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ABSTRACT

We present measurements of the angular two-point galaxy correlation function,
w(θ), from the APM Galaxy Survey. The performance of various estimators of
w(θ) is assessed by analyzing simulated galaxy catalogues. We use these tests,
and analytic arguments, to select estimators which are least affected by large-
scale gradients in the galaxy counts correlated with the survey boundaries. An
error analysis of the plate matching procedure in the APM Galaxy Survey shows
that residual plate-to-plate errors do not bias our estimates of w(θ) by more than
∼ 1 × 10−3. A direct comparison between our photometry and external CCD
photometry of over 13, 000 galaxies from the Las Campanas Deep Redshift Survey
shows that the rms error in the APM plate zero points lies in the range 0.04–
0.05 magnitudes, in agreement with our previous estimates. The comparison with
the CCD photometry sets tight limits on any variation of the magnitude scale
with right ascension. We find no evidence for any systematic errors in the survey
correlated with the date of scanning and exposure. We estimate the effects on w(θ)
of atmospheric extinction and obscuration by dust in our Galaxy and conclude that
these are negligible. There is no evidence for any correlations between the errors in
the survey and limiting magnitude except at the faintest magnitudes of the survey,
bJ > 20, where star-galaxy classification begins to break down introducing plate-
to-plate variations in the completeness of the survey. We use our best estimates of
the systematic errors in the survey to calculate corrected estimates of w(θ). Deep
redshift surveys are used to determine the selection function of the APM Galaxy
Survey, i.e. the probability that a galaxy at redshift z is included in the sample at
a given magnitude limit. The selection function is applied in Limber’s equation to
compute how w(θ) scales as a function of limiting magnitude. Our estimates of w(θ)
are in excellent agreement with the scaling relation, providing further evidence that
systematic errors in the APM survey are small. We explicitly remove large-scale
structure by applying filters to the APM galaxy maps and conclude that there
is still strong evidence for more clustering at large scales than predicted by the
standard scale-invariant cold dark matter (CDM) model. We compare the APM
w(θ) and the three dimensional power spectrum derived by inverting w(θ), with
the predictions of scale-invariant CDM models. We show that the observations
require Γ = Ω0h in the range 0.2–0.3 and are incompatible with the value Γ = 0.5
of the standard CDM model.

1 Present address: The Royal Greenwich Observatory, Madingley Road, Cambridge, CB3

0EZ, UK
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1. Introduction

The APM Galaxy Survey is a machine measured survey of over 2 million galaxies in

the southern sky to a magnitude limit bJ = 20.5. It was constructed by scanning 185 UK

Schmidt telescope (UKST) survey plates, covering 4300 square degrees, with the Automatic

Plate Measuring (APM) machine at Cambridge. The construction of the survey and the

star-galaxy separation algorithm have been described in Paper I of this series (Maddox et

al. 1990a). The photometric accuracy and plate matching algorithm have been described

in Paper II (Maddox et al. 1990b).

One of the main aims in constructing the APM Galaxy Survey has been to determine

the two-point galaxy correlation function ξ(r), or equivalently the power spectrum P (k) (see

Baugh and Efstathiou 1993, 1994), at large spatial scales. The two-point spatial correlation

function is the Fourier transform of the power spectrum

ξ(r) =
V

(2π)3

∫

P (k) e−ik.r d3k, (1)

where for a point process of mean density n,

P (k) = 〈|δk|2〉 −
1

nV
, (2)

and δk is the Fourier transform

δk =
1

nV

∑

i

e−ik.ri , (3)

where the sum in equation (3) extends over all points located at positions ri (see Peebles

1980 §41). In equations (1)-(3) we assume that the distribution is periodic in a large box of

volume V . For a Gaussian random field, phases of different Fourier modes are uncorrelated

(ie 〈δkδk′〉 = P (k
¯
)δ(k

¯
− k

¯
′)) and so the two-point correlation function provides a complete

statistical description of the density field. The two-point galaxy correlation function is,

therefore, an especially important measure of large-scale structure, particularly if the galaxy

distribution can be described by a Gaussian random field, as expected in many models of the

origin of structure (e.g. theories of inflation in the early universe, Kolb and Turner 1990).

Even if the fluctuations are non-Gaussian, the two-point correlation function can provide

an important test of theoretical models and is the most easily measured of a hierarchy of

N−point correlation functions (see Peebles 1980 §34-35).

The three dimensional two-point function, ξ(r), can be inferred from the angular two-

point function, w(θ), via Limber’s formula (Limber 1954, equation 31 below). Analyses of
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several samples of galaxies (e.g. Peebles 1974, see also Section 4.1) have shown that at small

angles the angular correlation function is a power law,

w(θ) = Aθ1−γ , (4)

where γ ≈ 1.7, and A depends on the sample depth. In an earlier paper, we presented

measurements of w(θ) from the APM Galaxy Survey (Maddox et al. 1990c) which show

that w(θ) steepens and lies below the extrapolation of the power law (4) at large angles.

At a magnitude limit of bJ = 20, the break occurs at an angle θ ≈ 2◦, corresponding to

a physical scale of 15 h−1Mpc* at the median depth of the survey. However, even though

we observe a break in w(θ), our results provide strong evidence for more clustering at large

scales than predicted by the standard Ω0 = 1 scale-invariant cold dark matter model (see

Efstathiou 1995a for a recent review and Section 5 of this paper).

Measurements of clustering on scales ∼> 10 h−1Mpc are extremely difficult because w(θ)

is small and hence sensitive to non-uniformities in the galaxy catalogue. For example, the

results from the APM Galaxy Survey disagree with Groth and Peebles (1977; hereafter

GP77) determination of w(θ) from the Lick sample (Shane and Wirtanen 1967, Seldner et

al. 1977), which is the largest galaxy catalogue comparable to the APM Galaxy Survey.

GP77 found a much sharper break from the power law on scales θ ∼> 3◦ (see Section 4.2.3).

The APM angular correlation function is in better agreement with that measured from the

Edinburgh-Durham Southern Galaxy Catalogue, a machine measured sample similar to the

APM Survey but covering about one third of the area of sky (Collins et al. 1992, Nichol

& Collins 1993, see Section 4.2.2). It is unfortunate that the results from the machine

measured catalogues and the Lick survey disagree, for it implies that one or more samples

are affected by systematic errors. The uniformity of the Lick catalogue has been a subject of

some controversy (see e.g. Geller et al. 1984, de Lapparent et al. 1986, Groth and Peebles

1986a,b), but because it was constructed by eye, and the information is extremely limited

(consisting of counts of galaxies in 10′ × 10′ cells), only a restricted set of checks can be

applied to test its uniformity. In contrast, the APM Galaxy Survey was designed specifically

to measure w(θ) at large scales and has several important advantages over the Lick survey

that allow more stringent controls of systematic errors:

(a) The APM Galaxy Survey gives positions, magnitudes and profile information for each

image. The photometry on neighbouring plates in the APM Survey is matched by

identifying individual galaxies in the plate overlap regions. In contrast, plates in the

* Throughout this paper h denotes the Hubble constant H0 in units of 100kms−1Mpc−1;

Ω0 is the mean mean mass density of the universe at the present epoch divided by the

critical density of the Einstein de-Sitter model.
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Lick survey are matched by comparing the galaxy counts on overlapping plates, which

are strongly affected by galaxy clustering. The plate matching errors in the APM

Galaxy Survey are consequently smaller than those for the Lick survey.

(b) The magnitudes of individual galaxies in the APM Survey can be compared with CCD

magnitudes to provide checks of the photometric accuracy.

(c) The APM Survey covers a large area of sky and contains over 2 million galaxies. It

can therefore be divided into subsamples to provide empirical estimates of sampling

fluctuations and systematic errors. Although the Lick catalogue contains 1 million

galaxies, only about half of these are at sufficiently high Galactic latitude to be useful

in studies of the galaxy distribution.

(d) The magnitude data in the APM catalogue allow us to apply the scaling test derived

from Limber’s equation (e.g. GP77) to check whether the angular correlation function

scales with limiting magnitude as expected if w(θ) is measuring real structure in the

galaxy distribution.

In addition, the APM Survey contains other data such as surface brightness and po-

sition angles, which enable a variety of other analyses to be carried out, e.g. analyses of

galaxy ellipticities, large-scale alignments etc (Lambas, Maddox and Loveday 1992). Higher

order correlations from the APM Survey are discussed by Gastanaga & Frieman (1994) and

Szapudi et al. (1995). Catalogues of rich clusters of galaxies selected from the APM Survey,

and the spatial distribution of APM clusters, are described in Papers IV and V of this series

(Dalton et al. 1994a, 1995) and by Dalton et al. (1992, 1994b).

In this paper, we present measurements of w(θ) from the APM Galaxy Survey and an

analysis of systematic errors and how these affect w(θ). In Section 2 and the Appendix, we

discuss various estimators for w(θ) which we have tested on simulated galaxy distributions.

We then present measurements of w(θ) from the APM Survey. Section 3 gives a detailed

discussion of systematic errors in the survey. We compare our magnitudes to independent

CCD photometry and address the points raised by Fong et al. (1992) concerning large scale

gradients in the APM survey. We also present estimates of the angular correlation functions

after correcting for systematic errors. In Section 4 we use deep redshift surveys to determine

the distribution in redshift of APM galaxies as a function of limiting magnitude and these

are used in Limber’s equation to test the scaling of w(θ) with depth. We discuss briefly

how our results compare with those from other catalogues and we investigate the effects

of filtering our galaxy maps by subtracting smooth fits to the galaxy distribution. Some

cosmological implications of our results are discussed in Section 5. Our main conclusions

are summarized in Section 6.
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2 Measurements of w(θ)

2.1 Estimators of the correlation function.

Several methods of estimating the angular correlation function from galaxy surveys have

been discussed in the literature, and in Appendix A we describe tests of various estimators

on simulated galaxy catalogues. The results of these tests led us to choose two estimators

to measure w(θ) for the APM Galaxy Survey.

The first of these is defined by the equation

w(θ) =
〈NiNj〉
〈Ni〉 〈Nj〉

− 1, (5)

where Ni is the count of galaxies in cell i and the angle brackets denote averages over pairs of

cells at separation θ. As explained in Appendix A, this estimator is unaffected by first-order

errors caused by density variations correlated with the survey boundaries. In Appendix

A we define an estimator of w(θ) based of the Fourier transform of the two-dimensional

power-spectrum of the survey which has similar statistical properties to the estimator (5)

(see Appendix A, Section A3). However, although the Fourier transform estimator offers

a considerable time saving over equation (5), it does not provide separate inter- and intra-

plate estimates of w(θ), which are useful as a check on systematic errors in the survey

(cf Groth and Peebles 1986a and Section 3.1.2). We have therefore used equation (5) to

calculate the large-angle correlation functions presented in this Section.

The second estimator that we have used is based on a direct count of galaxy pairs.

For this estimator, we count pairs of galaxies on each field taking into account edges and

holes in the survey (see Plate 2 of Paper II) by cross correlating the galaxy distribution

with a catalogue of random points within the same field boundaries. The estimate of w(θ)

is defined by

w(θ) = 2F
DD

DR
− 1, (6)

where DD is the number of distinct galaxy-galaxy pairs with separations in the range

θ ± δθ, DR is the number of galaxy-random pairs, and the density of random points is set

to F times the number of galaxies. The estimator of equation (6) is easy to evaluate and

does not require gridding of the data. It is, however, subject to first order errors in the

galaxy density contrast (Hamilton, 1993a; Appendix A), but this is not a problem because

we use it to estimate w(θ) on small angular scales where the amplitude is high, and we

average over a large number of fields so that first order errors cancel. In fact, over the

range 0.09◦ < θ < 0.9◦ the differences between the w(θ) estimates from equations (5) and
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(6) are found to be negligible. Generalizations of equation (6) that have similar statistical

properties to equation (5) are discussed by Hewett (1982), Hamilton (1993a) and Landy and

Szalay (1993).

We have applied equation (5) to estimate w(θ) over the angular range 0.12◦ < θ <

30◦ from several equal area maps of the galaxy distribution with cell sizes varying from

0.12◦ × 0.12◦ to 0.9◦ × 0.9◦. On smaller angular scales, 0.09◦ < θ < 0.9◦, we apply equation

(5) to cell counts on each Schmidt field. For very small separations, 0.0009◦ < θ < 0.9◦ we

estimate w(θ) from equation (6).

As discussed in the following subsection and in Appendix A, w(θ) is biased low if the

mean density for each Schmidt field is estimated from the number of galaxies within it. This

bias can be eliminated by using all fields to estimate the mean density, even though the pair

counts are computed separately for each field. On scales 0.1◦ < θ < 0.5◦, the mean of these

single plate estimates agrees well with w(θ) measured from the full map (see Section 2.3).

We apply a correction to each estimate of w(θ) to account for the residual contamination

of the galaxy sample by non-galaxy images. Since the large majority of contaminating

images are stars or star-star mergers, it is a good approximation to assume that they are

uncorrelated. There is a ∼ 10% difference between the density of contaminating objects

at the Galactic pole compared to low Galactic latitude (|b| ∼< 40◦), but this gradient has

very little effect on w(θ) (see Section 3.4.3). We thus simply multiply the w(θ) estimates by

1/(1−f)2 where f is the contamination fraction estimated from the visual classifications in

Table 5 of Paper I.

As discussed in Paper I, the APM Galaxy Survey has a high level of completeness.

However, most of the galaxies missing from our survey will be at the extremes of high and

low surface brightness, and so incompleteness may lead to a small error in w(θ) if these

galaxies are clustered differently to normal galaxies. Variations in the completeness from

plate-to-plate will cause an error in w(θ) similar to magnitude matching errors: this small

effect is discussed in Section 3.1.1.

2.2 Integral constraints and single plate measurements of w(θ)

Figure 1 shows the average w(θ) estimated from equation (6) using galaxies in the

magnitude range 17 ≤ bJ ≤ 20.0 within the central 4.64◦ × 4.64◦ area on each of 185

Schmidt plates. In calculating DD in equation (6) we count galaxy pairs only if both

galaxies are on the same plate. The filled circles in Figure 1 show estimates of w(θ) in

which the mean surface density in each single plate estimate is determined from the the

number of galaxies within each field (i.e. rather than using a global estimate of the mean

density derived from the entire survey). This method of estimating w(θ) is therefore similar
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to that applied by other investigators to single Schmidt fields (e.g. Shanks et al. 1980,

Hewett 1982). We use only the centre of each field because the errors in the field corrections

and galaxy classification become larger near the edges (see Papers I and II for quantitative

details).

At angular scales θ < 14′′, corresponding physical separation ∼< 20kpc, the amplitude

of w(θ) decreases with decreasing pair separation. This is because close pairs of galaxies are

often recorded as one object by the APM machine (see Paper I) leading to an underestimate

of w(θ) at small angular separations.

Over the angular range 0.01◦ < θ < 0.1◦, the filled circles in Figure 1 approximately

follow a power law. The results for each plate have been fitted to a power law w(θ) = Aθ1−γ

by least-squares. After correcting for the dilution of clustering caused by the 6% residual

contamination by stellar mergers and misclassifications, the mean and standard deviation

of γ and A averaged over the 185 fields are

γ = 1.72± 0.01

A = 0.023± 0.001

}

for 0.01◦ < θ < 0.1◦.

where the amplitude A is given in units in which θ is in degrees. It is evident that the

filled circles in Figure 1 fall below the extrapolation of a power-law with γ = 1.7 on scales

θ > 0.5◦. However, this is not a real feature of the galaxy distribution. As we will now

demonstrate, estimates of w(θ) from individual Schmidt plates are biased low if the mean

density is determined from the galaxy counts within each field. We can estimate the bias

as follows (see also the Appendix). The net galaxy overdensity on each field is

δ =
N −N

N , (7)

where N is the true mean surface density and N is the surface density measured on each

field. The expectation value of δ is zero and the variance is given by an integral over the

two-point correlation function,

〈δ〉 = 0, (8a)

〈δ2〉 = 1

NΩ
+

1

Ω2

∫ ∫

Ω

w(θ12) dΩ1dΩ2, (8b)

(Peebles 1980 §36), where Ω is the solid angle of the field. If N is used as a measure of the

mean density, the estimate of w(θ) obtained by averaging over many fields, we(θ), will be

biased low by

〈we(θ)〉 ≈ w(θ)− 〈δ2〉, (9)
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We show in Appendix A that the precise form of the bias depends on the particular estimator

that is used to measure w(θ), but equation (9) is a good approximation for all of the

estimators considered in this paper if the angular separation θ is small in comparison to the

size of a survey field.

An equivalent result to equation (9) can be derived by considering the total number of

pairs that are counted on a single plate. If the total number of galaxies on a particular field

is N , the total number of pairs must be N(N − 1). Thus, the estimator we(θ) satisfies a

relation of the form

∫ ∫

Ω

we(θ12) dΩ1dΩ2 ≈ 0, (10)

(GP77) where the integral extends over the area of a single field. The bias in w(θ) (equation

9) thus arises because the estimator is subject to an integral constraint.

We can estimate 〈δ2〉 directly from the variance in field number counts. For galaxies in

the magnitude range 17 ≤ bJ ≤ 20, we find δ
2
= 1.6×10−2 at bJ = 20. The variance caused

by plate matching errors accounts for ≈ 1.6×10−3 (see Paper II and Section 3.1) and so the

variance attributable to real galaxy clustering is 1.4× 10−2. The mean angular correlation

function, after adding this constant is shown by the stars in Figure 1. The amplitude is

increased and the mean slope of w(θ) becomes slightly shallower. The mean parameters of

least squares fits to w(θ) over the angular range 0.01◦ < θ < 0.1◦ are

γ = 1.679± 0.01

A = 0.0282± 0.0012

}

for 0.01◦ < θ < 0.1◦. (11)

As before the amplitude has been corrected to account for the residual stellar contamination.

Adding the constant δ
2
eliminates the sharp break in w(θ) at θ ∼ 0.2◦ and brings the

estimates into good agreement with the results obtained using the global mean to normalize

the estimator of equation (6) (shown by the open circles in Figure 1). This analysis of

bias in estimators of w(θ) from single Schmidt plates agrees with results from Monte Carlo

simulations described in Appendix A. Hewett (1982) has also pointed out that the integral

constraint will introduce an artificially sharp cutoff in estimates of w(θ) from single Schmidt

plates and inferred that there must be significant correlations on pair separations of at least

10 h−1Mpc to explain the observed scatter in single plate estimates of w(θ). Our results

disagree with those of Shanks et al. (1980) and Stevenson et al. (1985) who analyzed

clustering on single UKSTU fields limited at bJ = 20 and concluded that the break in w(θ)

from an power law at θ ≈ 0.3◦ is attributable to a real feature of the galaxy distribution.

In summary, the results of this subsection show that the integral constraint introduces

an artificial cut-off in the estimates of w(θ) determined from single Schmidt fields. The
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bias in w(θ) depends on the variance in the galaxy counts on the scale of a Schmidt plate.

