place while the fluid elements concerned were still

inside the drop. At the end of the transition a spherical region of over-compressed

hadron plasma is left behind which is in equilibrium with the surrounding medium.

This is the region where a baryon number concentration could be produced and this

would then only be dispersed by neutron diffusion on the time scale relevant for that.

The consequences of this result for the production of baryon number inhomogeneities

at the end of the transition will be discussed in Section VII.

B. The parameter space

In this Section we discuss the changes introduced for the drop evaporation by

variation of the set of the parameters within the allowed parameter space. We start

by commenting on the hydrodynamical evolution of a quark drop for which the co-

efficient α1, which relates the hydrodynamical flux to the thermal flux in the hadron

phase, is not equal to unity as in the case of a perfect black-body surface. In general,

reducing α1 has the effect of decreasing the “transparency” of the drop surface to

the phase transformation and therefore of slowing down the drop evaporation and

favoring the long range energy and momentum transfer away from the quark phase.

Figure 8. Compression factors immediately ahead of and behind the phase
interface when the radius of the quark drop has decreased to 1 fm, as a function
of the adjustable coefficient α1. The dashed curves extrapolate the numerical
results to very small values of α1, for which computations are not possible.

Figure 8 shows the variation, as a function of α1, of the compression factors

immediately ahead of and behind the phase interface when the radius of the quark
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drop has decreased to 1 fm (the other parameters are left unchanged from the values

discussed in the previous Section). While the solid curves fit points obtained by

single computations, the dashed curves are an extrapolation of these to values of

α1 for which the computations would have been exceedingly time consuming (the

computational time tends to infinity as α1 tends to zero). It is interesting to notice

that the formation of high compressions in the quark and hadron phases is a general

feature and that the relative increase of the compression factors in both phases can

easily be of six or seven orders of magnitude, thus giving a stronger cosmological

relevance to this process.

Let us now consider the changes brought about by variation of the non-

conservative scattering coefficient α2 in the energy source moment (13). As men-

tioned in Section II, rough estimates indicate that α2 ≈ 1 in the present cosmological

scenario, but it is nevertheless interesting to consider situations for smaller values

of α2. It is obvious that a larger non-conservative scattering coefficient will en-

hance the efficiency of the radiative transfer processes and, in turn, the formation

of compressed regions of the strongly interacting fluids.

Figure 9. Compression factor immediately ahead of the phase interface for
computations with different values of the adjustable coefficient α2. The small
diagram shows the equivalent curves for the compression factor immediately
behind the phase interface.

As shown in Figure 9, where results of computations performed with five

different values of α2 are presented, the hydrodynamical evolution is not qualitatively

changed and although a value of α2 = 1 maximizes the compression, a relative

compression increase (at the end of the drop evaporation) of about two orders of

magnitude is present also in the total absence of the scattering contribution.

All of the results discussed so far are from simulations in which the decou-

pling between the radiation fluid and the standard fluids was allowed to start at a

“decoupling radius” Rd equal to the m.f.p. λ of the strongly interacting particles.

While such a choice is suggested by elementary considerations, there is no reason to

exclude slightly smaller or larger values of Rd and it was interesting to consider the

changes introduced for a decoupling started at Rd/λ 6= 1.
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Figure 10. Compression factor immediately ahead of the phase interface when
the radius of the quark drop has decreased to 1 fm, as a function of the decou-
pling radius Rd. The vertical axis is normalized to the value of ρ+ obtained
for Rd = λ. The solid line fits points obtained by single numerical simulations
and the small diagram magnifies the results for small values of the decoupling
radius.

Figure 10 collects the results of this investigation presenting the values of

the final quark compression (at Rs = 1 fm), for different values of the decoupling

radius. The value of ρ+ presented in the diagram is normalized to the value obtained

for Rd = λ; Rd = 1.2 λ is the largest value for which a satisfactory numerical

solution could be obtained, but Rd = λ leads to a more regular behaviour of the

hydrodynamical quantities and so was used for the standard run presented in the

previous Section.

