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2 Distribution of Peculiar Velocities

ABSTRACT

We give the �rst determination of the observed peculiar velocity distribution

function for a representative sample of galaxies which includes a wide range of clus-

tering properties. We explore in detail the e�ects of uncertainties in sampling and in

distance measures on the estimated distribution function. The observed distribution

function is consistent with an earlier prediction of gravitational clustering, over the

entire range of peculiar velocities, from �eld galaxies to rich clusters, on scales up to

50h

�1

100

Mpc. In the simplest consistent model, most of the inhomogeneous mass of

the Universe is in galaxies or their halos.

We estimate the \Mach Number" for the bulk ow within 50h

�1

100

Mpc from us

to be M = �v

r

=hv

2

r

i

1

2

= 599=717 ' 0:8, which includes the e�ect of high-dispersion

galaxies in clusters. The observed velocity distribution function agrees quantitatively

with N-body simulations with 


0

= 1. Further comparisons of the observed distri-

bution with N-body simulations will provide a new technique for measuring H

0

and




0

. These results provide new tests for all models of galaxy clustering.

Subject headings: cosmology: observations { galaxies: clustering { galaxies:

formation { galaxies: distances & redshifts { cosmology: large scale structure

of the Universe

1. INTRODUCTION

The velocity distribution function f(v) dv, de�ned as the probability of �nding a galaxy

with peculiar velocity (relative to the Hubble ow) between v and v + dv, is a fundamental

astronomical property of our universe which has not been measured previously for a fair sample of

galaxy peculiar velocities. It is particularly important for understanding the clustering processes

that have resulted in the observed non-uniform spatial distribution of galaxies. In the case of a

perfect gas, f(v) dv would be a Maxwell-Boltzmann distribution. Observed departures from the

Maxwell-Boltzmann form of the velocity distribution provide insights into its origin.

Only in the last few years have secondary distance indicators (D

n

-�, Tully-Fisher) yielded

distances to galaxies with uncertainties �20%, thus enabling peculiar velocities to be measured

beyond the local Supercluster. Studies of the distribution function of peculiar velocities require a

large representative sample of galaxies without any a priori selection related to clustering. In this

respect, for example, the Aaronson et al. (1986) sample of peculiar velocities of spirals belonging

to rich clusters would give biased estimates of f(v) dv. However, a sample of peculiar velocities of
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>1300 spirals chosen without regard to their clustering properties (Mathewson et al. 1992) appears

to be a promising database for a �rst analysis of the distribution of radial peculiar velocities

f(v

r

) dv

r

.

A theory of gravitational galaxy clustering, in which most of the dynamically important

mass in the Universe is assumed to be in galaxies or their halos, makes an explicit prediction

(Saslaw et al. 1990) for the distribution function f(v

r

) dv

r

. This is in a form which can readily be

compared with the observed distribution.

In Section 2 we describe the data used in our analyses. Section 3 gives results for f(v

r

) dv

r

and compares them with a Maxwell-Boltzmann distribution and with the prediction of gravita-

tional clustering. Section 4 discusses the e�ects of uncertainties in sample selection or distance

measurement on our results, and in Section 5, we look at some further cosmological implications

of our results.

2. THE SAMPLES OF OBSERVED PECULIAR VELOCITIES

2.1 The Mathewson et al. catalog of Spiral Galaxies

The Mathewson et al. (1992) sample consists of peculiar velocities of 1353 spirals with

redshift <7000 km s

�1

. It covers about one-fourth of the sky, the distances to the spirals being

measured using the I-band Tully-Fisher relation. All late spirals (Sb{Sd) in the ESO catalog with

major diameter > 1:7 arcmin, inclination > 40

�

and Galactic latitude jbj > 11

�

were included

in their list. Their list, however, also included some galaxies from the observations of Haynes

and Giovanelli, plus a \sprinkling" of spirals beyond 7000 km s

�1

, many of which have smaller

diameters and lower inclinations.

To extract a well-de�ned sample from the Mathewson et al. list, we chose only the galaxies

with major diameter � 1 arcmin and disk inclination I � 35

�

(so that the inclination corrections

to magnitudes and rotational velocities are not too high). On the sky, we spatially restricted the

sample to the area of the sky bounded by (240

�

< l � 330

�

, 11

�

< b � 45

�

), (330

�

� l � 350

�

,

30

�

� b � 45

�

) , (350

�

� l � 35

�

, b < 30

�

) , and (210

�

� l < 350

�

, b < �11

�

), since the sample

appears less complete elsewhere. We corrected the total I-band magnitudes for internal extinction

according to the prescription of Pierce and Tully (1988), and also for Galactic extinction (Burstein

and Heiles 1982), using A

I

= 0:44A

B

.