The high photometric accuracy of the APM survey allows us to correct for the integral

constraint bias bringing the single plate estimates of w(θ) into excellent agreement with

those determined by using a global estimate of the mean galaxy surface density.

2.3 Measurements of w(θ) from galaxy density maps.

To estimate w(θ) on angular scales ∼> 0.1◦, we apply equation (5) to maps of the galaxy

surface density. The maps were constructed by counting the number of galaxies in each

0.23◦ × 0.23◦ cell of an equal area projection centred on the South Galactic pole. This

produces a 512 square array covering a 120◦ patch of sky. Cells containing holes in the

survey (areas near bright stars, globular clusters and calibration spots) and those outside

the survey area were flagged and not used in the analysis. Figure 2 shows w(θ) for galaxies

with 17 < bJ < 20 computed from the whole survey area. We have estimated w(θ) from

maps with cell sizes different by factors of 0.5, 2, and 4, from those in the 512 × 512 map

and find essentially perfect agreement between the various estimates.

We have also estimated w(θ) separately for each of four zones containing 45, 45, 46

and 49 plates corresponding roughly to equally spaced strips in right ascension.* The mean

of these four estimates is less sensitive to any large-scale gradient in the survey and the

scatter between the estimates provides a realistic measure of the sampling errors in w(θ).

The solid line in Figures 2a and 2b show w(θ) measured using the full survey area and the

open circles show the mean of w(θ) in each of the four zones, with 1σ error bars computed

from the scatter between the zones. The full area estimate is not significantly different from

the average over the four zones. This demonstrates that gradients in the survey on scales

comparable to the size of a single zone do not significantly affect our determination of w(θ).

The solid points in Figure 2 show the mean of the single plate estimates described in Section

2.2 where we used the global mean surface N to normalize the pair counts. The estimates

of w(θ) from the maps are in excellent agreement with the single plate pair count estimates.

After correcting for the residual contamination by mergers, the mean of least squares

fits of a power law to w(θ) between θ = 0.01◦ and θ = 1◦ in each zone gives

γ = 1.699± 0.032,

A = 0.0284± 0.0029

}

for 0.01◦ < θ < 1◦. (12)

* We also computed w(θ) in four different zones, where we divided the survey in half in

both right ascension and declination. The mean w(θ) and the zone-to-zone scatter from

these zones were found to similar to those for the four zones discussed in the main body of

the text.
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The quoted errors are from the variance in the mean of the four zones. At larger angles

the slope of w(θ) gradually steepens. If we fit a power law between 0.07◦ < θ < 0.9◦, i.e.

similar physical scales as used by GP77, we obtain a slope of −0.734, in agreement with

their value of −0.741± 0.035. The break at ∼ 3◦ is extremely significant given the scatter

between zones. In Figure 2b we plot w(θ) on a linear scale showing that the estimates are

very close to zero (to within ∼ 5× 10−4) for θ ∼> 6◦.

As described in Section 3.1, it is possible to correct these estimates of w(θ) for residual

plate-to-plate errors in magnitude and classification by subtracting the correlation function

of the expected errors. The estimates in Figures 1 and 2 have not been corrected for these

errors, but as we will show in Section 3, we estimate that the errors on w(θ) are ∼< 2× 10−3

at small angles, and decreases rapidly at angles ∼> 1◦. Since this is much smaller than the

amplitude of w(θ) even in the region near the break at ∼ 3◦, we believe that our results

are not significantly affected by errors in the survey. This point is so important for the

interpretation of our results that we devote Section 3 of this paper to a lengthy analysis of

systematic errors in the survey before we present corrected estimates of w(θ).

2.4 Variation of w(θ) with magnitude

The variation of w(θ) as a function of magnitude allows us to check that the angular cor-

relation functions measure intrinsic clustering rather than systematic errors. If photometric

errors and intervening obscuration are negligible, w(θ) is determined by the projection of

the three-dimensional two point correlation function ξ(r) via Limber’s equation (equation

31), and hence w(θ) should obey a scaling relation as the depth of the survey is changed

(Peebles 1980 §50 and Section 4.1.1 equation 33). To test if the correlation function scales

as predicted, we evaluated w(θ) for each of six disjoint magnitude slices between bJ = 17

and 20.5. The magnitude slices are defined using uncalibrated APM magnitudes, and so are

not exactly 0.5 magnitudes wide. The exact magnitude ranges in the calibrated bJ system

are listed in Table 4 (Section 3.5) and in the Figures.

We have limited this analysis to the central 120 plates of our survey which lie at

Galactic latitudes b ∼< −50◦. At such high latitudes no significant errors are introduced by

uncertainties in Galactic absorption or from the increase in the numbers of merged stellar

images at low galactic latitudes (see Sections 3.4.1 and 3.4.3). The results are shown in

Figure 3. Qualitatively, the behaviour is as expected: at brighter magnitudes the amplitude

of w(θ) is higher and the break from a power law occurs at larger angles. In Section 4.1 we

quantify the expected shifts by evaluating Limber’s equation using empirical estimates of

the survey selection function derived from deep redshift surveys.
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3. Estimates of Systematic Errors in w(θ)

In this Section we discuss several sources of systematic error which could in principle

affect the shape of w(θ). Errors in the APM Survey could be caused by:

[1] Variations in the APM scanning procedure.

[2] Variations in plate emulsion sensitivity.

[3] Atmospheric variations.

[4] Galactic obscuration

[5] Intergalactic dust.

[6] Stellar contamination.

Sources 1, 2 and 3 introduce plate dependent variations which should be removed by the

field corrections and plate matching procedure described in Paper II. Sources 3 - 6 could

introduce gradients and features in the galaxy distribution that are continuous across plate

boundaries and so would not be removed by the plate matching algorithm.

In the following subsections we describe various tests which we have applied to check

the effects of these errors. In Section 3.1 we consider the effects of residual errors in the

photometry and galaxy selection by analyzing various models for the errors. In Section 3.2,

we test the photometric accuracy of the survey by comparing the APM photometry with

independent CCD photometry of large numbers of galaxies. We test for errors correlated

with exposure and scanning date in Section 3.3, and for gradients associated with extinction

and stellar contamination in Section 3.4. The dependence of systematic errors with apparent

magnitude is discussed in Section 3.5.

3.1 Models of residual photometric errors and variations in completeness.

Magnitude errors and variations in star-galaxy classification introduce errors in the

observed number of galaxies as a function of position in the survey leading to errors in the

measured correlation function. In most of the following discussion we combine both sources

of error and consider a single overall error in the number of galaxies at each position on the

sky. There are two distinct components to each of the errors: 1) variations across individual

Schmidt plates, which we term ‘field effects’; and 2) differences between one plate and the

next, which we call ‘plate matching errors’.

Several uncontrollable factors cause the sensitivity of a Schmidt plate to vary as a

function of position, and so there are variations in the measured magnitudes as a function

of position over each plate. The shape and amplitude of the variations are different for
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each plate and, as described in Section 2 of Paper II, we correct the magnitudes using a

two-dimensional correction function determined individually for each plate. Although the

corrections precisely remove the errors when averaged over all plates, any individual plate

is likely to have small residual field effects. This means that each edge of a plate may have

systematic errors relative to the plate centre, and relative to the other edges.

The parameters used for star-galaxy separation also show variations across each plate,

and so are subject to similar residual field effects. These errors will introduce variations in

the completeness of the galaxy sample, and also in the contaminating fraction of non-galaxy

images (mainly blended star images). We refer to these errors as galaxy counting errors.

The variations in emulsion, observing conditions and measurement parameters intro-

duce differences in the photometry and completeness of each plate. For both the photometry

and star-galaxy separation we have reduced these plate-to-plate variations by applying cor-

rections to each plate so that the differences between measurements on neighbouring plate

overlaps are minimized. Any errors in the overlap offsets produce plate-to-plate matching

errors which are correlated, and so they propagate across the grid of plates in a random

walk, introducing low-amplitude large-scale correlations in the matched parameters. These

gradients are probably the most difficult source of error to quantify in the APM Survey. A

simple analysis of this propagation of errors was presented in Section 3 of Paper II, and in

Sections 3.1.1 and 3.1.2 below, we describe simulations of more complicated error models.

A direct comparison with external CCD photometry is discussed in Section 3.2, and further

tests to place upper limits on large-scale gradients are discussed in Section 4.2.3.

Without analysing specific error models, we can estimate the effect of correlated residual

errors on measurements of w(θ) by considering the cells estimator of w(θ) defined in equation

(5). The number of galaxies in cell i at magnitude limitm is given by log10(Ni) ∝ am, where

a ∼ 0.45 is the slope of the galaxy number counts (Maddox et.al. 1990d). A magnitude error

δm will thus produce a fractional error in the number of galaxies of δNi/Ni = aδm ln(10) ≈
δm. Any variation in completeness or contamination rate translates directly to a fractional

error in the number of galaxies, δNi/Ni = δc, where δc is the overall error from these two

effects, i.e. the contamination and the completeness. The total fractional error in the galaxy

counts is ei = 1+δm+δc. and will vary between plates and as a function of position within

each plate; by definition the mean value is unity, 〈ei〉 = 1.

Since our matching procedure uses the magnitudes and star-galaxy separation param-

eters of individual objects in the overlap regions, not the galaxy surface density, the errors
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ei are very nearly independent of the galaxy surface density Ni. The estimated angular

correlation function, west, is therefore given by

west =
〈eiNiejNj〉
〈eiNi〉 〈ejNj〉

− 1

=
〈eiej〉 〈NiNj〉

〈ei〉 〈ej〉 〈Ni〉 〈Nj〉
− 1

= (1 + werr)(1 + wtrue)− 1

≈ werr + wtrue. (13)

if w ≪ 1. The effect of errors in the survey is therefore simply to add the correlation function

of the errors to the true galaxy correlation function. In the next section we consider several

models for the combined effects of magnitude and counting errors, and compute the resulting

error correlation function werr.

To determine the amplitude of werr we estimate the size of magnitude and counting

errors from the consistency of measurements in plate overlaps. If the magnitude and counting

errors are uncorrelated, the two amplitudes should be added in quadrature; if they are

perfectly correlated they should be added, and if they are anticorrelated they should be

subtracted. In practice we find that the magnitude errors totally dominate the errors that

propagate through the plate grid.

3.1.1 Uncorrelated overlap errors

In our simplest error model we assume that the error in each overlap is uncorrelated

with those in other overlaps, as in the error model that Groth and Peebles applied in their

analysis of the Lick map (Groth and Peebles 1986b, hereafter GP86). In principle our

analysis applies to both magnitude and counting errors but in practice the counting errors

are negligible, and so for simplicity we refer to magnitudes, and mention counting errors

only where necessary.

We use the definitions and notation given in Paper II unless stated otherwise, and

we begin by summarizing the important quantities. For each plate we define a correction

Ci so that an image with measured magnitude mi has a matched magnitude mo given by

mo = mi −Ci. In the absence of measurement errors, the difference in magnitudes between

galaxies in the overlap between plates i and j is a constant

Tij = mj −mi = Ci − Cj .

In practice, there will be errors on each of these quantities and the plate matching algo-

rithm will converge on estimates of the plate correction factors Ce
i that differ from the true
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correction factors Ci. The mean magnitude difference measured in each overlap region, T e
ij ,

will also differ from the true difference Tij .

If we assume that the errors δTij in the T e
ij are uncorrelated with each other, so that

〈δTijδTik〉 = σ2δjk, (14)

then we showed in Paper II (equation 23) that the variance in the difference between the

T e
ij and the plate correction factors on each overlap is given by

ǫ2 = var(T e
ij + Ce

j − Ce
i ) =

N − 1

N + 1
σ2 ≈ 2

3
σ2. (15)

where N is the mean number of overlaps on each plate.

Using the plate overlaps to calculate the correction factors Ce
i introduces correlations

between the correction factors of different plates (c.f. de Lapparent et al. 1986). The prop-

agation of these errors through a periodic square grid of plates can be analysed analytically

and an expression for 〈δCiδCj(θ)〉, based on this model is given in equation (31) of Paper

II. However, the assumption of a periodic array of plates is not a good representation of

the real plate configuration of the APM survey. We have therefore carried out Monte Carlo

simulations using the real plate configuration as described in Paper II. In these simulations,

a random Gaussian error was generated for each overlap and used to estimate the overlap

offsets in the edge-matching procedure. The resulting correction coefficients are actually

the errors that would be introduced in the plate-correction factors by the errors in the plate

overlaps. The correlation function of errors, werr, is thus given by the correlation function

of the correction coefficients. As shown in Figure 14 of Paper II, the resulting werr has

small oscillations similar to the analytic function at θ ∼< 10◦, but on larger scales the Monte

Carlo results decline smoothly while the analytic function remains oscillatory.

For the APM survey, the variance in overlap residuals measured directly from the

overlaps is ǫ2 = 1.9 × 10−3 (see Paper II). The mean number of overlaps per plate is

approximately N = 5 for the UK Schmidt fields, so equation (15) gives

σ2 = 3.2× 10−3, (16)

ie the rms mean magnitude difference in a plate overlap is 0.057 magnitudes, which corre-

sponds to a 6% fractional error in the galaxy density on a single Schmidt plate.

The corresponding overlap measurements for the ψ classification parameter described

in Paper I, which we use to separate stars and galaxies, give a dispersion of ǫ = 44.5. The

number of galaxies as a function of ψ is well fit by an asymmetrical distribution centred

on ψ = 2166 with dispersions σ1 = 603 and σ2 = 347, (see equation 2 of Paper I for a
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definition of the parameters σ1 and σ2). Our galaxy sample is defined by selecting objects

with ψ > 1000, so the observed dispersion in ψ introduces a dispersion of roughly 0.3% in

galaxy density on a single Schmidt plate. Magnitude errors therefore totally dominate the

propagation of errors in the galaxy counts. Note however, that the galactic gradient in stellar

density will cause a gradient in the contamination rate, independent of the plate-matching

procedure.

Using the magnitude rms overlap residual to normalize the error estimates, the analytic

model predicts that the error correlation function at zero lag is

werr(0) = β2
ii = 0.457σ2 ≈ 1.8× 10−3. (17)

In (17) we use the notation of GP86 where β2
ii denotes the variance in the plate zero points.

At larger scales where the Monte Carlo estimate becomes smooth, werr can be approximated

roughly by an exponential

〈δCiδCj(θ)〉 ≈ werr(θ) ≈ 0.49 σ2exp
(

− θ/θc
)

, θc ≈ 11◦, θ ∼< 50◦. (18)

Over the range 10◦ ∼< θ ∼< 50◦ equation (18) is accurate to within a few percent.

It is possible to check if the model for werr is consistent with the data by computing

the intra-plate and inter-plate estimates of w(θ) (see GP77 and Maddox et al. 1990c).

The intra-plate estimate is derived by counting only galaxy pairs that lie on the same

plate while the inter-plate estimate is derived by counting only galaxy pairs that lie on

neighbouring plates. Since the true correlation function is independent of the choice of

plate boundaries, any difference between the intra-plate and inter-plate estimates should

be due to the difference in the error correlation function*. The error on the intra-plate

correlation function is werr(0), and the error on the inter-plate estimate is approximately

werr(5
◦), since θ = 5◦ corresponds to the distance between neighbouring Schmidt plates. In

the analytic error model

werr(5
◦) ≈ β2

ij = 0.208σ2 ≈ 1.0× 10−3, (19)

where, following the notation of GP86, β2
ij denotes the covariance between the zero point

errors for neighouring plates. Hence the predicted difference between inter- and intra-plate

estimates of w(θ) is approximately β2
ii − β2

ij ≈ 0.8 × 10−3. The offset observed from the

APM measurements is 1.7× 10−3, which suggests that this uncorrelated error model may

* Although this is true in the mean, any single realization of a clustered distribution is

likely to have some structure correlated with plate boundaries, so some offset is expected.

This is discussed more fully in Section 3.5
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be too simplistic. We discuss this test in more detail after considering more complex error

models in the next section.

3.1.2 Correlated overlap errors.

The error model of the previous section assumes that the overlap errors are uncorrelated.

Though this assumption enables an analytic approach to the modeling, it may not be a good

approximation to the APM survey because the overlap errors are dominated by residual field

errors. There are 3000 galaxies in a typical overlap with an rms error of 0.2 magnitudes

per galaxy, so the random magnitude error in a single plate overlap is 0.2/
√
3000 ∼ 0.005

magnitudes. In the absence of residual field effects, this would be the only source of error

in the matching procedure, and so the plate-matching errors would be of similar order.

However, the uncertainties in the corrections for field effects are expected to be of order

0.05 magnitudes, and so will dominate the error in each overlap. This is consistent with the

observed dispersion between magnitudes in overlaps which is 0.06 magnitudes, as described

in the previous section. The field correction errors are very likely to be systematically

correlated for each plate: for example if the amplitude of the applied field correction is too

small for a particular plate, then all of the edges would be low compared to the true value.

We must therefore consider error models which include residual field errors.

Before describing these models, we point out that in the Lick survey, the assumption of

uncorrelated errors is much more likely to be valid. The Lick plates were not hypersensitized

and so the field effects should be similar for all plates. Applying the average field correction

to all plates should therefore be accurate. Furthermore, the Lick plate matching used

galaxy counts in plate overlaps to estimate the different depths of neighbouring plates.

Since the counts on each unmatched plate sample the galaxy distribution to a different

depth, and galaxies are clustered, this introduces an error in the estimated plate depths. In

fact this error is much larger than the residual field errors. Since it depends on the galaxy

distribution, the error is uncorrelated with the plate boundaries, and so it is reasonable to

assume uncorrelated overlap errors for the Lick survey.

To simulate the effects of residual field errors in the APM Survey, we first generate an

error, S(x, y), as a function of position for each plate in the survey. This represents the total

error in galaxy density as a function of position (caused by magnitude and classification

errors), but as discussed in the previous section, the magnitude errors are the dominant

contribution. We consider three functional forms to represent the residual field errors:

[A] Linear mode: S(x, y) = 1 + ax + by where a and b are independent and selected at

random from Gaussian distribution with zero mean and dispersion s.

[B] Quadratic mode: S(x, y) = 1 + ax2 + by2 with a and b selected as in mode A.
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[C] Radial mode: with S(x, y) = 1 + a(x2 + y2), and a selected as in modes A and B.

The error function for each plate was generated independently of the others and each

field was also assigned a random global zero-point error with a distribution similar to that

observed in the survey (Figure 11, Paper II).

For each neighbouring plate pair the difference between the functions at the common

plate edge is used to measure an overlap offset. As for the real data, the iterative plate

matching procedure (Section 3, Paper II) was applied to the model plate grid giving a set of

estimated plate corrections which minimize the overlap residuals. The resulting corrections

are added to the original field errors for each plate to give a map of the overall residual

errors which includes both the original field errors, and any plate-to-plate matching errors

introduced by the overlap errors. Finally we measure the final error correlation function

using equation (5) applied to this error map.