The interpretation of Figure 10 is straightforward: making the decoupling at

smaller values of the drop radius has the effect of reducing the time interval during

which the long range energy and momentum transfer away from the quark phase

takes place. As a consequence, the specific entropy in the quark phase is changed

less, leading to a smaller final compression. If the value of Rd/λ is taken to be very

small, the hydrodynamical behaviour tends to the one observed when the decoupling

is totally neglected and ultimately coincides with the solution obtained in [7] when

Rd/λ = 0. This is a satisfying result and shows that the numerical modelling has

an overall physical consistency.

Another example of this coherence appears when a self-similar solution can

be recovered after decoupling between the radiation fluid and the standard fluids is

complete. This can be produced if λ is artificially increased so as to be much larger

than the length scale associated with the surface tension, thus separating the two

possible regimes during which a compression can be produced.

Figure 11 shows the profiles of the compression factors immediately ahead of

and behind the phase interface for values of λ = Rd ranging between 104 fm (the

physically realistic value) and 107 fm. (In all simulations the quark drop has initial

dimensions Rs,0 = 10λ.) It is evident that with the standard set of parameters,

(shown with the continuous line), the two different compression growth stages join

together and that self-similar evolution (represented by a constant compression fac-

tor state) cannot set in. The situation is rather different for the (unrealistic) choice of

Rd = λ = 107 fm. In this case it is possible to distinguish clearly between the initial

compression growth (produced by the relativistic radiative transfer), and the final
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compression enhancement (a consequence of the accelerated evaporation driven by

the surface tension) which in all of the simulations takes place for Rs <∼ 102 fm. The

evolution between the two stages clearly follows a self-similar solution and this seems

to be a further example of the widespread occurrence of the self-similar solutions for

an isolated contracting spherically symmetric system.

Figure 11. Compression factors immediately ahead of and behind the phase
interface. Different curves refer to different values of the m.f.p. of the radiation
fluid particles (expressed in fm) and show that if a large enough value is chosen,
a self-similar evolution is reached. All curves are drawn for Rd = λ and initial
quark dimensions one order of magnitude larger than λ.

A final comment in this Section should be made concerning the role played by

the neutrinos in the process of long range energy and momentum transfer away from

the quark phase. As mentioned in Section II, neutrinos have been neglected in the

present calculation because of the much larger length scale at which they interact

(λν ≈ 1013 fm). Nevertheless, on this scale they can be considered as particles of a

generalized radiation fluid and could operate a radiative transfer process similar to

the one discussed so far for the electromagnetically interacting particles and produce

a compressed hadron medium at the end of their decoupling.

In order to investigate the amplitude of this compression, we have performed a

computation in which we simulate the decoupling between a radiation fluid composed

only of neutrinos, and a standard fluid composed of strongly and electromagnetically

interacting particles. It should be noted that this is a rather speculative investigation

since it assumes the existence of isolated, spherical quark regions of dimensions at

least comparable with λν , and it is not clear whether the disconnection of quark

regions happens at a scale large enough for this to occur. However, bearing this

reservation in mind, results of our calculations for the effects of neutrino decoupling

on the compression profiles are presented in Figure 12.

It is evident that entropy extraction by means of neutrinos is less effective than

for the case of the electromagnetically interacting particles and this is the result of

the different combination of the number of the degrees of freedom in the two cases

(for neutrinos gr = 5.25). Nevertheless, the decoupling produces a non negligible

compression in both phases, giving a compression in the hadron plasma which is

about five times greater than the background one.
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Figure 12. Compression factors immediately ahead of and behind the phase
interface. Here Rd = λν = 1013 fm.

Reduction of α1 would lead to further amplification of the compression in

the same way as already discussed for the decoupling of the electromagnetically

interacting particles. This result is also relevant for considerations of the baryon

number density profile which is left behind by the quark-hadron transition and will

be further discussed in the next Section.

VII. Cosmological implications

We here briefly discuss some of the consequences that the results presented in

the previous Sections can have in a cosmological context. A more detailed analysis

of these features will be presented in a forthcoming paper [23].