We calculate distances to galaxies in our sample using the Tully-Fisher relation (1) below,

correcting for a uniform Malmquist bias

1

corresponding to � = 0:36, which means relative distances

1

The e�ect of inhomogeneous Malmquist bias on the measured distances is discussed in

Appendix
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for single galaxies are accurate to about 18%. In addition, we assign the spirals within 2.5h

�1

75

Mpc

of the center of the clusters Fornax, A1060, Antlia, Cen30 and Cen45 to the mean distance of the

cluster. For these galaxies (only 94 out of our sample of 825), the corresponding Malmquist bias

used is

1

N

times that for a single galaxy, where N is the number of spirals in our sample belonging

to that cluster (Lynden-Bell et al. 1988).

In the rest of the paper, wherever we quote distances in units of km s

�1

, or calculate

peculiar velocities, we will use H

0

= 75 km s

�1

Mpc

�1

, which is consistent with the distance to

the Fornax cluster we use to calibrate our TF relation. Radial velocities are measured, unless

otherwise stated, in the CMB frame.

2.2 Calibration of the Tully-Fisher Relation

Both Willick et al. (1995), who have published preliminary results from their \Mark III"

catalog of peculiar velocities, and Mathewson et al. (1992) calibrate their Tully-Fisher relation on

several clusters of galaxies, assuming that the spirals within some angular distance of the center

of each cluster are at the distance of the respective cluster. However, the work of Bernstein et al.

(1994) and Raychaudhury et al. (1995) shows that in several clusters, including Coma and A2634,

which Willick et al. use to calibrate their TF relation, most of the galaxies bound to the core

of the cluster are too gas-poor to allow Tully-Fisher calibration. Here, in order to decide which

clusters to use for calibration, we perform a simple test.

Table 1: Spirals within 2.5h

�1

75

Mpc of the centers of clusters

Cluster Number of Dispersion about TF relation if galaxies at

galaxies

same distance redshift distance

Fornax 10 0.23 0.54

Hydra 16 0.26 0.26

Antlia 20 0.43 0.37

Sculptor 20 0.75 0.46

Eridanus 11 0.78 0.78

Pegasus 11 0.41 0.30
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For each of the major clusters in the Mathewson et al. list, we choose all galaxies that lie

within 2:5h

�1

75

Mpc of its center on the sky (calculated at the mean redshift of the cluster), and

have a redshift within �1000 km/s of the mean redshift. We eliminated a few galaxies from this

list on inspecting their rotation curves because they were found to be rising at both ends. For

each cluster, we calculate the dispersion of the magnitudes about the best-�t Tully-Fisher relation,

assuming all galaxies are at the same distance. We then repeat the exercise for the same galaxies

but assuming that each galaxy lies at a distance proportional to its redshift. These values are

shown in Table 1. In order to calibrate the TF relation on spirals in a cluster, it is necessary

to assume they are at the same distance. This assumption might not be true for the clusters

Sculptor, Eridanus or Pegasus, for which the dispersion if distances are proportional to redshift is

considerably lower than if the galaxies are assumed to be at their cluster centers.

Therefore our calibration uses only the three spiral-rich clusters that satisfy the criterion

that the value of the dispersion in column 3 of Table 1 is not signi�cantly higher than that in

column 4, and is less than 0.5 mag. We use 46 galaxies in three clusters (Fornax, A1060=Hydra I

and Antlia) to calibrate the Tully-Fisher relation that we will use in this paper to calculate

distances. To the samples of 10 galaxies in Fornax, 16 in A1060 and 20 in Antlia, we �t Tully-

Fisher relations (Figure 1) of the form s = �I + �, where s = log �v is corrected for inclination,

and I is the apparent I-magnitude corrected for extinction e�ects. The dotted lines represent the

best-�t TF relations to each data set, where both � and � were allowed to vary. However, we

preferred to force � to be the same in all three cases, and used linear regression on s to �nd one

value of � and a di�erent � for each cluster, the latter reecting their distance.

McMillan et al. (1993) have found the distance modulus to the Fornax cluster from planetary

nebulae to be � = 31:14�0.14. We use this to calibrate the zero-point, which, together with the

slope as obtained above, gives the Tully-Fisher relation,

s = �0:121M

I

� 0:43 (1)

for the Fornax cluster, where M

I

is the absolute magnitude of a galaxy in the I-band.