The mean of 100 realizations for each mode are shown in Figures (4a)–(4c). The filled

circles joined by the solid lines show the inter-plate estimates of w(θ) and the open circles

joined by the dotted lines show the intra-plate estimates. In the models for these plots we

chose the dispersion s for each of the modes so that the residual overlap error in the model

is ǫ2 = 1.9 × 10−3 as measured in the real data. Table 1 gives the values for s normalized

so that the plate coordinates x and y are in the range −1 to +1.

Table 1: Offsets and normalizations for different error modes

mode s inter-intra offset werr(0) ∼ β2
ii

A linear 0.07 1.0× 10−3 1.6× 10−3

B quadratic 0.10 1.1× 10−3 1.7× 10−3

C radial 0.22 6.9× 10−3 8.3× 10−3

As seen in Figure 4 the correlation functions of the errors for modes [A] and [B] are

similar to the uncorrelated error model of the previous subsection. This is reasonable because

the overlap errors for modes [A] and [B] are relatively weakly correlated and so the simple

model of Paper II provides an adequate approximation. The intra-inter-plate offsets are

slightly larger than the predictions of the Paper II model, because the intra-plate estimates

include the structure of the error function within each plate. The offsets are slightly smaller

than measured from the real data.
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There are also small differences between behaviour of the inter- and intra-plate estimates

of modes [A] and [B]. For mode [A] the linear gradient in errors across each field produces a

gradient in the intra-plate estimates: the offset is more positive on small scales and negative

at larger scales. For mode [B] the intra-inter-plate offset is more uniformly positive, with a

slight increase between 6◦ and 7◦, where the intra-plate estimate is based on galaxies in the

very corners of the plates and the quadratic error functions have a large dispersion.

For mode [C] the overlap errors are almost perfectly correlated, so if the plate grid

were uniformly rectangular, this mode would produce perfectly consistent plate overlaps,

and there would be no residual dispersion in the overlaps. The real plate grid has overlaps

of differing size and position for each field, and so there are small overlap residuals, but

still this mode very poorly constrained by plate overlaps. For the parameters which match

the observed variance in the overlap residuals of the APM Survey, mode [C] leads to a very

high intra-plate estimate of w(θ), which is inconsistent with the data. In fact, comparing

the observed and predicted inter-intra-plate offset in w(θ) provides a much better limit to

the normalization of this mode of errors. Since the overlap residuals are so small in this

error mode, the errors propagate less strongly through the plate network in comparison to

the other two modes, leading to much smaller errors on scales larger than 7◦. Note that the

small overlap residuals seen in the ψ matching do not constrain possible mode [C] field errors

in the star-galaxy separation. Although the counting errors do not contribute significantly

to errors which propagate through the survey, they may still be significant in terms of radial

field errors.

The intra- and inter-plate measurements from the real data in the magnitude range

17 ≤ bJ ≤ 20 are plotted in Figure 5. The open circles show the intra-plate estimate of w(θ)

and the filled circles the inter-plate estimate of w(θ). In each case we show the mean w(θ)

from the four zones as described Section 2.3, and plot 1σ error bars from the scatter between

the four zones. In the range 1.5◦ < θ < 4◦, where the errors on both estimates are relatively

small we find a mean offset wintra−winter = 1.7±0.7×10−3. The size of the offset is similar

to that expected from modes [A] and [B], but much smaller than mode [C]. In principle, we

could reproduce the shape of the observed offset using some linear combination of the three

modes, but the large uncertainties in the observations would make such a decomposition

unreliable.

We have estimated the uncertainty in the observed offset from the dispersion between

the four zones, as quoted above and plotted as error bars in Figure 5. This suggests that

the wintra − winter is positive at only the one sigma level. The large scatter in the offsets

measured in the different zones may seem surprising, but is in fact consistent with the scatter

expected from ‘cosmic’ variance. We have tested this by computing inter- and intra- plate
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estimates of w(θ) for several hundred simulations of clustered distributions using the Soneira-

Peebles (1978) technique described in Appendix A1. For each realization, we imposed an

artificial plate grid to calculate intra- and inter-plate estimates of w(θ). No errors were

added to the simulated distribution, and the grid was used only to decide which pairs of

cells to count for the intra-plate estimates and which for the inter-plate estimates. The

rms scatter in the inter- intra-plate angular correlations was found to be 1× 10−3, in good

agreement with the observed scatter between the 4 zones of the APM survey. Therefore

the observed value wintra − winter = 1.7× 10−3 is only marginally significant evidence for

errors in the APM measurements. Nevertheless we can use the measurement to limit the

amplitude of mode [C] errors to be ∼< 2× 10−3 at zero lag.

In summary, the observed overlap residuals provide strong constraints on errors of the

form [A] or [B], so that the zero-lag amplitude must be 1.7 × 10−3 ∼< β2
ii ∼< 3 × 10−3,

corresponding to a magnitude error of between 0.041 and 0.054 magnitudes. The observed

inter-intra-plate offset limits mode [C] errors to to have an amplitude ∼< 2×10−3 at θ ∼< 0.5◦

Including all modes [A]-[C], these constraints limit the error correlation function to be

werr ∼< 6× 10−4 on angular scales θ ∼> 5◦.

3.2 Comparison of APM photometry with CCD magnitudes

Two methods of measuring correlated errors in the APM photometry were analyzed in

detail in Paper II:

(a) The covariance of residuals between the matched magnitudes and 41 CCD sequences

distributed over the survey. This directly measures the contribution to w(θ) from

gradients in the magnitude matching and indicates that werr ∼< 10−3 (see Figure 24

Paper II).

(b) The covariance of the estimated plate zero-points (see Figure 16 of Paper II). Assuming

that the true plate zero points Ci are uncorrelated, correlations between the estimated

plate zero points Ce
i provide a measure of correlated plate-matching errors. As described

in Paper II, the correlation function of the estimated plate zero points sets a limit of

∼< 10−3 on the error in w(θ) arising from large-scale gradients in the survey.

Fong et al. (1992, hereafter F92) have argued that some of the signal in our estimates

of w(θ) from the APM Survey might be caused by large-scale gradients which we have failed

to detect in these and other tests. Tests such as (b) are indirect and it is possible, though

extremely unlikely, that the true plate zero points are anticorrelated with the estimated

plate zero points to a high precision thus masking gradients in the survey. A direct test, i.e.

in which independent photometry is compared with that of the APM Survey, is clearly the

most convincing way of checking the uniformity of the APM magnitudes. Recently we have
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been able to make such a comparison using CCD magnitudes of 13570 galaxies measured

by Shectman et al. (1992, 1995). This is described in Section 3.2.1. We postpone a more

detailed discussion of Fong et al. ’s criticisms until Section 3.2.2.

3.2.1 Comparison of Las Campanas CCD and APM magnitudes

The CCD Photometry used in this Section is part of the Las Campanas Deep Redshift

Survey (LCDRS) described by Schectman et al. (1992). The CCD photometry is in the R

band and was obtained from drift scans with the Las Campanas 1-metre Swope telescope.

The scanned areas that have been kindly made available to us consist of a number of

“bricks” of area 1.5◦ × 3.0◦ in three declination strips running along the entire width of

the APM survey, as shown in Figure 6. We have correlated the positions of APM galaxies

with the LCDRS images and computed the mean magnitude difference ∆m = bJ −mCCD

as a function of UKSTU field. The CCD magnitudes are limited to mCCD ∼< 18, and the

mean colour difference is 〈∆m〉 = 1.251. Because of the large wavelength difference of the

passbands in the two surveys, the rms dispersion of ∆m about the mean is large and is equal

to 0.45 magnitudes. Fortunately, there are a large number of galaxies with CCD magnitudes

on most of the UKSTU fields and so the net scatter on the transforms arising from colour

differences is small.

Table 2 summarizes the results of the comparison of the APM and LCDRS photometry.

The second column of the Table lists the UKSTU field number and the third column gives the

number of galaxies with CCD magnitudes in the LCDRS survey matched to APM galaxies

in the field. Columns 4-9 list the mean right ascension and declination (equinox 1990.5) for

the matched galaxies. Column 10 gives the mean magnitude difference δm = ∆m − 〈∆m〉
and column 11 gives the rms dispersion about the mean for a single galaxy σm. The error

on δm is thus σm/
√
Ng. We analyze only those UKSTU fields with more than 100 galaxies

from the LCDRS CCD frames; there are a few fields with a smaller number of galaxies, but

the uncertainties in δm for these are dominated by the dispersion in the galaxy colours.

From the entries in Table 2, we find

σ(δm) = 0.058, (20a)

σ(m) = 0.028, (20b)

where σ(m) is the contribution to the variance from scatter in the individual magnitudes

on each field,

σ2(m) =
1

Nf

Nf
∑

i

σ2
m(i)/Ng(i), (21)
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Table 2: Las Campanas CCD-APM magnitude residuals

UKSTU Ng α† δ† δm σm

1 236 141 21 42 50 −48 6 36 −0.001 0.724

2 237 379 21 51 28 −48 9 35 0.012 0.500

3 241 284 23 59 24 −43 51 36 −0.050 0.488

4 242 198 0 28 37 −45 1 12 −0.017 0.555

5 245 312 1 50 55 −44 37 11 0.043 0.399

6 246 242 2 23 40 −44 28 47 −0.173 0.446

7 247 185 2 43 45 −43 31 47 0.022 0.352

8 248 457 3 13 50 −44 47 24 0.004 0.340

9 249 538 3 48 23 −44 50 24 −0.135 0.431

10 251 155 4 32 38 −45 10 48 0.007 0.407

11 288 114 21 50 43 −47 22 48 0.071 0.462

12 290 245 23 2 52 −44 57 0 0.094 0.396

13 291 221 23 14 23 −44 34 48 0.030 0.534

14 293 887 23 59 25 −40 34 48 −0.020 0.450

15 294 1036 0 26 3 −39 39 35 0.012 0.444

16 295 343 0 53 50 −40 49 48 −0.065 0.442

17 296 621 1 15 40 −39 54 0 0.036 0.442

18 297 366 1 46 11 −39 35 24 −0.031 0.448

19 298 273 2 5 50 −41 29 24 0.028 0.521

20 299 674 2 36 14 −40 16 12 0.027 0.447

21 300 747 3 3 19 −39 47 59 0.017 0.416

22 301 476 3 28 12 −41 40 48 −0.051 0.431

23 302 606 3 48 23 −38 58 12 −0.075 0.492

24 303 307 4 26 12 −38 53 23 0.053 0.486

25 342 386 21 7 16 −38 59 24 −0.025 0.517

26 343 279 21 45 50 −39 2 59 0.033 0.512

27 345 724 22 29 38 −38 58 12 −0.049 0.458

28 346 285 23 5 43 −39 3 36 0.093 0.414

29 347 345 23 20 40 −40 33 36 0.037 0.446

30 348 285 23 43 37 −38 57 35 0.049 0.428

31 359 199 4 5 59 −35 57 0 0.015 0.448

† Equinox 1990.5
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and Nf is the number of fields. If errors in the CCD zero points can be neglected, the rms

error in the zero point of an APM field is

σAPM = (σ2(δm)− σ2(m))1/2 = 0.051. (22)

The quantity σAPM is the square root of β2
ii defined in equation (17), which we have esti-

mated to be between 0.041 and 0.054 in Section 3.1.

Figure 7 shows the residuals δm plotted as a function of right ascension. The Figure

shows that the residuals are uncorrelated with right ascension; there is no evidence for any

east-west gradient in the APM magnitude system. Two fields, 246 and 249 are outliers in

Figure 7 and have residuals of −0.173 and −0.135 respectively, showing that the distribution

of the magnitude errors is non-Gaussian. We have checked whether these fields show any

peculiarities that might account for such large magnitude errors. Field 249 contains one

of our calibration sequences (see Table 3), and the residual between the APM and CCD

magnitudes is only 0.037, showing no evidence of poor matching. The plate correction

factors δCe applied to these fields (0.12 and 0.11 for 246 and 249) are not unusual when

compared to the distribution of APM plate correction factors, which is well approximated

by a Gaussian, with rms 〈(δCe)2〉1/2 = 0.178 (cf Figure 11 of Paper II). The fluctuations

in the galaxy surface density on each field, δn/n, to a magnitude limit of bJ = 20 are plotted

against the zero point residuals δm in Figure 8. The surface density fluctuations on fields

246 and 249 are positive and equal to δn/n = 0.148 and 0.091 respectively, compared to

the rms over all 185 plates of 0.143. The surface densities on these plates are thus typical

of the rest of the survey and provide no firm evidence of large zero point errors. Another

possible cause of these outlying points might be zero point errors in the CCD magnitudes;

for example, the residual for field 246 would not look so improbable if the CCD zero point

were in error by ∼ 0.05 magnitudes.

It is therefore reasonable to exclude field 246 from the analysis giving

σ(δm) = 0.050, (23a)

σ(m) = 0.028, (23b)

σAPM = 0.041, (minus field 246). (23c)

We conclude that the dispersion in the APM plate zero points lies in the range 0.041 ∼<
σAPM ∼< 0.051 and that the lower value is probably more appropriate. This estimate is in

excellent agreement with the limits 0.041 ∼< σAPM ∼< 0.054 determined from our analysis of

of errors in Section 3.1.
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In Figure 9, we plot the correlation function for the LCDRS CCD-APM residuals,

〈δmiδmj〉 − σ2(m)δ(θ) (24)

and the error bars are computed on the assumption that the δmi are uncorrelated,

var
[

〈δmiδmj〉
]

=
σ2(δm)

Npairs
(25)

where Npairs is the number of distinct field pairs used in the bin centred on angle θ. The

two sets of points show the correlation functions with and without field 246, but apart from

the small difference at zero lag, the exclusion of this field causes no significant change to the

correlation function.

The solid line plotted in the figure shows the correlation function for the error model

[A] in Section 3.1 normalized to be 1.7×10−3 at zero lag, as required to match the observed

plate overlap residuals ǫ2 = 2×10−3 (see Section 3.1). This error mode produces the largest

error correlation function on large scales, and so is the worst case for our measurements. For

all of our error models, the correlation function of the magnitude errors should be ∼< 10−3

on scales θ ∼> 2◦, and this is compatible with the absence of any large scale correlations in

the CCD-APM residuals. Figure 9 can be compared to similar figures plotted in Paper II

showing the covariance of the zero-point correction factors 〈Ce
i C

e
j 〉 (Figure 16 of Paper II)

and the correlation function of the residuals between our own CCD zero points and APM

magnitudes (Figure 24 of Paper II). In all cases, these correlation functions are consistent

with zero to an accuracy of ∼< 1× 10−3 at θ > 4◦.

In summary, the comparison between the LCDRS and APM magnitudes shows that the

rms error in APM plate zero-points is 0.041 ∼< σAPM ∼< 0.051, and that the resulting error

in w(θ) is less than 1 × 10−3 at θ > 4◦. These estimates are in excellent agreement with

the limits between 0.041 ∼< σAPM ∼< 0.054 and the error correlation functions determined in

Section 3.1.

3.2.2 Comparison of APM CCD calibrations and APM magnitudes

In Paper II we presented a comparison of APM magnitudes with CCD magnitudes that

we determined from observations with the 1m telescope at the South African Astronomical

Observatory.

Recently, Fong et al. (hereafter F92) have used our CCD sequences to argue that we

have underestimated the errors in the APM magnitudes and that the magnitude errors

correlate on large-scales leading to a roughly linear gradient in the magnitude scale with

right ascension.
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From the APM and CCD magnitudes, we follow F92 and compute the statistics

σ2
B =

k
∑

i=1

ni
(ci − c)2

n(k − 1)
, (26a)

σ2
W =

k
∑

i=1

ni
∑

j=1

(cij − ci)
2

n(N − k)
, (26b)

where

cij = (mAPM )ij + (bJ )ij/1.097, (27a)

ci =

ni
∑

j=1

cij
ni
, c =

1

N

k
∑

i=1

ni
∑

j=1

cij , (27b)

n =
N

k
, N =

k
∑

i=1

ni, (27c)

and there are ni galaxies in each of k sequences. The factor of 1.097 in equation (27a)

takes into account the small deviation from unity of the slope in the relation between APM

magnitudes and CCD bJ magnitudes (see Paper I, note that the APM magnitudes before

conversion to the bJ system are defined to be negative, hence the plus sign in equation 27a).

The excess variance caused by plate matching errors is

σ2
APM = σ2

B − σ2
W . (28)

These statistics are almost identical to the statistics used in Section 3.2.1 to measure the

excess variance from the LCDRS CCD and APM photometry, differing only in the weighting

given to sequences containing different numbers of galaxies. Calculating these statistics to

the sequences listed in Table 3 of Paper II, we find

σB = 0.1167, (29a)

σW = 0.0857, (29b)

σAPM = 0.079. (29c)

The estimate of σAPM derived here is slightly smaller than the value 0.084 found by F92.

We have combined the multiple sequences in fields 344 and 530 in computing these numbers.

The residuals ci − c and the scatter for each sequence are given in Table 3.

As discussed in Paper II, the residual for the sequence on field 152 is −0.363, differing

from the mean by more than three standard deviations. Excluding field 152, we find

σB = 0.1055, (30a)

σW = 0.0849, (30b)

σAPM = 0.063 (minus field 152). (30c)
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Table 3: APM CCD-APM magnitude residuals

UKSTU N

g

� � (c

i

� c) �

m

1 53 7 0 8 5 �67 52 4 0:021 0:087

2 108 7 23 48 14 �65 41 56 0:077 0:115

3 110 6 23 56 1 �66 51 50 0:160 0:051

4 113 4 0 0 14 �61 23 45 �0:012 0:141

5 145 8 23 48 10 �62 37 4 0:006 0:114

6 147 9 23 56 2 �61 52 40 �0:003 0:200

7 152 5 0 4 8 �52 52 26 �0:367 0:260

8 193 8 23 56 13 �47 57 10 �0:068 0:141

9 195 6 0 0 15 �50 0 53 �0:072 0:256

10 199 4 0 8 14 �52 8 31 �0:221 0:208

11 235 7 23 44 15 �50 2 5 0:009 0:195

12 237 10 23 52 2 �52 0 57 0:145 0:174

13 244 9 0 4 5 �44 44 27 �0:192 0:180

14 249 7 0 12 9 �45 19 33 0:037 0:256

15 287 12 23 48 9 �47 17 41 0:073 0:216

16 302 6 0 12 11 �41 22 22 �0:012 0:173

17 304 4 0 16 11 �38 3 36 �0:081 0:113

18 342 8 23 48 0 �41 27 35 �0:063 0:207

19 344 8 23 52 1 �39 14 6 0:046 0:103

20 344 9 23 52 4 �39 59 56 �0:061 0:140

21 347 7 23 56 6 �39 30 39 0:003 0:247

22 349 6 23 56 14 �34 42 50 0:037 0:269

23 355 4 0 8 7 �36 26 38 0:031 0:127

24 401 8 23 44 15 �36 18 32 0:195 0:075

25 403 9 23 48 10 �34 15 18 0:123 0:231

26 405 7 23 52 2 �36 55 33 �0:005 0:155

27 407 6 23 56 3 �33 35 42 �0:164 0:186

28 412 4 0 4 5 �30 15 7 �0:137 0:016

29 418 8 0 12 8 �29 8 16 �0:174 0:242

30 467 4 23 52 4 �29 19 4 �0:100 0:413

31 469 5 23 52 13 �29 42 57 0:179 0:152

32 471 5 23 56 12 �30 26 2 0:036 0:221

33 477 8 0 8 0 �27 3 43 �0:068 0:242

34 530 5 23 48 3 �23 12 32 0:189 0:342

35 530 5 23 48 5 �27 25 8 0:122 0:494

36 533 6 23 52 4 �26 49 33 �0:023 0:272

37 535 6 23 56 4 �26 21 7 0:129 0:153

38 550 5 0 16 1 �17 28 47 �0:099 0:084

39 599 7 23 48 7 �18 16 1 0:021 0:189

40 603 4 23 52 12 �17 46 12 0:249 0:230

41 605 4 23 56 6 �22 22 4 0:135 0:236

Notes: The second column gives the UKSTU �eld number in which each CCD sequence is located. The

third column gives the number of galaxies in each sequence. The next six columns give the right ascenscion

and declination of the CCD centres (epoch 1950). The tenth column given the mean di�erence between the

CCD and APM magnitudes as de�ned in equations (27). The �nal column gives the rms uctuation in the

magnitude di�erences (c

ij

) for each sequence.
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F92 use numbers similar to those in equations (29) to argue that we have underestimated

the errors in the APM zero points, concluding that the error is closer to 0.08 magnitudes

rather than the value 0.04–0.05 estimated in Paper II and Sections 3.1 and 3.2.1 of this

paper. However, this is extremely unlikely for the following reasons:

[1] There can be little doubt that the CCD photometry in field 152 is in error because

the galaxy number density on the plate is underdense by 11%, whereas if the APM

magnitudes in this field were in error by 0.36 magnitudes, we would expect the galaxy

number density in this field to be high by ≈ 40%. Consistency between the CCD

zero point on this field and the observed number counts would thus require that field

152 is underdense by more than 50%, i.e. by about 3.5 standard deviations, which is

implausible. Figure 10 shows the magnitude residuals plotted against fluctuations in

the galaxy surface density to a magnitude limit bJ = 20 in each APM field. There is

no trend between the magnitude residuals and the galaxy density.