A first question concerns the relation between the compression factor ρ in the

two phases of the strongly interacting matter and the baryon number density which

has a more direct physical relevance. Certainly, most of the astrophysical conse-

quences which have been discussed in relation with a first order quark-hadron phase

transition are connected with the production of baryon number inhomogeneities

which could survive until later epochs. Baryon number density has a natural ten-

dency to be discontinuous across the phase interface since baryon number is carried

by almost massless quarks in the high temperature phase, while in the low tem-

perature phase it is carried by heavy nucleons whose number density is strongly

suppressed. In the limit of chemical equilibrium across the front, the baryon chem-

ical potentials are equal for both phases of the strongly interacting matter, and the

net baryon flow across the phase interface vanishes. If the evolution of the transi-

tion is isothermal with both phases at ≈ Tc, the ratio of baryon number densities

k = (nq
B
/nh

B
) can be easily computed after having specified the critical temperature

[22], with k being >∼ 10 for Tc <∼ 150 MeV. The values obtained are slightly larger

if the finite volume of the hadrons is not neglected [24].

This baryon number segregation can be further enhanced when the chemi-

cal equilibrium is broken (this could either occur because the interface velocity is

much larger than the mean baryon diffusion velocity or because the bubbles have

dimensions larger than the typical baryon diffusion scale length in a Hubble time

Rdiff
B

∼ 1010 fm). As a result of the breaking of chemical equilibrium, baryon num-

ber could accumulate on the quark side of the front. Depending on the intensity of
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the net baryon number flow into the hadron region and on the efficiency of diffusion

in smearing out accumulations of baryon number, the baryon density contrast can

be magnified between 2 and 6 orders of magnitude [11, 12]. In addition to its rele-

vance for cosmological nucleosynthesis, this mechanism has also been considered in

connection with the possibility of it giving rise to primordial magnetic fields which

could serve as seeds for the production of the present intergalactic and interstellar

magnetic fields [13]. We here note that seed magnetic fields might also be produced

at the very end of the transition when the quark drops evaporate rapidly and the

radiative transfer favours baryon number segregation and hence charge separation

[23].

The evolution of the baryon number contrast has been investigated by Kurki-

Suonio [25] who considered several scenarios for the creation of the final baryon num-

ber density profile arising from various combinations of the intrinsic scale lengths

of the problem: i.e. the baryon diffusion length, the mean separation of nucleation

sites, and the typical dimension of hadron bubbles at coalescence. The last two

length scales in particular, are still uncertain today and it has not yet been possible

to clarify further the situation described in [25]. One of the scenarios considered by

Kurki-Suonio was concerned with baryon number concentration produced by long

range radiative transfer and, within this context, the results presented in the previ-

ous Sections can be used to provide an updated view of this. In the simplest picture

where baryon number is taken to be strictly advected along with the hydrodynamical

flow, the baryon number density is directly proportional to the compression factor ρ

and so Figures 6–12 can be considered as representing also the baryon number den-

sity. However, departures from this proportionality can be caused both by diffusion

of baryon number (which can operate when the typical length scale for variations

in ρ is smaller than the relevant diffusion length scale or comparable with it), or

by suppression of baryon number flow across the phase interface (which would lead

to a build up of baryon number in the quark phase). It is expected that a filter

mechanism would operate at the phase interface accumulating baryon number there

and augmenting the concentration produced by the specific entropy extraction via

the radiation fluid particles [22]. As a consequence, the results presented for the

compression in the quark phase represent a lower limit to the possible enhancement

of baryon number density in the high temperature phase.

As mentioned in Section VI, the scale length of the inhomogeneities produced

by this mechanism is given by the m.f.p. for the radiative fluid particles and for

the electromagnetically interacting particles this is much smaller than the minimum

inhomogeneity scale length that can affect nucleosynthesis. An underlying large am-

plitude baryon number contrast would have to be produced during the intermediate
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stages of the transition in order for the baryon number segregation produced to be

on a large enough scale to be able to survive and be relevant for nucleosynthesis.

This contrast might be achieved at the time of hadron bubble coalescence, or possi-

bly during the decoupling of neutrinos from the standard fluids as discussed at the

end of Section VI.