The value for the scatter in magnitude of the TF relation is obtained using

� =

s

P

N

i=1

(M

I;i

�M

0

I;i

)

2

N � 4

;

where M

0

I;i

is the expected value of the magnitude of the galaxy from (1). From all N = 46

galaxies, we obtain � = 0:36 mag. This is not very di�erent from the � = 0:32 mag obtained by

Mathewson et al.

2.3 The \Seven Samurai" catalog of Elliptical galaxies
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Figure 1: The I-band Tully-Fisher relation for galaxies belonging to three

clusters of galaxies (Squares: Fornax; Filled Circles: Hydra I (A1060) and

Open Circles: Antlia) in the Mathewson et al. (1992) catalog. All galaxies

belonging to the same cluster are assumed to be at the same distance. The

dotted lines are the best-�t Tully-Fisher relations for the individual clusters.

The solid lines result if all clusters are required to give the same slope.

The \Seven Samurai" sample (Burstein et al. 1987, Dressler et al. 1987, Lynden-Bell et al.

1988) of galaxies consists of 449 elliptical galaxies chosen from all over the sky, for which distances

were measured using the D

n

� � relation. The dispersion in the logarithm of measured distance

was � = 0:21. In this paper, we also calculate f (v

r

) for this set of data, using a subsample

consisting of the 376 elliptical galaxies with D < 5000 km/s, chosen from Burstein's \Mark II"

catalogue (privately circulated), based mainly on the Seven Samurai sample, with a few ellipticals

included in addition. We will however base most of our analyses in this paper on the Mathewson
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et al. sample because spirals are more representatively distributed, whereas the Seven Samurai

sample of ellipticals might preferentially sample high density environments.

3. THE RADIAL VELOCITY DISTRIBUTION FUNCTION:

OBSERVATIONS COMPARED WITH THEORY

It is now well-established that galaxies within a radius of 5000 km s

�1

around us participate

in a bulk ow across the whole volume over and above the Hubble expansion (Lynden-Bell et al.

1988, Courteau et al. 1993). This is presumably caused by gravitational e�ects of overdense regions

outside this \local" volume. Since the physical model of f(v) dv which we compare with the

observations does not include bulk ows, we must �rst remove the bulk ow from the Mathewson

et al. sample. Since this sample does not cover the whole sky, the mean value of its peculiar

velocities would not give a reliable measure of the bulk ow.

The most accurate method presently available for this is to subtract the mean bulk motion

of 599�104 km s

�1

toward l = 312

�

�11

�

, b = 6

�

�10

�

found in the analysis of Dressler et al. (1987)

of the all-sky sample of 289 elliptical galaxies with v

obs

< 6000 km s

�1

, a subset of the \Seven

Samurai" catalog referred to in x2.3. This assumes that the spirals in our sample participate in

the same bulk motion as a sample of ellipticals in the same volume of space, which would be

the case if these motions were purely gravitational in origin. A more recent estimate of the local

value of this bulk motion comes from a study of 353 Sb-Sc spirals from the UGC catalog, with

distances measured using an r-band Tully-Fisher relation (Courteau et al. 1993). They obtain a

bulk motion of 360�40 km s

�1

toward l = 294

�

, b = 0

�

out to 6000 km/s. We will use both these

estimates to show the e�ect of the bulk ow subtraction from our sample on our results.

Alternatively, we may correct for a bulk motion of the local rest frame by subtracting an

average displacement velocity rH

0

from each galaxy, such that the average peculiar velocity for

the sample hv � rH

0

i = 0. This determines an e�ective local value for H

0

in the sample, and

tends to increase the net velocity dispersion of the sample. We will compare the results of both

corrections.

We will also compare the observed distribution function with two theoretical distributions.

The �rst is a prediction for non-linear gravitational clustering (Saslaw et al. 1990, Inagaki et al.

1992, Itoh et al. 1993). For the quasi-equilibrium gravitational clustering of point-mass galaxies

in the expanding Universe, the gravitational distribution of radial peculiar velocities has the form

(Inagaki, Itoh & Saslaw, 1992)

f(v

r

) = �

2

�(1 � b) exp [��� (1 � b)]

�

Z

1

0

v

?

p

v

2

r

+ v

?

2

[�� (1 � b) + � (v

2

r

+ v

?

2

)b]

� (v

2

r

+v

?

2

)�1

� [� (v

2

r

+ v

?

2

) + 1]

� exp [��b (v

2

r

+ v

?

2

)] dv

?