[2] The errors on the zero point of each individual sequence are large because the

number of galaxies are small. The rms deviation of the APM-CCD and APM

magnitudes is σm = 0.24, i.e. about half the dispersion measured in the previous

section for the LCDRS and APM magnitudes. The smaller dispersion between the

APM CCD and APM magnitudes arises because the APM CCD sequences were taken

in the B and V passbands. The CCD magnitudes were transformed to the bJ passband

via a colour equation (equation 33 of Paper II) and so the dispersion caused by the

mismatch between the CCD and APM passbands is much smaller that for the R-band

LCDRS photometry. However, whereas there are typically 400 galaxies in each LCDRS-

APM sequence, there are only ≈ 7 in the APM CCD sequences. The accuracy with

which we can determine σAPM from the APM calibrations is therefore relatively poor.

Figure 11 shows the distributions of 10000 Monte Carlo computations in which we have

generated 39 sequences with the same number of galaxies per sequence as listed in

Table 4. Each magnitude has a Gaussian random error of 0.22 magnitudes. The solid

and dotted histograms show the distribution of σAPM measured from the statistics

assuming that the zero point errors are Gaussian distributed with dispersion 0.045 and

0.080 magnitudes respectively. These Monte Carlo calculations show that a measured

value of σAPM = 0.063 (i.e. the value determined excluding field 152) occurs with a

probability of about 24% if σAPM = 0.045, and so is perfectly reasonable.

[3] If we include field F152, then the measured value of σAPM = 0.079 excludes a true

value of σAPM = 0.045 at about the 93% confidence level. However, we have shown that

the outlying CCD sequence in field 152 must be an error because the galaxy counts in

this field are close to the mean value for the whole survey (Figure 10). Furthermore, high

values of σAPM are inconsistent with the results from the LCDRS CCD sequences. For
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example, if the true value of σAPM = 0.080, the probability of measuring σAPM ≤ 0.051

from the LCDRS sequences is less than 0.64%. Fong et al. ’s assertion that σAPM ≈ 0.08

can thus be excluded at a very high confidence level.

[4] Some of the scatter in the comparison with APM-CCD and APM magnitudes might

be caused by systematic errors in converting B and V magnitudes to the bJ system

(see Paper II). If we exclude galaxies with very blue colours, B − V ≥ 1.25, then we

find σAPM = 0.063 if field 152 is included and σAPM = 0.043 if field 152 is excluded.

F92 also point out that the APM CCD sequences indicate a large-scale gradient cor-

related with right ascension. We plot the magnitude residuals against α in Figure 12 and

in agreement with F92 we find some indications for a large-scale gradient in the magnitude

residuals. However, the error bars are large and so the evidence for a linear gradient is of

marginal statistical significance. We make the following remarks concerning Figure 12:

[1] Even if we accept that the gradient in Figure 12 is caused by large-scale correlated

errors in the APM magnitudes, the correlation function for these residuals (Figure 24

in Paper II) has a low amplitude and would cause very little change to our estimates

of w(θ).

[2] The comparison of APM with LCDRS photometry as a function of right ascension

(Figure 7) shows no evidence for a large-scale gradient in the APM magnitude residuals.

If there is a large-scale gradient in the APM photometry, it is evidently not a simple

gradient in right ascension.

[3] The lower panel in Figure 12 shows fluctuations in the mean galaxy surface density

to bJ = 20 plotted as a function of right ascension for the plates containing APM

CCD fields (open circles) and for all 185 fields (filled circles). In each case, there is

no evidence of a gradient in the galaxy counts. In their discussion of gradients, F92

consistently ignored the important point that our estimates of w(θ) are derived from

the galaxy counts. It is evidently incorrect to infer that magnitude errors introduce

errors in w(θ) via large-scale gradients in the galaxy counts if, in fact, there are no such

large-scale gradients in the counts.

[4] The absence of gradient in the galaxy counts could be caused by an unlikely com-

pensation between systematic variations in magnitude and star galaxy classification.

Large-scale gradients caused by classification errors are discussed in more detail in

Section 3.5.

3.3 Tests for systematic errors correlated with scan and exposure dates

3.3.1 Scan dates
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First we consider the plate scanning process. The best check for errors in this step is

simply to scan the same plate more than once and compare the image parameters measured

from each scan. For a few plates we compared scans made at different times during the survey

and these showed no evidence for significant variations in the measured image parameters.

Such a comparison is impractical for more than a few fields, but we have tested for systematic

trends in all fields by producing a scatter plot of galaxy density for each Schmidt plate in

order of APM scan. As shown in Figure 13, the galaxy density shows no systematic trend

with scan date.

Furthermore, we can check directly that the scanning date has no effect on the w(θ)

measurements by evaluating w(θ) separately for plate pairs with a scan interval < 1 year

and > 1 year. The resulting estimates, together with the total w(θ) are shown in Figure 14.

The difference between the overall estimate (solid line) and the other estimates (dotted and

dashed lines), is ∼ 10−3. From our lengthy discussion in Sections 3.1 and 3.2, we expect

to see random errors of order 10−3, and so this difference is not statistically significant.

We also evaluated w(θ) after simply discarding plates scanned during some periods. This

produced virtually no change in w(θ). Thus it is unlikely that APM scan variations have

seriously biased our correlation functions.

3.3.2 Exposure dates

Other possible sources of plate-to-plate scatter include variations in emulsion sensitivity

and observing conditions. These would show up as changes in the detection efficiency as

a function of the exposure date of each plate. Figure 15 shows the galaxy surface density

on each plate plotted against its exposure date; no significant trend is seen showing that

there is no evidence for any long-term temporal dependence in the completeness of the APM

Survey.

The clustering of the galaxy distribution introduces a scatter of ≈ 11% in the number

of galaxies per plate, so we we must average over many plates to test for variations with

smaller amplitude. An average of roughly 20 plates per year were taken for the survey, and

so it is impossible to check directly for ∼< 3% variations over time-scales less than about

a year. However, short term variations can be excluded as a significant source of error on

scales 5◦ − 10◦ by considering the distribution of exposure dates across the sky as plotted

in Figure 17 of Paper II. Only 54 out of the 505 pairs of neighbouring plates were exposed

within a month of each other compared to 36 expected for a random distribution. The rms

of the unmatched plate zero points is only 0.2 magnitudes, so in the worst case, where the

18 excess plate pairs have perfectly correlated errors of 0.2 magnitudes, the error in w(θ)

would be only (18/505)× 0.22 ∼ 1.4× 10−3.

3.4 Plate-independent Errors
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Obscuration by galactic and intergalactic dust, variable contamination by stellar im-

ages and atmospheric absorption can introduce errors in the survey which would continue

smoothly across plate boundaries. Such errors would not be corrected by the plate-matching

procedure, and would not show up in the tests carried out in the previous sections. In this

subsection we present tests that show none of the effects significantly bias our measurements

of w(θ).

3.4.1 Galactic Extinction

Extinction by dust in our Galaxy introduces a gradient in galaxy density with Galactic

latitude, and the patchiness of the obscuration can produce spurious clustering on smaller

scales. The extinction can be estimated from the 100 micron emission as mapped by the

IRAS satellite. Assuming that all the dust is at the same temperature, the thermal emission

will trace the column density of dust in any particular direction, and hence it is possible

to predict the extinction at visual wavelengths. This has been studied by Rowan-Robinson

et al (1991), who estimate a constant to convert from 100 micron surface brightness to an

extinction value, AV = 0.06I100.

In our equatorial survey covering the sky with 22hr < α < 4hrs and −17.5◦ < δ <

+2.5◦, the extinction is high enough that we can see an anti-correlation between the surface

density of galaxies and I100 if no correction is applied. Applying magnitude corrections

from the IRAS map removes the overall correlation between the galaxy density and I100,

but inspection of the corrected galaxy maps reveals that there are several small patches of

high I100 emission which are still underdense in galaxies. It is probable that these patches

correspond to clouds of dust that are colder than the mean dust temperature, leading to

a higher extinction per unit 100 micron flux. In the region with δ < −17.5◦ the predicted

extinction varies by less than 0.05 magnitudes, and there are none of these anomalous

patches, so the simple single temperature model should be accurate.

The points in Figure 16 show the correlation function of galaxies with magnitude 17 <

b′J < 20 where b′J is the magnitudes after correcting for obscuration using the I100 estimate.

The solid line plotted in Figure 16 is the same as in Figure 2a, and it can be seen that the

changes introduced by the correction are very small.

We have estimated the covariance function of the obscuration by making a map of the

predicted extinction over the area that we use for our correlation function estimates. We

then calculated wobsc =< AiAj >, where Ai is the mean obscuration in cell i of the map.

This is plotted in Figure 17, and it corresponds to the error introduced in the observed

galaxy correlation function by the obscuration. It can be seen that the effect of Galactic

extinction is less than 10−3 on all angular scales.
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3.4.2 Atmospheric Extinction

The UK Schmidt Telescope is situated at latitude −31◦ and the southernmost plates

in the survey are centred at −70◦. The survey plates were exposed as they cross the

meridian, so the airmass for the most southerly plates is 1.28. Using AV = 0.11sec(z), AB =

0.27sec(z) and BJ = B − 0.28(B − V ), the predicted maximum extinction is only ∼ 0.06

magnitudes relative to the zenith. In fact all but 13 out of the 185 plates are centred at

δ ≥ −60◦ and thus have an airmass ≤ 1.14, so the atmospheric extinction for most fields is

smaller than 0.02 magnitudes. The variation in galaxy density introduced by this effect is

smaller than the variations caused by real structure in the galaxy distribution. This can be

seen in Figure 18 which shows galaxy density as a function of δ before and after correcting

the magnitudes for atmospheric extinction.

3.4.3 Stellar Contamination Gradient

The increase in the number of stars towards the Galactic plane leads to a gradient in the

number of blended stellar images which contaminate the galaxy sample. After applying the

extinction corrections described above, this Galactic gradient is seen as an apparent increase

in galaxy density towards lower latitudes. In Figure 19 we plot the apparent surface density

of galaxies as a function Galactic latitude, b, and this shows that the change in mean

density from the Galactic pole to |b| = 40◦ is 10%. This variation is consistent with our

visual classification checks at different Galactic latitudes, which showed the contamination

is ∼ 5% near the pole, and ∼ 15% at |b| = 40◦. The change is not a simple linear gradient:

for |b| ∼> 50 the density is essentially constant, but there is a significant rise in the density

for 40 < |b| < 50. This reflects the rather sharp increase in stellar density as we start to

look through the Galactic bulge. In the area of sky used for our best correlation function

estimates (|b| ∼> 50◦), there is almost no gradient, even with no further correction.

The surface density of contaminating stellar blends, Nblend, is approximately propor-

tional to the square of the density of stars, Nstars. We can therefore use a map of stellar

density to estimate the number of contaminating images, and so calculate a correction to

the equivalent galaxy map. We determine the relation between the Nblend and Nstar em-

pirically by considering the mean surface density of “galaxies + contaminating blends”,

Ntot = Ngal +Nblend as a function of Nstars. Since there should be no correlation between

the number stars and the number of true galaxies, any correlation must be due to con-

taminating images. The scatter plot of the apparent number of galaxies (Ntot) against the

number of stars is shown in Figure 20. To produce this plot we created 512×512 pixel maps

of the number of galaxies and the number of stars in 0.23◦× 0.23◦ cells, using an equal area

projection centred on the South Galactic Pole. The large scatter in the number of galaxies

per cell is caused by the clustering of the galaxy distribution. The dashed line in the figure
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shows the mean galaxy density as a function of stellar density, and as expected there is an

increase in Ntot at higher values of Nstar. The solid line in the figure is a quadratic fit to

the mean of Ntot as a function of Nstar. We use this fit to estimate the change in Nblend as a

function of Nstar, and by subtracting this from the raw galaxy map we produce a corrected

galaxy map. Figure 21 shows the corrected density of galaxies as a function of Galactic

latitude, and there is no longer any significant gradient.

3.4.4 The overall effect of extinction and gradient corrections.

Figure 22 shows the angular correlation function of the final map of galaxies with 17 <

bJ < 20.0, corrected for mean atmospheric and galactic extinction, and the contamination by

blended stars. It is almost indistinguishable from the correlation function of the uncorrected

galaxy map, which is shown as the solid line in the figure. This is not surprising, because

the main effect of both extinction and contaminating images, is to introduce a gradient in

number of galaxies as a function of galactic latitude. Since the gradients are of opposite

sign and nearly equal amplitude they almost exactly cancel.

These effects are very small, and the uncertainty in the overall correction is as large

as the correction itself. Therefore we feel that the accuracy of the corrected w(θ) estimate

is not significantly better then the uncorrected estimate. To keep our analysis as simple as

possible we decided to exclude the low latitude part of the survey where these effects may be

significant. For the 120 high latitude fields used in our best w(θ) estimates, the corrections

are completely negligible.

3.5 Magnitude dependent errors

The discussion of errors in the previous sections are based mainly on the galaxies to a

limit of bJ = 20.0, but since we also measure clustering as a function of magnitude, we have

investigated magnitude-dependent errors. Possible sources of magnitude-dependent error

include contamination by merged stars, incompleteness of the galaxy sample, and emulsion

saturation.

Table 4 shows various estimates of the plate-matching errors, measured for each half-

magnitude slice. The variance of the overlap residuals ǫ2 and the inter-intra-plate offset are

model independent ways to quantify the matching errors. The values of σ2, β2
ii and β

2
ij are

derived quantities dependent on assumptions concerning the propagation of errors across

the plate network. In Table 4 we we have used the simple analytic model of equations (17)

and (19). The inter-intra-plate offset gives an estimate of errors that is independent of the
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Table 4: Magnitude dependence of photometric errors

magnitude range ǫ2 σ2 β2
ii β2

ij 〈wintra − winter〉

17.1 – 17.7 0.92× 10−3 1.5× 10−3 0.70× 10−3 0.32× 10−3 7.5× 10−3

17.7 – 18.3 1.40× 10−3 2.3× 10−3 1.07× 10−3 0.49× 10−3 6.0× 10−3

18.3 – 18.9 2.24× 10−3 3.7× 10−3 1.70× 10−3 0.78× 10−3 6.1× 10−3

18.9 – 19.5 2.38× 10−3 4.0× 10−3 1.81× 10−3 0.82× 10−3 3.1× 10−3

19.5 – 20.0 2.48× 10−3 4.1× 10−3 1.89× 10−3 0.86× 10−3 1.6× 10−3

20.0 – 20.5 1.88× 10−3 3.1× 10−3 1.43× 10−3 0.65× 10−3 3.8× 10−3

Notes: The second column gives ǫ2 estimated from the plate-overlap residuals (equation 15). The

third column gives σ2 determined from this assuming the overlap errors are uncorrelated (equation

14). The next two columns give estimates of β2
ii and β2

ij from equations (17) and (19). The final

column gives the observed offset between the intra- and inter-plate angular correlation functions

measured for each magnitude slice.

overlap residuals, but the relation to an overall error correlation function depends on which

error model is assumed, as described in Section 3.1.

The residual errors in the overlaps for the magnitude matching are essentially constant

as a function of magnitude. This is good evidence that the magnitude errors do not vary as

a function of magnitude. Since the overlap errors depend on the precision of the field cor-

rections for each plate, the constant value of the residuals suggests that the field corrections

are just as accurate at bright magnitudes as at faint magnitudes.

The observed offsets between intra- and inter-plate estimates of w(θ) do increase as a

function of magnitude. As mentioned in Section 3.1.2, the cosmic variance in the estimated

offset is large for a realistic clustered galaxy distribution. Nevertheless, it may be considered

worrying that the offsets for all 6 slices are positive at about the 1σ level. We therefore

investigated the dependence of the offsets in the Soneira-Peebles simulations described in

Appendix A1 by selecting samples with different magnitude limits from each realization.

The variance in offsets for brighter magnitude limits increased roughly in proportion to

the amplitude of the correlation function. Also, for a particular realization, the offsets

for different magnitude limits are highly correlated. This might have been expected, since

features in the distribution that are correlated with plate boundaries at one magnitude limit

will be correlated at other magnitude limits as well. The observed APM offsets thus follow

the model predictions ie. they increase roughly in proportion to the amplitude of w(θ),

remaining about 1σ positive for all magnitudes ranges brighter than bJ = 20.
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The exception is the 20.0 < bJ < 20.5 slice, where the offset is 3.8× 10−3; much larger

than expected from the magnitude errors and the cosmic variance. The reason for this

is that star-galaxy classification breaks down near the magnitude limit of the survey. The

completeness is fairly constant at 90% for samples brighter than bJ = 20.3, but rapidly drops

for galaxies fainter than this, reaching a mean of 75% for galaxies with 20.4 < bJ < 20.5.

The incompleteness becomes significant first in the vignetted corners of each field, producing

errors like the mode (C) simulations described in Section 3.1.2, which lead to a large offset.