A final interesting issue to be investigated is the hydrodynamical evolution

of the compression enhancements after the quark phase has been totally converted

into the hadron one. Concentrating on a single quark drop, it is easy see that a

rarefaction wave (possibly fronted by a spherical shock) should appear when the

drop disappears [7, 27]. At this stage, the source of the outward flow from the quark

phase ceases to exist and the flow profile should progressively deform as it moves out

into the compressible hadron medium. As a result of this deformation, a shock front

could be produced and this would then be followed by a region where the medium

compressed by the shock is rarefied again to an equilibrium value. Given the energies

and velocities, the it might well be that no shock appears or that there is only a

rather weak shock which would damp rapidly. Independently of the fine details of

the mechanism, the overall effect will be that of redistributing the excess energy

and compression which was within the very small region of the disappearing quark

drop. A numerical computation would be required to provide a full description of

this process [23], but it is possible to make a rough estimate of the eventual degree

of dilution of the compressed matter after the disappearance of the phase interface.

For this purpose, consider the sum of the enthalpy contained within a quark

drop of radius Rs ∼ 1/Tc ∼ 1 fm

W ≈ (e+ p)q ×
4

3
πT−3

c =
4

3
π2gqT

4
c ×

4

3
πT−3

c ≈ 136.0 fm−1, (41)

and the surface energy

Σ ≈ σ0T
3
c × 4πT−2

c ≈ 25.1 fm−1. (42)

Taking this to be converted into enthalpy of hadronic matter when the drop disap-

pears, we then have an overdense region with enthalpy density

(e+ p)′ =
(W +Σ)

4/3πT−3
c

≈ 307.5 fm−4, (43)

which will subsequently expand and come into equilibrium with the surrounding

medium in which

(e+ p)h = 4ghπ
2T 4

c /90 ≈ 21.1 fm−4. (44)
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If we make the assumption that the specific entropy of the material which was

within the drop after the disappearance of the phase interface remains essentially

unchanged, we then have (e+ p) ∝ ρ4/3. In this case, compression dilution can be

estimated to be

ρfin
ρ′

=

[

(e+ p)h
(e+ p)′

]3/4

≈
1

7.5
(45)

where ρ
fin

is the final compression factor of the fluid element and ρ′ is its compression

factor when the phase interface disappeared.

VIII. Conclusion

In this paper we have discussed the relativistic hydrodynamics of the very fi-

nal stages of the cosmological quark-hadron phase transition. In particular, we have

studied the evaporation of a single isolated spherical quark drop including the effects

of long range energy and momentum transfer by means of electromagnetically inter-

acting particles. This transfer takes place when the quark drop reaches dimensions

which are comparable with the mean free paths of these particles and can lead to

a significant modification of the hydrodynamical evolution (see [7] for comparison).

For this study, a set of Lagrangian hydrodynamical equations for describing the

evolution of the strongly interacting fluids has been coupled to an equivalent set of

equations describing the hydrodynamics of the fluid of electromagnetically interact-

ing particles. A numerical code has been constructed for integrating the complete

set of equations and results from the computations have been presented.

The evolution of the quark drop starts by following the self-similar solution

which characterizes an isolated spherical evaporating configuration and this be-

haviour is then broken when decoupling of the radiation fluid from the standard

fluids takes place. A particular consequence of the long range energy and momen-

tum transfer is the establishment of an entropy flux away from the quark phase

carried by the long-m.f.p. particles of the radiation fluid. This acts so as to increase

the compression of both phases of the standard fluid in the vicinity on the drop,

producing overall relative increases of two orders of magnitude or more. Thus, even

in the absence of suppression mechanisms operating at the phase interface, contrasts

in the baryon number density of several orders of magnitude are natural products of

a first order quark-hadron phase transition. The hydrodynamical properties of this

process are completely general and similar results have been obtained when explor-

ing the whole parameter space of the problem. In particular, it has also been shown
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that larger compressions (up to seven orders of magnitude) can easily be achieved

if the transparency of the phase interface to the hydrodynamical flux is decreased.

These computations, which are the first simulations of quark drop evaporation

in the presence of radiative transfer, provide useful quantitative information about

the final stages of the transition which can be used in studies of the evolution of

baryon number inhomogeneities [23]. Density peaks of baryon number could be

associated with the production of primordial magnetic fields, generated by the charge

separation across the phase interface, and could possibly affect nucleosynthesis if

produced over a large enough length scale.
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