; (2)
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Figure 2: The observed distribution (solid histogram) of radial peculiar ve-

locities (unit: 1000 km/s) for our selected subsample of the Mathewson et al.

catalog. In (a), the peculiar velocities have been corrected for the Dressler

et al. (1986) bulk motion of 599 km s

�1

. The error bars are explained in

Section 3. In (b), the peculiar velocities have been corrected for an extra

Hubble expansion as discussed in Section 3. The dotted line in each case

is the Maxwell-Boltzmann distribution with the same velocity dispersion as

the sample. The solid line is the best-�tting gravitational distribution, whose

parameters are given in the upper right-hand corner.

where v

r

and v

?

are the radial and transverse components of the peculiar velocity of a galaxy,

and �(x) is the standard Gamma Function. The quantities �, � and b are determined by the

gravitational theory, but here we shall consider them to be parameters found by �tting (2) to

the observed distribution. Secondly, we will consider a Maxwell-Boltzmann distribution, since the

di�erence between these two distributions illustrates the departure from an uncorrelated system.

Figures 2 show the velocity distributions of the sample of Mathewson et al. spirals in our

chosen region (x2.1) with distance D � 5000 km s

�1

. In Figure 2a, the detailed bulk ow obtained

by Dressler et al. is subtracted. The histogram shown is the mean of 10000 histograms, each

calculated from a randomly selected subsample consisting of two-thirds of the entire sample of 825

galaxies. The mean histogram is identical to the corresponding histogram for the entire sample

with the same binning. The plotted errors are the values for the standard deviation obtained for
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each bin from the 10000 subsamples. We do this exercise only for this plot, to show the typical

magnitude of sampling errors. The solid line is the gravitational velocity distributions (2) with

the corresponding values of the best-�t parameters given in the upper right of each panel. For

this �gure only, we have set � = 3hv

2

r

i; in the rest of the paper, � will be a free parameter. Also,

in most of the subsequent plots, we will only show histograms for the entire sample without error

bars.

In Figure 2b, instead of the bulk ow, an extra Hubble expansion is subtracted from the

observed peculiar velocities such that hv

r

� rHi = 0, which requires H = 92 km s

�1

Mpc

�1

.

Although this is slightly higher than the value of H

0

= 75 km s

�1

Mpc

�1

we use here, this

represents an e�ective local value of H

0

, and in the presence of bulk ows does not give the true

value of the Hubble constant. The dotted lines in both cases are Maxwell-Boltzmann distributions

with the same hv

2

r

i as the data.

It is clear that the predicted gravitational distribution gives a good �t to the data over the

entire range from �eld galaxies to those in rich clusters (e.g., the Chi-square parameter Q = 1:0

for Figure 2a). The Maxwell-Boltzmann distribution, however, fails to represent the large number

of low velocity galaxies (mainly �eld galaxies) in the peak, and systematically gives too many

intermediate velocity galaxies.

We have examined f(v

r

) for a more clustered subset, containing 194 of these spirals, which

consists of all spirals lying within a cone of radius 3h

�1

75

Mpc of the center of each cluster given

in Table 3 of Mathewson et al. (at the mean redshift of the cluster). Although there is some

contamination from projection, more rigorous de�nitions of galaxies in clusters are di�cult due

to incomplete redshift information for all galaxies in the volume we explore here. The velocity

distribution for this more clustered subsample is much closer to a Maxwell-Boltzmann distribution

than that for the total sample shown in Figure 2.

We also examined f(v

r

) for the \Seven Samurai" all-sky sample (described above in x2.3)

of 376 elliptical galaxies with distance D < 5000 km s

�1

(Figure 3), Apart from being more

irregular because of its small number of galaxies, the tails of this distribution are signi�cantly

skewed towards negative velocities. These properties may be caused by the preferential tendency

of ellipticals to cluster (e.g. Lahav & Saslaw 1992, Dressler 1980) and by chance uctuations in

the number, positions, and relative velocities of rich clusters in this small sample. Again there is

a clear departure from the Maxwell-Boltzmann distribution.

4. EFFECTS OF SAMPLE SELECTION AND OTHER UNCERTAINTIES

It is clearly important to examine how systematic e�ects and uncertainties in the data a�ect

the velocity distribution function. We shall discuss the sources of error here with reference to the
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Figure 3: The distribution of radial peculiar velocities (unit: 1000 km/s) for

all elliptical galaxies in the \Seven Samurai" sample with distance D < 5000

km s

�1

. The dotted line is the Maxwell-Boltzmann distribution with the same

velocity dispersion as the sample. The solid line is the best-�tting gravita-

tional distribution, whose parameters are in the upper right-hand corner.