Nevertheless, even for this worst case the errors are not large enough to hide the break in

w(θ).

3.6 Best estimates for w(θ)

We correct for the residual matching errors by simply subtracting our estimated error

correlation function (plotted as the solid line in Figure 9) from the raw w(θ) measurements.

Except for the faintest slice, the matching errors are very nearly constant as a function of

magnitude, so we use the same amplitude for the errors. For the faintest slice the variations

in completeness become significant, so the errors from the magnitude matching do not

represent the full errors. Since the offset for this slice is larger than the cosmic variance

introduced by clustering, we can use the observed offset to estimate the overall matching

errors. We therefore scaled the error correlation function to match the observed offset, and

subtracted this from the measured w(θ). To account for the contaminating fraction of stellar

images, each slice has also been multiplied by a factor 1/(1 − f)2, where f is the fraction

of stellar image misclassified as galaxies and varies from 4% for the brighter magnitudes,

to 15% at the faintest limit. This correction has a significant effect on the amplitude of

the correlation functions but does not change their shape. As mentioned in Section 3.4.4,

the corrections for extinction and merger gradients are completely negligible for the high

latitude fields that we use.

Figure 23 shows the final error-corrected correlation functions. At first sight they are

not very different to those shown in Figure 3, but careful inspection shows that the results

for faintest slice no longer cross the next brighter slice. This is the only significant change

introduced by the exhaustive error analysis of this Section.

The various tests presented in this Section do not reveal any additive source of error

which can increase the observed w(θ) by more than 1 − 2 × 10−3 at θ = 0. Some effects

are likely to introduce correlated errors, but these rapidly decrease at larger scales, with

an expected amplitude of ∼ 5 × 10−4 on scales θ ∼ 5◦, and ∼ 2 × 10−4 at θ ∼ 10◦. Over

most of the angular scales we consider, this means that the observed w(θ) is more than 100

times the amplitude of our estimated errors. Even at the largest scales, where our results

have fallen below the power law extrapolation, the amplitude of w(θ) for the different slices
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varies between 4 − 11 × 10−3. This means that the estimated signal to noise at the break

angle (see Section 4.1.3 for our definition of break angle), varies from about 5 for the faintest

magnitude slice, to 40 for the brightest magnitude slice.

We can be very confident that we have not significantly underestimated w(θ). It is

extremely unlikely that there are errors that have avoided detection in our tests and that

have conspired to eliminate intrinsic galaxy correlations. Also, for these estimates of w(θ) we

have not applied any filtering to remove clustering. In Section 4.2.3 we consider the effect of

explicitly removing smooth fitting functions and conclude that these filtered measurements

are much poorer estimates of the real correlation function.

4. The Scaling Test and Comparisons with other Catalogues

In this section we first test if our best estimates of w(θ) scale with magnitude as pre-

dicted by Limber’s equation. This is an important test that must be satisfied if our measure-

ments really represent the projected clustering of the three-dimensional galaxy distribution.

We then use the scaling relations to compare our measurements to the Lick catalogue, and

other more recent surveys. Although there are apparent discrepancies between w(θ) from

some of these surveys, we find that the measurements are consistent to within the errors

associated with each survey.

4.1 Limber’s equation and the scaling test

4.1.1 Limber’s equation

As mentioned in Section 2.4, the variation of w(θ) as a function of magnitude allows

us to check that the angular correlation functions measure intrinsic clustering rather than

systematic errors. If w(θ) is determined by the projection of the true spatial correlation

function, ξ(r), rather than by systematic errors in the catalogue, the shape of w(θ) as

a function of magnitude limit can be calculated from the relativistic version of Limber’s

equation (GP77, Phillipps et al. 1978, Peebles 1980 §56),

w(θ) =

∫∞

0

∫∞

0
r21r

2
2p(r1)p(r2)ξ(r12, z) dr1dr2
[∫∞

0
r2p(r) dr

]2 , (31)

where r12 = |r1 − r2| and p(r) is the selection function, which gives the fraction of galaxies

at proper distance r in the magnitude limited sample.

If we assume that ξ(r, z) is a power law in r and redshift z,

ξ(r, z) =
(r0
r

)γ

(1 + z)−(3+ǫ) (32)
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and we adopt the small angle approximation r1 ≈ r2 ≫ r12, equation (31) can be rewritten

as

w(θ) =
√
π
Γ[(γ − 1)/2]

Γ(γ/2)

B

θγ−1
rγ0 , (33a)

where

B =

∫∞

0
x5−γa6p2(x)(1 + z)(γ−3−ǫ)F (x)−1 dx

[∫∞

0
x2a3p(x)F (x)−1 dx

]2 . (33b)

In equation (33b) a is the cosmological scale factor normalized to unity at the present epoch,

x is the coordinate distance at redshift z,

x = (2c/H0)[(Ω0 − 2)(1 + Ω0z)
1/2 + 2− Ω0 + Ω0z]/[Ω

2
0(1 + z)], (34a)

for a Friedman-Robertson-Walker universe with zero cosmological constant and present day

density parameter Ω0 (see Peebles 1980, §56); the factor

F (x) = [1− (H0x/c)
2(Ω0 − 1)]1/2, (34b)

comes from the metric and is equal to unity for a spatially flat universe.

Equation (33b) can be written in terms of the redshift distribution of galaxies in the

sample, dN/dz,

B =

∫∞

0
x1−γ

(

dN
dz

)2
F (x)(1 + z)(γ−3−ǫ)

(

dz
dx

)

dz
[∫∞

0

(

dN
dz

)

dz
]2 , (35a)

(Efstathiou et al. 1991), since dN/dz is related to the selection function by

(

dN

dz

)

dz ∝ x2a3
p(x)

F (x)

(

dx

dz

)

dz. (35b)

Thus, we can evaluate equations (33b) and (35b) if we have a model of the selection function

p(x) derived e.g. from the galaxy luminosity function, or directly from the redshift distri-

bution of a representative subset of APM galaxies to a specified magnitude limit. Models

for the selection function will be described in the next subsection.

The model for the evolution of the spatial correlation function (equation 32) is simplistic

and may well not apply over a wide range of redshifts and spatial scales (see Efstathiou et

al. 1991, Efstathiou 1995b). The value ǫ = 0 corresponds to stable clustering in physical

coordinates, which may be applicable at small separations where ξ ≫ 1 and most galaxy

pairs are in bound and stable systems (Peebles 1980 §73); the value ǫ = −1.3 corresponds to

a constant amplitude of ξ in comoving coordinates for a power law correlation function with

slope γ = 1.7. In Section 4.1.3 we will illustrate the sensitivity of our results to uncertainties

in the evolution of ξ and to cosmological parameters.
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4.1.2 Model for the selection function

In Maddox et al. (1990c) we constructed a model for the selection function p(x) derived

from the galaxy luminosity function. We reproduce the model here for reference. The

selection function for a magnitude slice mmin ≤ bJ ≤ mmax is given by

a3p(x) ∝
∫ ℓmax(x)

ℓmin(x)

ϕ(ℓ, z)dℓ, (36a)

where φ(ℓ, z) dℓ is the galaxy luminosity function at redshift z and

ℓmin/max(x) = dex{0.4(M∗
bJ
(z) − (mmax/min − 25− 5 log[x(1 + z)]))}, (36b)

andM∗
bJ

is the characteristic absolute magnitude of the Schechter (1976) luminosity function

at redshift z. The model of φ(ℓ, z) adopted by Maddox et al. (1990c) is

ϕ(ℓ, z) dℓ = ϕ∗ℓαexp(−ℓ) dℓ, ℓ ≡ 100.4(M
∗

bJ
−M), (37)

M∗
bJ
(z) =M∗

0 +M∗
1 z, α(z) = α0 + α1z,

ϕ∗ = 1.3× 10−2h3Mpc−3,

M∗
0 = −19.8 + 5 log(h), M∗

1 = 1, α0 = −1, α1 = −2.

Note that equation (3) of Maddox et al. (1990c) contains a misprint in the definition of ℓ.

This parametric form is intended to model the evolution of the galaxy luminosity function

(including the k-correction) and to be consistent with the following observations: (a) The

low redshift field galaxy luminosity function (Efstathiou et al. 1988, Loveday et al. 1992a);

(b) The galaxy number counts from the APM Survey (Maddox et al. 1990d) and from deeper

CCD surveys (e.g. Tyson 1988, Cowie et al. 1988, Metcalfe et al. 1995); (c) The redshift

distribution in the deep spectroscopic survey of Broadhurst et al. (1988). (d) Constraints

on the evolution of the luminosity function determined from the Broadhurst et al. survey

(see Maddox 1988, and Gaztanaga 1995). Note that the normalization of the luminosity

function, φ∗, cancels in Limber’s equation.

There has been a large increase in the number of faint galaxy redshifts in the last

few years and so it has become possible to constrain the selection function of the APM

Survey by direct comparison with the redshift distribution of magnitude limited samples.

R.S. Ellis has kindly made available to us a list of 697 galaxy redshifts in 21 small fields.

These fields have magnitude limits that lie approximately within one of the three ranges

17 < B < 19.7, 19.7 < B < 20.3 and 20.3 < B < 21.5. The fields include the redshifts

measured by Broadhurst et al. (1988), Colless et al. (1990, 1993) and unpublished redshifts.

The sample is a subset of the data used by Cole et al. (1994a) to study the spatial clustering

of faint galaxies. We correlated the galaxy positions on each field with the APM Survey and

computed a mean magnitude offset to convert from the B magnitudes used in the redshift

survey into the APM bJ system. We then used the completeness factors, sampling rates and

areas to weight each field and so computed a redshift distribution within a specified APM

magnitude slice. The results are shown in Figure 24 for the magnitude slices 17 ≤ bJ ≤ 19,
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17 ≤ bJ ≤ 20 and 17 ≤ bJ ≤ 21. In each case, the histograms have been normalized to

the actual (i.e. unweighted) number of galaxies Ng in each magnitude slice, as listed in the

Figure.

The dashed lines in Figure 24 show the redshift distributions computed from the Mad-

dox et al. (1990c) model of equation (37). The median redshifts predicted by this model

are slightly too high and the model predicts more high redshift galaxies than are observed.

The solid lines in Figure 24 show redshift distributions in magnitude slices computed from

the distribution

(

dN

dz

)

dz ∝ 100.45m

z3c
z2exp

[

−
(

z

zc(bJ )

)3/2
]

dz, (38a)

where the median redshift is given by

zm(bJ) = 0.016(bJ − 17)1.5 + 0.046 bJ ≥ 17 (38b)

zm(bJ) = 1.412zc. (38c)

This model was introduced by Baugh & Efstathiou (1993) and the specific parameters were

chosen to match the redshift distributions of the bJ = 17.15 limited Stromlo/APM redshift

survey (Loveday et al. 1992a,b) and of the Broadhurst et al. (1980) and Colless (1990, 1993)

surveys, which are a subset of the data plotted in Figure 24. As Figure 24 shows, equation

(38) provides an excellent match to the empirically determined redshift distributions. In

the next subsection, we will evaluate Limber’s equation using the models of equations (37)

and (38) to illustrate the sensitivity of the results to errors in the model for the selection

function. However, it is worth emphasizing that the predicted amplitude of w(θ) depends

mainly on the median redshift of the sample, which is well determined from the redshift

surveys rather than on the precise shape of the redshift distribution.

4.1.3 Application of the scaling test

In this subsection we evaluate Limber’s equation to scale the angular correlation func-

tions for the six magnitude slices plotted in Figure 23 to a common depth. As a reference

depth, we have chosen to scale the angular correlation functions to a magnitude limit of

bJ = 18.4. At this magnitude limit, the galaxy counts in the APM Survey are about equal

to those in the Lick survey, thus our scaling will transform each of the w(θ) estimates in

Figure 23 to about the same depth as the Lick catalogue.

For each magnitude slice, we compute the shifts δlogθ, δlog w(θ) required to transform

the angular correlation functions to the Lick depth, assuming a two power model for ξ(r)

with a slope γ1 = 1.7 at small separations (equation 12) and a slope γ2 = 3.0 at large

separations (see GP77, Figure 15, for an explanation of how these shifts are computed

in the two power-law model). The results are listed in Table 5. The scaling factors are

relatively insensitive to the evolution parameter ǫ in equation (32) and to the cosmological

model, as expected at the low redshifts of the APM survey. The scaling factors are more
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sensitive to the model for the redshift distribution, though even for redshift distributions as

different as the two models adopted here, the scaling factors do not differ by more than 0.03

in the log. In the rest of this subsection, we use the scaling factors in the fourth and fifth

columns of Table 5 based on equation (38), since this provides a good fit to the observed

redshift distributions (Figure 24), and assuming ǫ = 0 and Ω = 1,

Figure 25 shows the six w(θ) estimates from Figure 23 scaled to the the Lick depth.

The agreement between these curves is excellent. The rms scatter in the mean of the 6 slices

sample using 80 logarithmically-spaced bins in θ is only 4.5%. The agreement between the

six magnitude slices is better than plotted in Figure 2b of Maddox et al. (1990c) for two

reasons. Firstly, the model of the redshift distribution (38) is more accurate than the model

of equation (37) used by Maddox et al. (1990c), and this improves the accuracy of the

scaling correction. Secondly, the corrected w(θ) for the faintest magnitude slice has a lower

amplitude at large angles (c.f Figures 3 and 23) and this again improves the agreement of the

scaling test. The improvement in the accuracy of the scaling test supports our error analysis

of the previous sections which indicates that systematic errors are significant only close to

the magnitude limit of the survey. The scaling test thus provides strong evidence that our

angular correlation functions are measuring real clustering in the galaxy distribution.

Table 5: Scaling factors to Lick depth

(equation 37) (equation 38)

(ǫ = 0, Ω = 1) (ǫ = 0, Ω = 1) (ǫ = −1.3, Ω = 1) (ǫ = 0, Ω = 0)

mag range δlogθ δlog w δlogθ δlog w δlogθ δlog w δlogθ δlog w

17.1 – 17.7 0.038 −0.117 0.015 −0.114 0.013 −0.112 0.016 −0.116

17.7 – 18.3 0.125 −0.021 0.143 −0.046 0.141 −0.054 0.147 −0.043

18.3 – 18.9 0.205 0.071 0.230 0.057 0.230 0.037 0.237 0.064

18.9 – 19.5 0.280 0.159 0.303 0.164 0.303 0.132 0.311 0.176

19.5 – 20.0 0.341 0.233 0.358 0.254 0.359 0.210 0.367 0.272

20.0 – 20.5 0.393 0.299 0.402 0.333 0.403 0.276 0.412 0.355

Another way of demonstrating the accuracy of the scaling relation is shown in Fig-

ures 26a and 26b. For each of the magnitude slices we have fitted a power law w(θ) = Aθ1−γ

over the angular range 0.01◦ ≤ θ ≤ 1◦, with the slope γ = 1.7. The resulting amplitudes

are plotted against the corresponding magnitude limit in Figure 26a. The line in Figure 26a

shows the predicted variation from the model of equation (38) with ǫ = 0 and Ω = 1 as-

suming a slope γ = 1.7 and normalizing the amplitude of ξ to minimize the rms residuals

about the line. The amplitude of the faintest slice is about 8% lower than predicted by the

model. As explained in Section 3.6, the overall normalization of w(θ) for the faintest slice is

uncertain because of residual contamination by stars, but this is unlikely to introduce errors

larger than 5%. Thus the discrepancy in the scaling may be marginally significant and may
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indicate the start of a decline away from the model predictions that has been found from

deeper photographic and CCD surveys (Efstathiou et al. 1991; Neuschaefer, Windhorst and

Dressler 1991, Pritchet and Infante 1992, Roche et al. 1993, Neuschaefer and Windhorst

1995).

In Figure 26b we plot the characteristic break angle θbreak as a function of limiting mag-

nitude against the predictions of the two power-law model. We define the break angle as

the angle at which the measured w(θ) has fallen to half the value expected by extrapolating

the power law fitted at smaller angular scales as described above. The break angles de-

creases at fainter magnitudes in good agreement with the model predictions. This provides

strong evidence that the break from a power-law is a real feature of the galaxy distribution.

Figure 26b contradicts the claim by F92 that the scaling of w(θ) measured from the APM

survey is well approximated by a shift only in amplitude. It shows that a combination of

shifts in amplitude and angle is seen, as expected if the break in w(θ) is associated with a

physical feature in the shape of ξ(r).

It is also interesting to compute the amplitude of ξ(r) implied by Limber’s equation.

Using the redshift distribution of equation (38) and assuming a power law γ = 1.7, the

parameters of the angular correlation function for the magnitude slice 17 ≤ bJ ≤ 20 of

equation (12) give a correlation length r0 (equation 32) of

r0 = 4.81± 0.28 h−1Mpc (ǫ = 0, Ω0 = 1) (39a)

r0 = 4.43± 0.26 h−1Mpc (ǫ = −1.3, Ω0 = 1) (39b)

r0 = 5.05± 0.29 h−1Mpc (ǫ = 0, Ω0 = 0) (39c)

These numbers are in good agreement with the correlation length of r0 ≈ 4.7 h−1Mpc

determined by GP77 from the Lick survey, with the correlation lengths of ∼ 5 h−1Mpc

determined from the CfA-2 (Park et al. 1994) and Stromlo-APM (Loveday et al. 1995)

redshift surveys (though redshift space distortions, Kaiser 1987, complicate the comparison

with redshift surveys as described in Section 5 below). Notice that the statistical uncertainty

in the amplitude of ξ(r) implied by equation (12) corresponds to only 6% in r0 and is

smaller than the error of about 15% arising from uncertainties in the evolution of ξ and the

cosmological model, which are probably slightly larger than the residual errors arising from

uncertainties in the shape of the redshift distribution.

4.2 Comparison with w(θ) from other surveys

4.2.1 Small area surveys

Several groups have used small area surveys to estimate w(θ). Measurements of small

numbers of Schmidt and 4m plates have produced galaxy surveys covering a few hundred

square degrees to a limit bJ ∼ 20 and a few square degrees to a limit of bJ ∼ 23 (Sebok

1986, Pritchet and Infante 1986, Koo and Szalay 1984, Stevenson et al. 1985, Hewett

1982, Shanks et al. 1980). The results from these surveys show power-law behaviour in

w(θ) on small angular scales, with a sharp break at larger angles. The power-law slope of
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the estimated correlations functions are fairly consistent, varying between ∼ −0.7 and −0.8.

The corresponding amplitudes of w(θ), however, show a large scatter. Cosmic variance alone

will introduce a large scatter in the amplitude of w(θ) determined from a small number of

Schmidt plates. This can be seen from the simulations described in Appendix A and from

the scatter in the single-plate w(θ) estimates from the APM Survey described in Section

2.2.

The break in w(θ) from a power law seen in all these surveys is caused by the integral

constraint in the estimator of w(θ), as discussed in Section 2.2. This effect also explains

why the slopes of power law fits to w(θ) from small samples are slightly steeper than the fits

to our w(θ) measurements described in Section 2.2. One of the most important results from

our analysis of the APM Survey is the demonstration that large areas of sky are required to

determine w(θ) reliably on angular scales of a few degrees. This point is discussed further

in the next subsection.