Mathewson et al. sample (MFB) that we use in Figure 2. We have already discussed the sampling

errors in x3, which are reected in the error bars drawn in Figure 2a.

4.1 Limiting by redshift instead of distance

In Figures 2, we limited our sample of galaxies by measured distance, in spite of the fact

our distances are more uncertain than the redshifts of the galaxies. Limiting a sample by redshift,

however, introduces a systematic bias in the peculiar velocity distribution as clearly shown in Set
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Figure 4: The e�ect of limiting the sample by redshift rather than measured

distance. This plot is similar to Figure 2a, but shows all galaxies with V <

5000 km/s instead. The dotted line is the Maxwell-Boltzmann distribution

with the same velocity dispersion as the sample. The solid line is the best-

�tting gravitational distribution, whose parameters are in the upper right-

hand corner.

#5 of Table 2. However, in Figure 4 we show that for the 780 galaxies satisfying the condition

v

CMB

� 5000 km s

�1

, the results are not substantially di�erent from Figure 2a as far as the

velocity distribution function is concerned.

4.2 Bulk Flow subtraction

The second uncertainty arises from the error in the subtraction of the bulk ow from the

individual peculiar velocities. This is particularly important since the MFB sample does not cover
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Table 2 goes here
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Figure 5: The radial velocity distribution function of the same galaxy sam-

ple as in Figure 2, but with a di�erent bulk ow subtraction (360�40 km s

�1

toward l = 294

�

, b = 0

�

, Courteau et al. 1993). The histogram is not sym-

metric about v

r

= 0, which might indicate that the subtracted bulk ow is

too small in amplitude. The dotted line is the Maxwell-Boltzmann distri-

bution with the same velocity dispersion as the sample. The solid line is

the best-�tting gravitational distribution, whose parameters are in the upper

right-hand corner.

Figure 6: The e�ect of the slope and scatter of the Tully-Fisher relation on

the observed distribution function. With the sample of Figure 2a, we now use

a Tully-Fisher relation with a shallower slope (a = 6:7, I vs s), and larger

dispersion (0:45 mag), obtained from Willick et al. (Private communication).

The dotted line is the Maxwell-Boltzmann distribution with the same veloc-

ity dispersion as the sample. The solid line is the best-�tting gravitational

distribution, whose parameters are in the upper right-hand corner.

the whole sky. Without this subtraction, the histogram of f (v

r

) is centered at v

r

' 500 km/s. If

instead of the Dressler et al. estimate of the bulk ow that we use in Figure 2a, we use another

recent estimate (Courteau et al. 1993), of 360 � 40 km s

�1

toward l = 294

�

, b = 0

�

, we obtain

Figure 5. The histogram is not symmetric about v

r

= 0, which indicates that the subtracted bulk
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ow might be too small. However, the results are qualitatively similar to those in Figure 2a.

4.3 A different Tully-Fisher relation

The third uncertainty arises from our �t (Equation 1) to the Tully-Fisher relation. Note

that the dispersion in the TF relation we use here � = 0:36 mag is almost the same as MFB's own

estimate (� = 0:32 mag), but considerably less than some other recent estimates (� = 0:45 mag,

Willick et al., private communication; or 0.5{0.6 mag, Federspiel et al. 1994). Instead of choosing

the whole MFB sample, we have selected a subsample that is more homogeneous, and yet not

biased a priori for clustering, as described in x2. In this section, we investigate how di�erent

values of the slope and intercept in the TF relation a�ect our f(v

r

) dv

r

.

We have recomputed (Figure 6) f(v

r

) dv

r

for a Tully-Fisher relation of the form I = as+ b,

with the slope a = 6:7 and dispersion 0:45 mag, which is the most recent estimate of Willick

et al. (private communication) from a re-analysis of the Mathewson et al. sample. Here we follow

Willick et al. and use the Courteau et al. correction for bulk ow (x4.2), as in the previous section.

The increased uncertainty in distance measurements results in a decreased di�erence between the

relevant Maxwell-Boltzmann distribution and the best �t to (2), but the latter is still a better �t.

4.4 Random errors in peculiar velocity

To test how robust the velocity distribution is to random peculiar velocity errors, we added

random radial velocities, drawn from a Gaussian distribution with � = 400 km/s, to each peculiar

radial velocity in the homogeneous subsample of Figure 2a. The result (Figure 7) broadened

the distribution from �=1.5 to �=2.3 (the value of b remaining at �0.9), and increased the

resemblance of the homogeneous subsample to the entire Mathewson et al. sample, and to a

Maxwell-Boltzmann distribution. However, to a�ect the observational result substantially, the

random errors are required to have a dispersion much more than 0.5 times the value of hv

r

i for

the data, which is unrealistically large.

4.5 Random errors in distance measures

The �fth uncertainty arises from random errors in the TF magnitudes for galaxies in our

subsample. Often it is thought that because distances are exponentially related to magnitudes, a

Gaussian distribution of magnitude errors will produce a lognormal distribution in distance (and

therefore of peculiar velocity) errors. The actual situation is more complicated, however, and

the lognormal distribution for distance errors departs from a Gaussian only when the fractional

distance errors become large.

To see this, consider a simple model which illustrates how observational errors �M in the

inferred absolute magnitude M

0

of the galaxies a�ect the distribution f (v

r

) for galaxies at a given
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Figure 7: The e�ect of measurement errors in peculiar velocity on the dis-

tribution function. To each peculiar velocity in Figure 2a, we add random

radial velocities drawn from a Gaussian distribution with � = 400 km/s.

This increases the resemblance of the homogeneous subsample to a Maxwell-

Boltzmann distribution. In order to a�ect the observational result substan-

tially, � for the random errors must be�0.5 times the value of � for the data.

The dotted line is the Maxwell-Boltzmann distribution with the same veloc-

ity dispersion as the sample. The solid line is the best-�tting gravitational

distribution, whose parameters are in the upper right-hand corner.

distance r

0

. The distance r (in Mpc), which an observer will ascribe to a galaxy of apparent

magnitude m is

r = 10

�5

:10

0:2 [m�(M

0

+�M)]

= r

0

exp (�a�M ); (3)
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Figure 8: The e�ect of random errors in distance measurements on the pe-

culiar velocity distribution. The measured redshifts and magnitudes of the

galaxies are perturbed by random quantities as discussed in x4.5. This demon-

strates that even the largest distance errors expected due to the dispersion in

the Tully-Fisher relation fail to destroy the departure of the observed distri-

bution function from a Maxwell-Boltzmann distribution. The dotted line is

the Maxwell-Boltzmann distribution with the same velocity dispersion as the

sample. The dashed line is the best-�t gravitational quasi-equilibrium model

from Figure 2a. The solid line is the best-�tting gravitational distribution,

whose parameters are in the upper right-hand corner.

where a = 0:46, and log

10

r

0

= 0:2 (m �M

0

) � 5. Let

r = r

0

(1 �

�r

r

0

) (4)
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de�ne the distance error �r, so that using Equation (3),

�r = r

0

[1� exp (�a�M )]: (5)

An observer will therefore ascribe a peculiar velocity v

pec

to the galaxy, including the error �r, of

v

pec

= v

z

� rH

= v

z

� r

0

(1 �

�r

r

0

)H

= v

z

� v

Hubble

+ (�r)H: (6)

Since v

z

is the measured redshift velocity (assuming no error) and r is the distance where an

observer believes the galaxy to be, including the e�ect of �M on �r, an error �M > 0 that

makes the galaxy seem intrinsically fainter than it actually is will add to v

pec

. If a galaxy seems

intrinsically fainter than it is, �r > 0, and from Equation (4) its actual distance r

0

will be greater

than the ascribed distance r.

Now suppose the distribution of �M for galaxies at r

0

is a Gaussian of dispersion �

2

M

centered at zero. Then from (5),

�M = �

1

a

ln (1 �

�r

r

0

) (7)

so that the absolute value of the Jacobian is

�

�

�

@(�M )

@(�r)

�

�

�

=

1

a (r

0

��r)

(8)

for �r < r

0

and thus

f (�r) =

1

p

2��

2

M

a

2

r

2

0

1

(1 �

�r

r

0

)

exp

h

�

1

2�

2

M

a

2

ln

2

(1 �

�r

r

0

)

i

: (9)

This is indeed a lognormal distribution, but in (1 �

�r

r

0

) rather than in

�r

r

0

directly.

Finally, since �v

pec

= v

pec

� (v

z

�v

Hubble

) = H�r from (6); and the actual Hubble velocity

is v

0

= v

Hubble

= Hr

0

, we have

�v

pec

v

0

=

�r

r

0

: (10)

Therefore f (

�v

pec

v

0

) is lognormal in (1 �

�v

pec

v

0

).

The most probable value of

�v

pec

v

0

=

�r

r

0

' a �

M

' 0:2, using �

M

= 0:4 and a = 0:46.