4.2.2 Comparison with the Edinburgh-Durham catalogue

As mentioned in the introduction, the Edinburgh-Durham Southern Galaxy Catalogue

(EDSGC) is the largest machine constructed catalogue of comparable size to the APM

Galaxy Survey. It is based on the same photographic plate material as the APM Survey

scanned with the COSMOS measuring machine, but comprises only 60 plates centred on

the South Galactic Pole, i.e. about one-third of the area of the APM Galaxy Survey. The

EDSGC is described by Heydon-Dumbleton et al. (1989). Estimates of w(θ) from the

EDSGC have been presented by Collins et al. (1989, 1992), and an analysis of errors in the

w(θ) estimates from the EDSGC is described by Nichol & Collins (1993).

In Figure 27, we compare the EDSGC estimates of w(θ) at a magnitude limit of bJ =

19.5 with the APM estimates for the magnitude slice 17 < bJ < 20. We have corrected for

the small difference in limiting magnitudes by scaling the EDSGC results to the APM depth

using the model of equation (38) with ǫ = 0 and Ω0 = 1. The open circles in Figures 27

show the uncorrected estimates of w(θ) for the EDSGC from Figure 2 of Collins et al.

(1992). The solid points in Figure 27a are the means of the APM w(θ) estimates from 4

approximately equal area zones in the survey. Notice that the open circles lie above the

APM estimates at θ ∼> 1◦. The discrepancy between these estimates is probably caused by

the larger calibration errors of the EDSGC.

Collins et al. (1992) show that the dispersion in the plate overlap residuals in the

EDSGC is about ǫ = 0.08 magnitudes. The EDSGC matching procedure is not based

wholly on plate overlaps, and so our analysis of Section 3.1 cannot strictly be used to

relate the overlap residuals to a plate zero-point error. A reasonable approximation for

the EDSGC is that β2
ii ∼ 0.5ǫ2 = 3.2 × 10−3, i.e. about twice the value measured for

the APM Survey. Larger calibration errors in the EDSGC are plausible because they use

a less accurate technique for correcting for plate field effects, and because they use CCD

sequences with rather few galaxies to determine the the plate correction factors for about

half the survey, rather than using the plate overlaps.
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Nichol and Collins (1993) have analyzed the effects of plate matching errors in the

EDSGC survey using simulations. Their simulations do not include the effects of the pro-

pogation of errors, which we discussed in detail in Section 3, since they make extensive use

of calibrating photometry and this should limit the large-scale propogation of errors. As

seen in Figure 3 of Nichol and Collins (1993), the resulting error correlation function has a

high amplitude on scales less than the size of a plate, θ ∼< 5◦, but the errors do not propagate

to larger scales. The dotted lines in Figure 27 show the EDSGC w(θ) after correcting for

plate errors and for the effects of variable Galactic obscuration (although plate matching

errors dominate the correction). The dotted line is in much closer agreement with the APM

points, though it lies slightly higher an angular scales greater than ∼ 2◦.

Figure 27b shows the individual estimates of w(θ) for each of the 4 roughly equal area

zones of the APM Survey plotted together with the uncorrected and corrected EDSGC w(θ).

Each of the 4 APM zones has about the same area as the EDSGC, hence Figure 27b gives a

good indication of the sampling errors for a catalogue of the size of the EDSGC. The w(θ)

estimates for the 4 zones show a large scatter, especially at θ ∼> 4◦, showing that a large

area of sky is required to determine w(θ) accurately at amplitudes ∼< 10−2. The corrected

EDSGC estimates of w(θ) lie within the scatter of the 4 APM zones, hence we conclude

that the corrected EDSGC estimates of w(θ) are consistent with ours within the sampling

fluctuations. Since the EDSGC catalogue is based on the same photographic material as

the APM Survey, it is possible to make a detailed image-by-image comparison of the two

surveys. Such an analysis is in progress and will be described in a future paper.

4.2.3 Comparison with the Lick survey and the effects of filtering the APM catalogue

The Lick survey samples a large enough area of sky that sampling fluctuations and

biases in the estimates of w(θ) caused by the integral constraint should be relatively small.

Thus w(θ) from the Lick survey should be comparable to the estimates of w(θ) derived

from the APM Survey. Figure 28 shows the GP77 estimates of w(θ) for the Lick catalogue

compared to the APM w(θ) estimates for the magnitude slice 17 ≤ bJ ≤ 20. The APM

w(θ) has been scaled to the Lick depth as described in Section 4.1.2. Figure 28a shows the

GP77 estimates derived from four separate zones of the Lick catalogue which were filtered

to remove large scale gradients in the galaxy counts (see GP77, Section III). The Lick w(θ)

is in excellent agreement with the APM results on angular scales less than θ ≈ 3◦. On larger

angular scales our results disagree. GP77 find that w(θ) breaks sharply from a power law

on scales of ∼ 3◦, whereas we find a more gentle decline.

The most likely reason for this discrepancy is that the GP77 filtering of the Lick map

has removed a component of intrinsic clustering. In Figure 28b we compare the APM w(θ)

to the unfiltered w(θ) from the Lick survey from Figure 2 of GP77. The results from the

unfiltered Lick map lie slightly higher than the APM w(θ) on large angular scales. Evidently,

filtering has a large effect on the Lick angular correlation function and could account for the

discrepancy with the APM w(θ).
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Seldner et al. (1977) find that the mean square error in the fractional galaxy count

in a single plate overlap after applying the Lick plate correction factors is σ2 = 0.025, i.e

about eight times larger than for the APM Survey (equation 16). As described by GP86

and in Section 3.1, these plate matching errors propagate through the network of plates and

introduce large-scale gradients in the corrected Lick counts. GP86 estimate that the Lick

plate matching errors lead to a variance in the counts on a single plate of β2
ii = 0.0127 (c.f.

equation 17). Subtracting the contribution 4σ2/25 caused by plate-to-plate errors GP86

conclude that large-scale gradients caused by plate matching errors introduce a variance of

0.0087 in the Lick counts. However, GP86 fit a polynomial map to the Lick counts which

has a variance of 0.0194, more than twice the predicted value, hence it is plausible that the

filtering has removed a component of real clustering in the galaxy distribution in addition

to large-scale gradients in the counts caused by plate matching errors.

To summarize, the expected errors in the Lick w(θ) arising from errors in the plate

matching are werr ∼ 10−2, about an order of magnitude larger than the errors estimated

for the APM survey. This estimate of the Lick errors is of the same order as the differences

seen between the APM and Lick angular correlation functions and between the angular

correlation functions estimated from the filtered and unfiltered Lick maps. We conclude,

therefore, that it is difficult to disentangle real galaxy clustering on scales of a few degrees

from artificial large-scale gradients in the Lick catalogue.

We have tested the effect of filtering the the APM Survey, by evaluating the correlation

functions for our six magnitude slices after first subtracting a bicubic spline function fitted

independently to the counts in each slice (see also Appendix A2). The results are shown

in Figure 29. The estimates of w(θ) for the faintest slices change only slightly, but for the

brighter slices the break steepens considerably. Figure 20b shows the filtered estimates of

w(θ) scaled to the Lick depth as in Figure 25. The agreement between the scaled slices

is significantly worse after spline fitting. The rms fractional variation of the spline fits is

1.5, 0.8, 2.5, 6.5, 13, 20×10−3 for the 6 slices in faint-to-bright order. As described in Section

3.5, it is extremely unlikely that our systematic errors are increasing this rapidly at brighter

magnitudes, thus we conclude that the spline fits to the bright slices are dominated by true

large-scale galaxy clustering and that the unfiltered APM results are close to the correct

values.

GP77 argued that their w(θ) shows anticorrelation of only ≈ −0.004 at θ ∼ 10◦,

therefore they could not have over-filtered w(θ) by much more than this amount. However,

the results from spline fitting our maps show that the correlation function of the spline fits,

wS(θ), typically crosses zero at ∼ 20◦, and that wS(10
◦) ∼ 1

2wS(0
◦). It is therefore quite

likely that GP77 have in fact underestimated w(θ) by as much as 0.008. It is clear from

the above analysis that the GP77 smoothing functions are the main source of the apparent

discrepancy between our results and theirs. For example, if we fit a spline function to

our brightest magnitude slice (at approximately the Lick depth) or to the Soneira-Peebles

simulations described in Appendix A, we obtain a very similar result to GP77.
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4.2.4 A firm upper limit to errors in w(θ)

A firm upper limit on all sources of error in our w(θ) measurements can be set from the

angular correlation function of the faintest galaxies in the APM Survey. Any error that is

approximately independent of magnitude will add the same error correlation function to each

of the magnitude slices, so the observed w(θ) for the faintest slice provides an upper limit

to these errors. Realistically we believe that the errors are more than an order of magnitude

smaller than this, so this is gross overestimate of the most likely errors. Nevertheless,

by assuming that all of the correlations in the faintest slice are caused by errors we can

‘correct’ the brighter slices by subtracting w(θ) of the faintest slice from the w(θ) of each

of the brighter slices. Conceptually this subtraction is equivalent to finding a filter which

removes all of the structure in the distribution of faint galaxies, and then applying the same

filter to the distribution of the brighter galaxies.

After this subtraction the brighter galaxies still show strong clustering to large scales,

as seen in Figure 30. The brightest three slices have such a high amplitude, that any errors

and gradients of the same amplitude as those in the faintest slice are not significant. This

rules out all sources of error which affect bright and faint galaxies equally. Given that

there are no significant errors in the brighter slices, then the agreement between our best

estimates of w(θ) after scaling suggests that errors are unlikely to be important even at

faint magnitudes. Thus we are confident that the excess power relative to GP77 is real,

especially for the brighter slices where the signal is much more than ten times larger than

the estimated systematic errors.

To summarize, we believe that filtering of the APM Survey is unjustified for the fol-

lowing reasons:

(i) The angular correlation functions of the faint slices show more power than the GP77

result even after filtering.

(ii) The angular correlation functions for the filtered maps do not obey the scaling relation

because the filtering affects mainly the w(θ) estimates from the brighter magnitude

slices.

(iii) Filtering simulated galaxy distributions that have the same w(θ) as measured from the

APM Survey, but no plate-matching errors, removes large-scale power from the w(θ)

estimates resulting in an artificial break in w(θ) similar to that found by GP77 for the

filtered Lick maps (see Appendix A2).

(iv) Subtracting w(θ) for the faintest slice from w for the brightest three slices does not

change them significantly. Hence filtering is justified only if the systematic errors are

unique to the brightest slices.
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5. Cosmological Implications

In this Section we consider some implications of the angular correlation functions es-

timated in previous Sections. In Section 5.1, we compare our estimates of w(θ) with the

angular correlation functions calculated from a family of cold dark matter (CDM) power

spectra. In Section 5.2, we discuss the three-dimensional power spectrum derived by invert-

ing w(θ) following the technique described by Baugh and Efstathiou (1993) and we compare

the results with the power spectra determined from N-body simulations of several CDM-

like models. We compare the APM power spectrum with the power spectra estimated from

several redshift surveys in Section 5.3.

5.1 Angular correlations

The spatial two-point correlation function is the Fourier transform of the three-dimensional

power spectrum P (k) (equation 1). Thus, given a theoretical prediction for P (k), we can

compute the spatial correlation function ξ and hence w(θ) by integrating Limber’s equation

(31). In this subsection, we compare the APM w(θ) with the predictions of a family of

CDM-like power spectra. According to linear perturbation theory, the present day power-

spectrum of mass fluctuations in a CDM dominated universe arising from scale-invariant

adiabatic fluctuations in the early universe is well approximated by the formula

P (k) =
Bk

(1 + [ak + (bk)3/2 + (ck)2]ν)2/ν
, (40)

a = (6.4/Γ) h−1Mpc, b = (3.0/Γ) h−1Mpc, c = (1.7/Γ) h−1Mpc, ν = 1.13.

Equation (40) is accurate to a few percent for spatially flat universes in which baryons

make a negligible contribution to the total mass density (Bond & Efstathiou 1984). The

parameter Γ = Ω0h defines a useful sequence of models with varying amounts of large-scale

power (Efstathiou, Bond and White 1992). In the standard version of the CDM model (e.g.

Blumenthal et al. 1984, Davis et al. 1985) Ω0 = 1 and h ≈ 0.5, thus Γ ≈ 0.5.

Figure 31 shows w(θ) computed from the power spectra (40) compared to the APM

measurements for the magnitude slice 17 ≤ bJ ≤ 20. We have adopted our standard model

for the APM selection function (equation 38) and have assumed ǫ = 0 and Ω0 = 1 in

evaluation Limber’s formula. Each curve in Figure 31 has been normalized so that the

variance of the mass fluctuations in a sphere of radius xf = 8h−1Mpc,

σ2(xf ) =
V

2π2

∫ ∞

0

P (k)W 2(kxf )k
2 dk, (41)

W (kxf ) =
3

(kxf )3
[sinkxf − kxf cos kxf ].

is equal to (0.9)2. This normalization has been chosen so that each of the curves in Figure 31

passes through the APM data points at θ ≈ 0.4◦. The angular scale corresponding to a

physical scale of 5 h−1Mpc at the median depth d∗ ≈ 315 h−1Mpc of the sample is shown
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by the arrow. Larger angular scales probe spatial separations at which ξ(r) ∼< 1 (equation

39) and so typical mass fluctuations should smaller than unity unless galaxies are strongly

antibiased relative to the mass distribution.

The shape of the APM w(θ) at large angles is well approximated by equation (40) with

Γ in the range 0.2 – 0.3, rather than the value Γ = 0.5 appropriate for the standard CDM.

This is consistent with the results of previous papers (Maddox et al. 1990c. Efstathiou et

al. 1990, Efstathiou 1993, Peacock and Dodds 1994). We make several points concerning

this Figure:

(i) The best fitting value of Γ in Figure 31 is slightly larger than the value Γ ≈ 0.2 favoured

in some of our earlier papers. This is because we compared the CDM models to the

scaled results from the six magnitude slices plotted in Figure 3. The faintest slice is

noticeably affected by systematic errors as described in earlier sections and this biases

Γ to slightly lower values. In contrast, the effects of systematic errors on the estimates

plotted in Figure 31 should be no larger than ≈ 10−3 in w(θ).

(ii) The normalization of the CDM curves plotted in Figure 31 is arbitrary. In principle, we

could raise the amplitude of the Γ = 0.5 curve in Figure 31 to fit the angular correlation

function at θ ∼ 5◦ (this would require a normalization of σ8 ≈ 1.6) but the predicted

w(θ) would then lie well above the data points on angular scale ∼< 2◦.

(iii) The points at w(θ) on scales ∼> 1◦ correspond to physical separations at which the mass

fluctuations are likely to be in the weakly non-linear regime. Thus, it is possible that

non-linearities may distort the shape of the power spectrum over much of the angular

range plotted in Figure 31.

We discuss the last two points in more detail in the next subsection.

5.2 The power spectrum determined from the APM Survey

Baugh and Efstathiou (1993, hereafter BE) show that the three-dimensional power

spectrum P (k, z) is related to w(θ) by an integral equation

w(̟) =

∫ ∞

0

P (k)kg(k̟) dk, ̟ = 2 sin (θ/2) , (42a)

where the kernel g(k̟) is equal to

g(k̟) =

1
2π

∫∞

0
F (z)

(1+z)α

(

dN
dz

)2 ( dz
dx

)

J0(k̟x)dz
[∫∞

0

(

dN
dz

)

dz
]2 , (42b)

and the time evolution of the power spectrum has been parameterized as

P (k, t) =
P (k)

(1 + z)α
. (42c)
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In these equations k is defined as a comoving wavenumber, hence for a power law spatial

correlation function of the form given in equation (32), the exponent α giving the time

dependence of P (k, t) is equal to α = 3 + ǫ − γ. In the analysis below, we set α = 1.3,

i.e. we assume that the small scale power-spectrum is constant in physical coordinates,

consistent with the assumption ǫ = 0 that we adopted to compute the scaling of w(θ) in

Figure 25. Equation (42a) can be inverted using Lucy’s (1974) deconvolution algorithm to

yield P (k) from observations of w(θ). The technique is described in detail by BE. A similar

technique, in which observations of the two-dimensional power spectrum are inverted to

recover P (k) is discussed by Baugh and Efstathiou (1994), together with an application to

the two-dimensional power spectra measured from the APM Galaxy Survey.

Figure 32a shows the BE technique applied to the w(θ) estimates for the magnitude

slice 17 ≤ bJ ≤ 20. The kernel (42b) has been evaluated assuming Ω = 1; BE discuss

the sensitivity of the inversion to assumptions concerning the cosmological model and the

evolution of P (k), showing that these have little effect on the shape of the power spectrum

but introduce an uncertainty of ∼ 20% in the amplitude of P (k) even at the moderate

depths of the APM Survey (cf the estimates of r0 in equations 39 derived from Limber’s

equation). The dotted lines in Figure 32a show the inversion of the w(θ) estimates for each

of the four nearly equal area zones (cf Figure 27b). The points show the mean of these

curves together with the standard deviation of the mean. The thick solid line shows the

inversion of the w(θ) estimate for the full APM area (Figure 2). Figure 32b shows a check of

the inversion procedure; here we have integrated equation (42a) by linearly interpolating the

inverted power spectrum for the full APM area and compared the resulting w(θ) (plotted

as the solid line) against the APM data points. The agreement is excellent, showing that

the inversion is extremely accurate (see BE for further tests of this method).

Figure 32a shows that we recover the power spectrum accurately for wavenumber k ∼>
0.05h Mpc−1. At smaller wavenumbers there is considerable scatter between the estimates

from different zones and at these wavenumbers, systematic errors of ∼ 10−3 in w(θ) can

bias the estimates of P (k) (cf Figure 7 of BE). Thus, although we see tentative evidence

for a peak in the power spectrum at k ∼ 0.05h Mpc−1, we caution readers that the scatter

between zones is likely to underestimate the errors in P (k), which are probably dominated

by systematic errors at such small wavenumbers.

We have integrated equation (41) using the power spectra for each of the four zones

plotted in Figure 32a to computed σ8. The result is

σ8 = 0.96± 0.04 (43)

where the error is determined from the scatter from the four zones. Uncertainties in the

cosmological model and the exponent α in equation (42c) introduce an additional uncertainty

of about 10% in this estimate. This is in agreement with the value σ8 ∼ 1 determined by

Davis and Peebles (1983) from an analysis of ξ(r) from the CfA redshift survey, but note that

the estimate (43) is based on the power spectrum in real space, rather than in redshift space
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and so is unaffected by the distortion of the clustering pattern caused by galaxy peculiar

motions.

Figure 33 shows the inverted estimates of P (k) plotted against the family of CDM

power spectra, in analogy with Figure 31. Each of the theoretical power spectra has been

normalized to σ8 = 1. The standard CDM power spectrum, Γ = 0.5, provides a very poor

match to the shape of the APM power spectrum. A value Γ ≈ 0.2 – 0.3 provides a much

better fit to the data, in agreement with our discussion of w(θ).

In Figure 34 we compare the APM power spectrum to the power spectra of the mass

distributions from N-body simulations of three CDM-like models: standard CDM (SCDM)

i.e. Ω = 1, h = 0.5; a low density spatially flat model (LCDM) with Ω = 0.2 and h = 1;

a mixed dark matter (MDM) model with h = 0.5 in which CDM contributes ΩCDM = 0.6,

light neutrinos contribute Ων = 0.3 and baryons contribute Ωb = 1. The MDM and SCDM

simulations are as described by Dalton et al. (1994); for each of these models we ran an

ensemble of 10 simulations each containing 106 particles within a cubical computational box

of length 300 h−1Mpc using the P3M N-body code described by Efstathiou et al. (1985).

The LCDM curves in Figure 34 were derived from an ensemble of 10 simulations each

containing 4 × 106 particles within a box of length 600 h−1Mpc. The models were evolved

to approximately match the amplitude of microwave background anisotropies determined

from the first year COBE maps (Smoot et al. 1992); thus σ8 for the mass fluctuations is

equal to unity for the LCDM and SCDM models, and is 0.67 for the MDM model (ignoring

gravitational wave contributions to the anisotropies, e.g. Crittenden et al. 1994).

Each of the curves in Figure 34 shows the mean of the power spectra of the mass distri-

butions, Pm(k), estimated from the simulations. For the MDM model, we have arbitrarily

multiplied Pm(k) by a constant b2, with b = 1.3 to match the observations on large scales,

i.e. we have introduced a linear biasing factor in relating mass fluctuations to fluctuations

in the galaxy distribution. Figure 34 illustrates the following points:

(i) The SCDM curve has a similar shape to the linear theory power spectrum plotted

in Figure 33 over almost the entire range of wavenumbers plotted in the Figure (k ∼<
0.3h Mpc−1). To reconcile the SCDM curve with the APM data would require substan-

tial scale-dependent biasing, with galaxies strongly biased relative to the mass distribu-

tion at wavenumbers k ∼< 0.1h Mpc−1 and strongly antibiased at larger wavenumbers.

An argument against scale dependent biasing as a resolution of this problem has been

given by Dalton et al. (1994) who show that the spatial two-point correlation function

of rich APM clusters of galaxies also fails to match the predictions of the SCDM model.

(ii) The LCDM model provides a good match to the observations at wavenumbers k ∼<
0.1h Mpc−1 but lies above the data points at larger wavenumbers. Evidently antibiasing

is required on spatial scales ∼< 5 h−1Mpc if this model is to match the clustering of the

galaxy distribution (cf Efstathiou et al. 1990).

(iii) The MDM model provides a satisfactory fit to the observations over the entire range of

wavenumbers plotted in the Figure.
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In summary, the APM angular correlation functions and the three dimensional power

spectrum derived by inverting w(θ) are incompatible with the power spectrum expected

in the standard CDM model with Γ = 0.5. Non-linear evolution of the mass fluctuations

cannot resolve this discrepancy, as shown by the numerical simulations plotted in Figure 34.

The observations are in better agreement with a CDM power spectrum with Γ in the range

0.2-0.3.

5.3 Comparison with power spectra determined from redshift surveys

In this subsection we compare the APM power spectrum with the power spectra esti-

mated from redshift surveys. A number of authors have estimated power spectra of redshift

surveys: Vogeley et al. (1992) and Park et al. (1994) have analyzed the CfA-2 survey (see

Baumgart and Fry 1991, for an analysis of the CfA-1 survey); Park, Gott & da Costa (1992)

and da Costa et al. (1994) have analyzed the optically selected Southern Sky Redshift Sur-

vey; Fisher et al. (1993) have computed the power spectrum of a redshift survey of IRAS

galaxies with 60µ fluxes f60 > 1.2Jy (see Fisher et al. 1995 for details of the 1.2Jy survey);

Feldman, Kaiser & Peacock (1994) have estimated P (k) for the sparse sampled 1 in 6 QDOT

survey described by Lawrence et al. (1995).

Figure 35 shows the APM power spectrum (as in Figure 34) together with estimates

of P (k) for IRAS and optically selected galaxies. The open symbols show P (k) from a

reanalysis of the 1.2Jy and QDOT IRAS surveys by Tadros & Efstathiou (1995a). The

open triangles show P (k) for the CfA-2 survey from Park et al. (1994); these are derived

from a volume limited subset of the CfA-2 survey consisting of 1509 galaxies to a coordinate

distance of 101 h−1Mpc. The three lines show estimates of P (k) in redshift space derived

from the three ensembles of N-body simulations described in the previous subsection. We

make the following remarks concerning this figure:

(i) The IRAS power spectrum lies below the real-space estimates of P (k) derived from the

APM survey by a factor of ∼ 1.5. Since redshift space distortions are likely to boost the

amplitude of the power spectrum in redshift space compared to that measured in real

space (Kaiser 1987, compare also the redshift space and real space estimates of P (k)

for the simulations in Figures 34 and 35), we conclude that IRAS galaxies are more

weakly clustered than optically selected galaxies on large scales. The effect is relatively

small, and is consistent with an analysis of the cell-count variances of IRAS and the

Stromlo-APM redshift surveys described by Efstathiou (1995c).

(ii) The CfA-2 power spectrum has a slightly higher amplitude than the APM estimate in

the wavenumber range 0.1 ∼< k ∼< 0.3h Mpc−1. At k ∼< 0.10h Mpc−1, the CfA-2 esti-

mates have a slightly lower amplitude, but the errors on P (k) at such low wavenumbers

are large. In principle, a direct comparison of the APM estimates of P (k) with an

estimate derived from an optically selected redshift survey would allow a determina-

tion of the effects of redshift-space distortion. However, it is clear from Figure 35 that

the observational errors (particularly in the redshift-space estimates of P (k)) are suffi-

ciently large that it is not yet possible to set tight limits on the effects of redshift-space
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distortions in the linear regime k ∼< 0.2hMpc−1. This point is discussed in much greater

detail in another paper (Tadros & Efstathiou 1995b), where we compare the APM P (k)

with redshift space estimates of P (k) derived from the Stromlo-APM redshift survey

(Loveday et al. 1992a,b). Analyses of redshift space distortions in redshift surveys are

described by Hamilton (1993b) Fisher et al. (1994), Cole et al. (1994b), Peacock &

Dodds (1994) and Loveday et al. (1995).

(iii) The redshift-space power spectra derived for the MDM and LCDM models are compat-

ible with the CfA-2 estimates with the large observational errors. The SCDM curve lies

slightly lower than the CfA-2 estimates and slightly higher than the IRAS estimates,

though the general shape is compatible with the both estimates (cf Bahcall et al. 1994,

who make a similar point). This illustrates a point that we have discussed in detail

in other papers (e.g. Loveday et al. 1992b, Efstathiou 1995a,c), namely that the un-

certainties on estimate of P (k) derived from redshift surveys are sufficiently large that

they cannot yet distinguish between different CDM-like models.

6. Conclusions

The main conclusions of this paper are as follows:

(i) We have discussed various estimators of w(θ) and illustrated the biases in estimates

caused by integral constraints and gradients in the galaxy surface density that are

correlated with the survey boundaries. Estimates of w(θ) derived from single Schmidt

plates are biased significantly by the integral constraint and this leads to an artificial

break in w(θ) from a power law.

(ii) We have investigated how errors in the selection of galaxies in the APM survey will affect

our estimates of w(θ). We have analyzed simulations of errors including correlated plate

matching errors and field effects, and show that the observed plate overlap residuals

and the good agreement between the inter-plate and intra-plate estimates of w(θ) limit

the error in w(θ) to be ∼< 10−3.

(iii) We have used a large body of CCD photometry from the Las Campanas Deep Redshift

Survey to estimate the errors in the APM magnitudes. The results are consistent with

the error estimates of Paper II and show that the zero-point magnitude error for a

typical APM field is in the range 0.04 ∼< σAPM ∼< 0.05 magnitudes. We estimate that

photometric errors lead to systematic errors of ∼< 10−3 in w(θ).

(iv) We have investigated the criticisms of the APM photometry by Fong et al. (1992)

and have shown that they are unjustified. In particular, large photometric errors as

claimed by Fong et al. are incompatible with the good agreement that we have found

between the APM and LCDRS photometry, with the uniformity of the galaxy counts in

the APM survey, and with various other tests of the accuracy of the APM magnitudes

described in Paper II.
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(v) There is no evidence for any correlation between errors in the APM Survey and the

exposure or scanning dates of the Schmidt plates.

(vi) The effects of Galactic obscuration have been investigated using IRAS maps of 100µm

emission. We estimate that the angular correlation functions measured from the APM

Survey are biased by at most 8× 10−4 by variable Galactic obscuration.

(vii) The changes in stellar contamination of the APM galaxy sample caused by the variation

in stellar surface density in our galaxy are negligible over the area we use to estimate

the galaxy correlations.

(viii) We have used the magnitude residuals on plate overlaps and inter- and intra-plate

residuals in w(θ) to estimate the errors in the APM survey as a function of magnitude.

The systematic errors in w(θ) are found to be independent of magnitude except close

to the magnitude limit of the survey bJ > 20, where plate-to-plate variability in star-

galaxy classifications introduces fluctuations in the APM counts.

(ix) We have presented estimates of w(θ) as a function of limiting magnitude corrected for

various sources of systematic error. The corrections are almost negligible except for the

faintest magnitude slice 20 ≤ bJ ≤ 20.5.

(x) We have used faint redshift surveys to determine the selection function of the APM

survey as a function of limiting magnitude. By evaluating Limber’s equation, we show

that the APM estimates of w(θ) scale accurately with depth, as expected if we are

measuring real structure in the galaxy distribution.

(xi) The APM w(θ) estimates show slightly less power at large angular scales than the

estimates from the Edinburgh-Durham Southern Galaxy Catalogue (EDSGC). The

discrepancy may be explained by the larger photometric errors and smaller area of the

EDSGC.

(xii) The APM w(θ) estimates are higher at large angular scales that the GP77 estimates of

w(θ) from the filtered Lick counts. We have argued that GP77 may have removed real

clustering by filtering the Lick catalogue.

(xiii) The APM w(θ) estimates are incompatible with the linear theory predictions of the

standard CDM model with Γ = Ω0h = 0.5. Our angular correlation functions are much

better described by a CDM model with Γ in the range 0.2–0.3.

(xiv) We reach similar conclusions by comparing the three-dimensional power-spectrum P (k)

determined by inverting our estimates of w(θ). By calculating P (k) from N-body

simulations we show that non-linear evolution cannot reconcile the standard cold dark

matter model with the shape of P (k) determined from the APM survey.
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Appendix A: Estimators of the Angular Correlation Function

A.1 Soneira-Peebles Simulations

There has been some disagreement between authors concerning biases in estimators

of angular correlation functions (e.g. Shanks et al 1980, Hewett 1982). We have therefore

checked a number of estimators using simulations of clustered galaxy distributions. We have

also used these simulations to assess the effect on w(θ) of filtering the data.

The simulations that we have used follow the prescription of Soneira and Peebles (1978)

which uses a simple algorithm designed to produce galaxy distributions with a similar visual

appearance and low-order correlation function as the Lick survey. Although N-body simula-

tions can provide a better match to the observed “frothy” nature of the galaxy distribution,

extremely large simulations would be necessary to model the large volume (∼ 108Mpc3)

sampled by the APM Survey and so would be time-consuming to generate.

The Soneira-Peebles simulations are constructed from a large number of ‘clumps’: for

each clump, an imaginary rod of length L is randomly oriented in space. Two shorter rods

of length L/a are randomly oriented, with their centres at the ends of the first rod; two rods

of length L/a2 are randomly oriented with their centres at the ends of each of the previous

two, and the process is continued for a number of ‘levels’, N . A ‘galaxy’ is placed at the end

of each rod on the Nth level, i.e. 2N galaxies in a clump of level N . If all clumps have the

same N , the amplitudes of the three and four point correlation functions are smaller than

observed, thus a dispersion is introduced in the number of levels (see Table A.1) to produce

approximately the observed values.

The clumps are distributed randomly in space within a cone of half-angle 30◦ and length

1000 h−1Mpc, and then “observed” from a point on the axis of the cone, 50 h−1Mpc inside

the apex (to avoid boundary effects): galaxies are accepted or rejected with a probability

calculated from a Schechter (1976) luminosity function, with an apparent magnitude limit

of bJ = 20.. This produces a simulated 0.85 steradian of ‘sky’ for which we construct an

equal area maps as for the real survey data, and use this to measure the angular correlation

function.

A few short-cuts, as described by Soneira and Peebles, were used to speed up the

computations. The spatial volume was truncated at 1000 h−1Mpc where the selection prob-

ability is ∼ 1%, each clump was reused a number of times at different positions in space (but

different galaxies visible each time), and if the selection probability p at the distance of a

given clump was ≤ 0.05 we simply chose pN galaxies randomly from the clump rather than

generating a different random number for every galaxy. None of these simplifications will

have any significant effect on the correlation function. The random numbers were generated

by the NAG routine G05CAF in ‘batches’ of 1000, placed into an array and shuffled with

another 1000 random numbers to ensure independence between successive random numbers.
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One set of simulations (labelled SP0) has identical parameters to those given in Soneira

and Peebles, shown in Table A.1. We generated simulations with additional large-scale

power by scaling up the clumps: the minimum value of N was increased by 1, the length

of the rods was scaled up by a factor 1.76 and the density of clumps was halved giving the

set of simulations labelled SP1. Repeated scaling up gives the simulations labelled SP2,

SP3 and SP4. This process does not change the small-scale correlation functions but simply

moves the break in w(θ) to larger angles.

Table A.1 Parameters used in construction of clumps in the SP0 simulations

Definition Parameter Value

Min, max clump level Nmin, Nmax 7, 12

% of clumps of level N p7 . . . p12 68, 23, 6, 1.5, 0.5, 0.11

Length of longest rods L0 11.5 h−1Mpc

Mean spacing of clumps n−1/3 20 h−1Mpc

We also generated a simulation with power on very long wavelengths (cf the isocurva-

ture baryon model, Peebles 1986) by simply imposing a large-scale gradient of amplitude

±15% across the observed ‘sky’ from an SP0 simulation. These simulations are labelled

SPS. Grey-scale pictures of some typical simulations are shown in Figure A.1.

A.2 Estimating the Correlation Function

For each of the simulations we evaluated the correlation function w(θ) using the ‘direct’

estimator

w(θ) =
〈NiNj〉
N

2 − 1, (A1)

and the ‘ensemble’ estimator

w(θ) =
〈NiNj〉
〈Ni〉 〈Nj〉

− 1. (A2)

In these equations Ni is the galaxy count in cell i, N is the mean galaxy count and the

averages are over all cells with separations within the separation bin centred on angle θ.

We also used an estimator based on the Fourier transform of the two-dimensional power

spectrum. To evaluate the FT estimator, we constructed a 2-D array of galaxy counts in

cells from an equal area projection of the catalogue. The mean from all data cells was

subtracted from the data cells; cells outside the survey area were set to zero. We then

evaluated the Fast Fourier Transform of this array, multiplied this by its complex conjugate

and performed the inverse transform. We then defined the ‘window function’ by setting cells

within the observational window equal to unity and setting those outside equal to zero: the

same algorithm was then applied to this array. If δ(x) denotes the density field with the
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mean subtracted (we ignore errors in the mean density, which will be discussed in Section

A3), and W (x) is the window function of the sample, then the observed density field is

δobs(x) =W (x)δ(x).

Fourier transforming

δ̂obs(k) = (Ŵ ∗ δ̂)k

and so the power-spectrum in two dimensions is

Pobs(k) = (Ŵ ∗ δ̂)k(Ŵ ∗ δ̂)−k.

The inverse FT of the power spectrum, f(x), is is

f(x) = F−1(P (k))

= F−1((Ŵ ∗ δ̂)k) ∗ F−1(Ŵ ∗ δ̂)−k)

= (Wδ ∗Wδ)(x)

where W (x) ≡ W (−x) and F−1 denotes the inverse Fourier transform. If the window is

uncorrelated with the true galaxy distribution,

f(x) =W ∗W (x) δ ∗ δ(x)
= 〈W (a)W (a+ x)〉 〈δ(a)δ(a+ x)〉 (A3)

and so f(x) is equal to the product of the correlation functions of the window function and

the galaxy density. The FT estimate of the correlation function wFT is therefore given by

dividing the inverse FT of the power spectrum of the data by that of the window function,

then radially averaging in bins of |x| to give w(θ).

We first evaluated the correlation functions with the ensemble and direct estimators for

a number of simulated Schmidt plates of 5◦ square using the SP0 simulation parameters.

This is of interest because several authors have published estimates of w(θ) from individual

Schmidt plates (see Section 4.2.1) and there has been some controversy concerning the

reliability of the results, for example whether the results are biased low because of the small

area used to define the mean surface density. Some typical results from our simulations

are shown in Figure A.2: there is substantial scatter between plates using the ensemble

estimator, but very much large scatter using the direct estimator. In both cases the mean

w(θ) of the 9 plates shown is biased significantly low relative to w(θ) for the whole area. The

large scatter for the direct estimator can be explained by edge effects as follows: in a finite

sample, cells have different numbers of neighbours separated by angle θ depending on their

proximity to the boundary, hence cells have different weights. For θ ∼< 0.5× the sample size,

cells at the edge have half the weight of those at the centre. For θ ∼> 0.5× the sample size,

central cells have zero weight whereas edge cells have high weights. If there are substantial

density variations on scales comparable to the sample size, then the mean density for central
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cells may differ from that of cells at the edges. Thus using a global estimate of the mean cell

count N is then inappropriate and introduces an error that is first order in δρ/ρ whereas

w(θ) is second order. Thus the direct estimator becomes unreliable if structures exist on

scales comparable to the sample area. This is discussed in further detail in Section A.3.

After averaging over the simulations, the estimates for both estimates are biased low.

For the direct estimator, with a total of NT galaxies in nc cells it is clear that an integral

constraint applies, as described in Section 2.2, since

N
2 ∑

i,j

w(θij) =
∑

i,j

(NiNj −N
2
) = N2

T − n2
c

(

NT

nc

)2

= 0.

The bias is second order in δρ/ρ. The ensemble estimator is also subject to an integral

constraint which leads to a bias that is second order in δρ/ρ, but in this case, the expression

for the bias is more complex (see Section A3).

We also evaluated each estimator of w(θ) for the full 60◦ cone for each of the simula-

tions. Results for simulations SP0, SP2 and SP4 are shown in Figure A.3. In each case the

ensemble and FT estimators are in excellent agreement with each other and with the ex-

pected behaviour built in to the simulation. For the SP0 model the break occurs at ∼ 1.5◦,

half the scale of the Lick survey, since the sample depth is about twice that of Lick. For SP2

and SP4 the break moves outward as expected, occurring very close to the noise for SP4.