Expanding (9) for f (�v

pec

) for small �v

pec

gives

f (�v

pec

) =

1

p

2��

2

M

a

2

v

2

0

h

1 +

�v

pec

v

0

+

�

�v

pec

v

0

�

2

+ : : :

i

�

exp

"

�

1

2�

2

M

a

2

�

�v

pec

v

0

�

2

h

1 +

�v

pec

v

0

+

11

12

�

�v

pec

v

0

�

2

+ : : :

i

#

: (11)
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Therefore if the errors in the TF magnitudes for galaxies at r

0

produce errors in the peculiar

velocities which are small compared to the Hubble velocity r

0

H, the distribution of these peculiar

velocity errors is essentially Gaussian (Maxwell-Boltzmann Distribution).

As the peculiar velocity errors become larger, the inuence of the

�v

pec

v

0

term makes the error

distribution asymmetric. There does not seem to be any signi�cant asymmetry in the observed

f (v

pec

). Moreover, if the true peculiar velocity distribution were Gaussian, it would convolve with

a Gaussian error distribution to give an observed Gaussian peculiar velocity distribution, which is,

however, not observed. This suggests that the observed departures from a Gaussian in Figures 2{3

are probably not dominated by errors in the TF magnitudes.

We can examine this further with a more detailed simulation, using the data directly. We

start with the observed redshifts of the 825 galaxies in Figure 2a. To each of them, we add a

velocity chosen at random from the Maxwell-Boltzmann distribution (dotted line) in Figure 2a.

This gives us a more randomized sample in which to examine the e�ects of magnitude errors.

These partially randomized velocities give new redshift distances. These new redshift distances

are then perturbed by magnitude errors �M using Equation (3) with �M drawn at random from

a Gaussian having � = 0:5 mag. Subtracting these magnitude-perturbed randomized redshift

distances from the originally observed redshift distances, we obtain a new set of peculiar velocities

(relative to the CMB) incorporating greatly enhanced magnitude and velocity errors. Figure 8

shows the velocity distribution function for these new peculiar velocities, resulting from both

Gaussian velocity perturbations and Gaussian TF magnitude perturbations. It is broader and

much less strongly peaked than the originally observed f (v

r

), which is represented here from Fig

2a as the dashed line. The Maxwell-Boltzmann distribution that best �ts the perturbed f (v

r

) is

also shown. This demonstrates that even the largest distance errors expected due to the dispersion

in the Tully-Fisher relation fail to destroy the departure of the observed distribution function from

a Maxwell{Boltzmann distribution. It also suggests that the true f (v

r

) may be somewhat more

peaked than the observed one.

4.6 Systematic errors in distance measures

Here we estimate the contributions of systematic errors in the measures of peculiar velocity

that arise from distance measurement errors that increase with the distance of the galaxy. We

would like to examine whether such errors lead distributions to be more centrally peaked than the

Maxwell-Boltzmann distributions, as seen in the observed samples.

For each of the 825 galaxies used in Figure 2a, we replace its peculiar velocity with a value

randomly drawn from a Gaussian distribution with � = 500 km s

�1

, which is smaller than in our

observed sample. The dashed line in Figure 9 shows the distribution of peculiar velocities. We

retain the original positions and distances, so that there are exactly the same number of galaxies
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Figure 9: The e�ect of distance-dependent measurement errors on the distri-

bution function. The dashed line is a Maxwell-Boltzmann distribution with

� = 500 km s

�1

. This distribution is perturbed by magnitude errors that

are proportional to the distance of each galaxy, calculated as detailed in x4.6.

The dotted line is the Maxwell-Boltzmann distribution with the same velocity

dispersion as the sample. The resultant histogram is less peaked in the center

than the Maxwell-Boltzmann distribution we started o� with, showing that

such errors cannot produce the centrally-peaked observed distributions shown

in the previous �gures. The solid line is the best-�tting gravitational distribu-

tion, whose parameters are in the upper right-hand corner of each plot. It is

very similar to the Maxwell-Boltzmann distribution with the same dispersion

as the perturbed distribution.

in each of the �ve distance bins as shown in Table 2. Set #6 of Table 2 shows the mean peculiar

velocity and rms dispersion in each distance bin: there is no systematic trend with distance.
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For galaxies in each distance bin, we perturb their observed magnitudes by errors �M that

are drawn at random from a Gaussian whose � is proportional to the mean distance of the bin.