The direct estimator agrees well for the SP0 simulation but is increasingly discrepant

for SP2 and SP4: this is because the added large-scale power results in fewer independent

structures in each simulation and so the edge effects become more important. This is

illustrated in Figure A.4 which shows results for three different realizations of the SP4

prescription; the direct estimator shows very large scatter between different realizations.

For the SPS simulation with an added large-scale gradient, both the ensemble and direct

estimators show a positive tail w(θ) ∼ 5× 10−3 as expected. This is plotted in Figure A5,

and shows that any ‘filtering’ of large-scale power arising from the ensemble estimator is

negligible (see Section A3).

We have also investigated the effect on w(θ) of fitting large-scale smoothing functions

to the galaxy counts (as in GP77): we fitted a two-dimensional cubic polynomial (i.e. a

bicubic spline with no knots) to the data map, divided the map by the polynomial and

multiplied by the previous mean density, then evaluated w(θ) using the ensemble estimator.

Some typical results for an SP4 simulation are shown in Figure A.6: the result is very close

to simply subtracting the correlation function of the spline from that of the data. This

moves the break to smaller angles and substantially steepens the slope beyond the break, so

the w(θ) for a spline-filtered SP4 simulation is quite similar to that for an SP0 simulation.

Slight anticorrelation is seen beyond the break as in GP77. This suggests that the GP77

smoothing functions may have removed some true signal from their correlation function

results.
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The conclusions of this section can be summarized as follows:

(i) The direct estimator displays large fluctuations which are of first order in the fluctua-

tions in the galaxy distribution and so dominate the estimates of w(θ) at large angles.

The fluctuations in ensemble estimator are of second order in δρ/ρ.

(ii) Both the ensemble and direct estimators are biased low by integral constraints on scales

comparable to the sample size.

(iii) The ensemble and FT estimators agree very well.

(iv) The ensemble estimator is very nearly unbiased and does not filter out large scale power

in the galaxy distribution as has sometimes been claimed.

(iii) Fitting large-scale smoothing functions to the observed galaxy distribution (cf GP77)

can remove power on intermediate scales, and move the break in w(θ) to smaller angles.

A.3 Mathematical Analysis of Estimators

Hamilton (1993a) has recently made a comprehensive mathematical analysis of estima-

tors of correlation functions and it is useful to summarize how his results relate to those

of the previous section. Denoting the window function of the survey as W , the observed

galaxy density is

N = NW (1 + δ), (A4)

where N is the mean surface density. The mean overdensity of the catalogue δ, the galaxy-

catalogue correlation function ψ(θ), and the windowed galaxy-galaxy correlation function

wc are defined by

δ =
〈Wδ〉
〈W 〉 , ψ =

〈W1δ1W2〉
〈W1W2〉

, wc =
〈W1δ1δ2W2〉
〈W1W2〉

. (A5)

The direct estimator is related to these quantities by

wD(θ) =
wc(θ) + 2ψ(θ)− 2δ − δ

2

(1 + δ)2
, (A6)

and the ensemble estimator gives

wE(θ) =
wc(θ)− ψ2(θ)

(1 + ψ(θ))2
, (A7)

(Hamilton 1993a). In our application, the window function is either zero or unity, hence

ψ(0) = δ, and so the two first order terms in equation A6 do not quite cancel leading

to a first-order error in δρ/ρ that depends on the distribution of galaxies relative to the

boundaries of the sample. This is why the direct estimator leads to such a large scatter

when applied to the simulations of the previous section.
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It is easy to apply this analysis to the Fourier transform estimator of w(θ) defined in

the previous section. This gives

wFT (θ) = wc(θ)− 2ψ(θ)δ − δ
2
, (A8)

and so differs from the true catalogue correlation function by second order terms. This is

why the FT and ensemble estimators agree so closely.

If we average over a large number of catalogues, the first order terms in equation (A6)

average to zero, but the expectation value of the second order term is the expected variance

of the overdensity within the field area

〈δ2〉 =
∫

W1W2 w(θ12) dΩ1dΩ2

[
∫

W1dΩ1]2
=

1

Ω2

∫

w(θ12) dΩ1dΩ2 (A9)

i.e. the mean of the direct estimate estimate differs from the true catalogue correlation

function by the integral constraint (equation 10) as discussed in Section 2.2.

Each of the estimators (A5) - (A7) is subject to an integral-type constraint leading to

a bias that is second order in δρ/ρ, for example, the ensemble estimator is biased low by

〈ψ2(r)〉 =
∫

W1W2W3W4 w(θ13) dΩ1dΩ2dΩ3dΩ4

[
∫

W1W2 dΩ1dΩ]2
, (A10)

whereW1 andW2, andW3 andW4 are separated by r. If the separation r is small compared

to the size of the sample, we can make the approximation W1 ≈ W2, W3 ≈ W4 and so

〈ψ2(r)〉 ≈ δ
2
, i.e. the offset is the same as for the direct estimator. This result is true for

all of the estimators considered here, including the estimator of equation (5) used for single

plate estimates in section 2.2. In summary, first order errors in the estimates of w(θ) will

average out over a large number of realizations leaving second order biases. At separations

small compared to the survey size, the bias is approximately equal to the variance of the

galaxy overdensity within the field, but at large separations the precise form of the correction

depends on the particular estimator used to measure w(θ).
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Figure 1. The filled circles show the mean of w(θ) for galaxies in the magnitude range

17 < bJ < 20 determined by applying the direct pair count estimator (equation 6) to 185

Schmidt fields using the galaxy counts on each individual plate to normalize w. The open

circles show the mean value of w(θ) using a global estimate of the mean surface density to

normalize w. The stars show how w(θ) changes if a constant, δ
2
= 1.4× 10−2 is added to

the filled circles to correct for the bias introduced by the integral constraint (equation 10).
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Figure 2. Estimates of w(θ) for galaxies with magnitudes in the range 17 < bJ < 20

plotted with logarithmic axes in Figure (2a) and linear axes in Figure (2b). The line shows

the estimate for the full area of the survey. The open circles at θ > 0.1◦ show the mean

of w(θ) derived by applying the ensemble estimator (equation 5) to four separate zones

of approximately equal area. The error bars show one standard deviation on the mean

determined from the zone-to-zone scatter. The filled circles at θ < 0.5◦ show the mean

of w(θ) and 1σ errors using the direct pair count estimator applied to 185 Schmidt plates

(plotted as the stars in Figure 1).
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Figure 3. Estimates of w(θ) for six disjoint magnitude slices in the range 17.0 < bJ < 20.5

derived from the central 120 plates of the survey at Galactic latitudes b < −50◦. For each

magnitude slice the angular correlation functions at θ > 0.4◦ are derived by applying the

ensemble estimator (equation 5) to the central part of the equal area maps. At θ < 0.4◦

w(θ) is derived by applying the direct pair count estimator to the 120 plates using a global

estimate of the mean surface density to normalize w.
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Figure 4. Angular correlation functions werr estimated from simulated maps which include

correlated overlap errors according to the modes (A)-(C) described in the text. The filled

circles show the inter-plate estimates of w and open circles show the intra-plate estimates.
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Figure 5. Inter- and intra-plate estimates of w(θ) for galaxies in the APM survey in the

magnitude range 17 < bJ < 20. The filled circles show the inter-plate estimates and open

circles show the intra-plate estimates. The error bars are derived from the scatter of four

nearly equal area zones.
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Figure 6. The position of the LCDRS fields relative to the UK Schmidt survey fields in the

APM survey area. The map is in an equal area projection centred on the South Galactic

Pole. A 5◦ square is plotted for each Schmidt field, and a dot is plotted for each LCDRS

galaxy. Each LCDRS field has an area of 1.5◦ × 3.0◦.

67



Figure 7. Magnitude residuals of the Las-Campanas-APM photometry plotted against

right ascension. The thick error bar plotted to the left shows the rms scatter of the points

about zero (0.051 magnitudes). The error bars on the points arise mainly from the scatter

in galaxy colours.
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Figure 8. The Las Campanas-APM magnitude residuals plotted against fluctuations in the

galaxy surface density in each APM field to a magnitude limit bJ = 20. The two outlying

points in Figure 7, APM fields 246 and 249, are indicated.
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Figure 9. The correlation function of Las Campanas-APM magnitude residuals (equation

24) plotted as a function of angle. The filled points show the correlation function of all

fields and the open circles show how the correlation function changes when the outlying

field F246 is removed. The error bars are computed from equation (25). The solid line

shows the Monte-Carlo model for mode [A] magnitude errors as described in Section 3.1.3.
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Figure 10. The Maddox et al CCD - APM magnitude residuals (ci − c in equation 27)

plotted against fluctuations in the galaxy surface density in each APM field to a magnitude

limit bJ = 20. The error bars show the rms fluctuation of the magnitude differences in each

sequence listed in the final column of Table 3. The outlying APM field 152 is indicated.
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Figure 11. Histograms illustrating the accuracy with which σAPM can be determined from

the Maddox et al CCD sequences. The diagrams show the distribution of σAPM from 10000

Monte-Carlo simulations of the Maddox et al CCD sequences as described in the text. The

solid histogram shows the distribution if the true value of σAPM = 0.045 and the dashed

histogram shows the distribution if the true value is σAPM = 0.080 as advocated by Fong

et al. (1992). The arrows show the values determined from the real data, 0.079 if all fields

are included and 0.063 if the outlying sequence on field 152 is excluded.
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Figure 12. The upper panel shows Maddox et al CCD - APM magnitude residuals plotted

against right ascension. The lower panel shows the fluctuations in the galaxy surface density

to bJ = 20 in the APM fields plotted against right ascension. The filled circles in the lower

panel show all fields in the APM survey and the open circles show only those fields in which

there is a Maddox et al CCD sequence.
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Figure 13. A scatter plot of the surface density of galaxies brighter than bJ = 20.5 on

each plate in number per square degree, plotted against the sequential number of each APM

scan.
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Figure 14. Inter-plate angular correlation functions for plate pairs scanned within 1 year

of each other (dashed line) and scanned more than one year appart (dot-dashed line). The

solid line shows the correlation function estimated from all galaxy pairs.
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Figure 15. A scatter plot of the surface density of galaxies brighter than bJ = 20.5 on

each plate in number per square degree plotted against the date of exposure of the Schmidt

plate. No significant trends in the number of galaxies are seen.
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Figure 16. The points show the galaxy autocorrelation function for galaxies 17.5 < bJ <

20.0 after correcting their magnitudes for the extinction estimated from the IRAS 100µm

flux. The solid line shows the correlation function from the uncorrected map as plotted in

Figure 2.
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Figure 17. The covariance function of Galactic obscuration over the APM survey area as

determined from IRAS maps of 100µm emission (see text for further details).
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Figure 18. The mean galaxy surface density in the magnitude range 17 ≤ bJ ≤ 20 plotted as

a function of declination. The open symbols show the density before applying the correction

for atmospheric extinction, and the filled symbols show the density after correction. The

changes in density are smaller than the variations caused by real structure in the galaxy

distribution. The dotted line shows the mean galaxy count averaged over the entire survey.
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Figure 19. The mean surface density of images in the galaxy sample in the magnitude

range 17 ≤ bJ ≤ 20 plotted as a function of galactic latitude after correcting for galactic

extinction. The dotted line shows the mean surface density. A small gradient can be seen,

amounting to about 10% in density from the high to low latitude limits of the survey. This

gradient arises because of the increase in the number of stellar blends at low latitudes that

are misclassified as galaxies.
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Figure 20. A scatter-plot of the surface density of galaxies with 20.0 > bJ > 17.0 against

the surface density of stars brighter than bJ = 20.5 . A point has been plotted for each

0.23◦ × 0.23◦ cell of equal area maps as described in Section 2.3. The dashed line shows the

mean galaxy density binned as a function of the stellar density, and the solid line is the best

fit quadratic.
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Figure 21. The mean surface density of galaxies as a function of galactic latitude after

applying the correction for the variations in contaminating fraction of stellar blends. The

dotted line shows the overall mean surface density. There is no significant gradient as a

function of galactic latitude.
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Figure 22. The solid points show w(θ) estimated from the fully corrected map of galaxies

with 17 < bJ < 20, including corrections for galactic obscuration, atmospheric extinction

and variations in the fraction of contaminating images. The solid line is the estimate from

the uncorrected galaxy map, as plotted in Figure 2. It can be seen that these corrections

have a very small effect.
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Figure 23. Estimates of w(θ) for six disjoint magnitude slices in the range 17 < bJ < 20.5

as in Figure 3 except here we have corrected the estimated of w(θ) for the various systematic

errors described in the text.
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Figure 24. The redshift distributions in three magnitude slices determined from deep

redshift surveys. The magnitude ranges and the number of galaxies, Ng, in each histogram

are given in each panel. The solid lines show the redshift distributions derived from equations

(38) and the dashed lines show the redshift distribution calculated from the model (equation

37) of Maddox et al. (1990c).
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Figure 25. Corrected estimates of w(θ) for the six disjoint magnitude slices from Figure

23 scaled to a magnitude limit bJ = 18.4 (approximately the depth of the Lick catalogue)

using the scaling factors given by equation 38 with ǫ = 0 and Ω = 1 (columns 4 and 5 of

Table 5).
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Figure 26. Figure (26a) shows the amplitude of w(θ) at θ = 1◦ plotted as a function of

magnitude limit for the six magnitude slices shown in Figure 23. The amplitude A was

determined by least squares power law fits as described in the text. Figure (26b) shows the

break angle θbreak, as defined in the text, plotted against magnitude limit for the six slices.

The solid lines show the predictions of the scaling relation based on equation (38) with ǫ = 0

and Ω0 = 1.
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Figure 27. The solid points in Figure (27a) show the APM w(θ) with 1σ errors for the

magnitude slice 17 ≤ bJ ≤ 20, as plotted in Figure (2a). The open circles show w(θ)

estimated from the EDSGC limited at bJ = 19.5 from Figure 2 of Collins et al. (1992)

scaled to the APM results as described in the text. The dotted lines show the corrected

EDSGC w(θ) from Figure 7 of Nichol and Collins (1993) scaled to the APM results. In

Figure (27b) we plot separately the w(θ) estimates for the four zones of the APM Survey,

each of which has about the same area as the EDSGC.
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Figure 28. Estimates of w(θ) (solid points) for APM galaxies in the magnitude slice

17 < bJ < 20 scaled to the depth of the Lick Survey. The open symbols show the GP77

estimates of w(θ) for the Lick survey after filtering the Lick counts (Figure 28a) and before

filtering (Figure 28b).
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Figure 29. The effect on w(θ) of filtering the APM maps. For each magnitude slice

(shown with the same symbols as in Figures 3 and 23) we fitted a bi-cubic spline to the

map of galaxy density and then multiplied by the inverse of the fit before calculating the

plotted w(θ). Figure (29a) shows the angular correlations of the six magnitude slices after

filtering. For the brighter slices, the break in w(θ) is dramatically steepened compared to

the unfiltered results plotted in Figure (23). The measurements for the fainter slices are

hardly changed by the filtering. Figure (29b) shows the scaling test applied to the filtered

estimates of w(θ), as in Figure 25.
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Figure 30. The correlation functions from the five brighter slices after subtracting the

correlation function of the faintest slice. The correlation functions have been scaled to a

common depth as in Figure 25. This correction provides a gross overestimate of the errors in

w(θ) since it requires that all of the observed correlations of the faint galaxies are produced

by systematic errors. However, even in this extreme case, the scaled estimates of w(θ) for

the brightest three slices are in reasonable agreement, showing significant clustering between

scaled angles of 5◦ and 10◦.
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Figure 31. The APM w(θ) estimates for the magnitude slice 17 < bJ < 20 compared

with the predictions of a family of CDM-like models. The theoretical predictions are com-

puted from the linear theory power spectrum (equation 40), where the parameter Γ = Ω0h.

The power spectra have been normalized so that the rms fluctuations in spheres of radius

8 h−1Mpc is σ8 = 0.9. We plot curves for Γ = 0.1, 0.2, 0.3, 0.4 and 0.5 (from top to bottom).

The arrow marks the angular scale corresponding to a physical separation of ≈ 5h−1Mpc

at the median depth of the survey.
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Figure 32. Figure 32a shows the three-dimensional power spectrum derived by inverting

the APM angular correlation function as described in the text. The dotted lines show the

inversion of P (k) for 4 nearly equal area zones. The filled circles show the means of the

these estimates together with 1σ error bars. The thick solid line shows the power spectrum

by inverting w(θ) estimated from the full survey area. Figure 32b shows a check of the

inversion. The solid line is computed from equation (42a) using the power spectrum plotted

as the thick solid line in Figure 32a and reproduces the angular correlation function (shown

by the filled symbols) used in the inversion.
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Figure 33. The points show the three-dimensional power spectrum from the APM survey

together with 1σ errors, as in Figure 32. The curves show the family of linear theory CDM

power spectra (equation 40) with Γ = 0.1, 0.2, 0.3, 0.4 and 0.5 from top to bottom. The

CDM power spectra have been normalized to σ8 = 1.
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Figure 34. The APM power spectrum compared with the power spectra determined from

N-body simulations as described in the text. The simulations are normalized to match

approximately the amplitude of the microwave background anistropies detected by COBE;

the values of σ8 for the mass fluctuations in each model are given in the figure. The curves

show the power spectra of the mass fluctuations; for the MDM model we have multiplied

the power spectrum by a biasing factor b2, with b = 1.3, to match the observations.
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Figure 35. The APM power spectrum compared with the power spectra determined from

redshift surveys. The open circles shows the power spectrum of IRAS galaxies, as determined

by Tadros & Efstathiou (1995a). The open triangles show the power spectrum of optically

selected galaxies determined by Park et al. (1994) from a volume limited subset of the CfA-2

survey (see text for details). The error bars on the points show 1σ errors. The curves show

the power spectra of the N-body simulations of Figure 33 determined in redshift space.
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Figure A1. Greyscale maps showing the galaxy density in a variety of simulated galaxy

catalogues constructed using the Soneira-Peebles prescription. The simulated cones are 60◦

in diameter. (a) SP0; (b) SP2; (c) SP4; (d) SPS. Details of the model parameters are given

in the text.
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Figure A2. “Single plate estimates” from the SP2 simulations (a) using the ensemble

estimator; (b) using the direct estimator.
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Figure A3. Measurements of w(θ) using the ensemble estimator, the FFT estimator and

the direct estimator for three different types of models (a) SP0; (b) SP2; and (c) SP4.

Details of the models are given in the text.
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Figure A4. Measurements of w(θ) from three different SP4 realizations using the direct

estimator (dotted lines) and the ensemble estimator (solid lines).
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Figure A5. The results of using different estimators for simulations including a linear

gradient. The lines show the direct, ensemble, and FFT estimates of w(θ) from an SPS

simulation, as described in the text.
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Figure A6. The effects of removing large-scale structure using spline fits. The solid line

shows w(θ) from the SP4 simulation. The dashed line shows w(θ) from the same simulation

after subtracting a bicubic spline fitted to the original simulation. For comparison the dotted

line shows w(θ) for an SP0 simulation.
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