These magnitude errors are converted into distance errors through Equation (5), and \observed"

peculiar velocities are calculated. The constant of proportionality is adjusted such that the value

of hv

2

pec

i

1

2

for the whole sample is 717 km s

�1

, the same as that is Figure 2a (compare column 5 of

Sets #2 and #7 in Table 2. As the last set in Table 2 shows, this reproduces the kind of systematic

increase of the value of hv

2

pec

i

1

2

in each bin as seen in the observed sample from Set #2, Table 2).

However, the resultant histogram of peculiar velocities, as seen in Figure 9, shows that the e�ect

of such errors is quite the opposite. Starting from a narrower and peaked Maxwell-Boltzmann

distribution (dashed line), the e�ect of the distance-dependent errors has resulted in a wider, less-

peaked distribution, which shows that such errors cannot convert a sample of random peculiar

velocities into a more peaked distribution as is seen in our observed samples here. Instead, the

resultant distribution is still very close to a Maxwell-Boltzmann distribution (best-�t shown as

dotted line).

5. DISCUSSION

We have determined, for the �rst time, the peculiar radial velocity distribution function of

the galaxies. It applies to scales

�

<

50h

�1

100

Mpc, and agrees with an earlier prediction for non-linear

gravitational clustering, where most of the non-uniform dark matter in the Universe is associated

with galaxies.

We use a reasonably homogeneous subsample of the Mathewson et al. (1992) catalog of

peculiar velocities of nearby spiral galaxies, for which velocity-independent distances were mea-

sured. Crucially, these galaxies are chosen without any a priori bias regarding their clustering

environment; this helps ensure a fair sample. To explore the e�ects of sampling, we have also

determined f(v

r

) for other, less appropriate samples in addition to those discussed above. One

was the entire Mathewson et al. sample of 1353 galaxies from which our sample of Figure 2

was chosen. We corrected each peculiar velocity for the Dressler et al. bulk ow correction, as

in Figure 2a. The distribution function for the entire sample is broader than the homogeneous

subsample, with hv

2

r

i

1

2

= 938 km s

�1

. The �t to the gravitational distribution yields �=11.6,

�=2.57 and b=0.88. The increased velocity dispersion of the entire Mathewson et al. sample is

expected from its greater heterogeneity, and the larger absolute uncertainties in peculiar velocities

for galaxies beyond D =5000 km s

�1

.

The most straightforward interpretation of the agreement between the observed f(v

r

) and

the theoretical prediction of (2) is that the peculiar velocities of the galaxies are caused by simple

gravitational interactions. There is no obvious evidence in these data for e�ects of pre-galactic

explosions, cosmic strings, domain walls or dynamically important dark matter not associated
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with galaxies or clusters. If such processes ever existed, then they would have to be compatible

with these observations. On larger scales, it is not yet clear whether the bulk ow is produced by

coherent initial conditions, or by chance accumulations.

Equation (2) holds under rather general conditions, which are discussed in detail in Saslaw

and Hamilton (1984); Saslaw et al. (1990) and Saslaw and Fang (1995). These conditions which

essentially include the gravitational interactions of galaxies as point masses in the expanding

Universe lead to the spatial gravitational quasi-equilibrium distribution for the probability of

�nding N galaxies in a volume of size V

f(N;V ) =

�

N (1 � b)

N !

[

�

N (1 � b) +Nb]

N�1

exp�[

�

N (1 � b) +Nb]; (12)

where

�

N = �nV . This provides a very good description of observed galaxy clustering in the

Zwicky catalog (Crane & Saslaw 1986, Saslaw & Crane 1991), in the UGC and ESO catalogs

(Lahav & Saslaw 1992), the Abell cluster catalog (Coleman & Saslaw 1990), the IRAS catalog

(Sheth, Mo and Saslaw, 1994) and the Southern Sky Redshift Catalog (Fang & Zou, 1994). It also

agrees very well with computer N-body simulations of galaxy clustering (Sheth and Saslaw 1995;

Itoh, Inagaki & Saslaw 1993, and earlier references therein). This approach predicts a velocity

distribution function f(v) dv whose integral over the transverse velocities gives Equation (2) for

f(v

r

) dv

r

(Inagaki et al. 1992).

Other spatial distribution functions, such as the negative binomial or the compound lognor-

mal, are almost numerically indistinguishable from (12) in the range of observed galaxy number

counts (Sheth, Mo & Saslaw, 1994). They would give a result equivalent to (2), although these

other spatial distribution functions do not yet have any physical basis apart from their resemblance

to the gravitational quasi-equilibrium distribution. Moreover the negative binomial, for example,

does not satisfy the second law of thermodynamics in the expanding Universe (Saslaw and Fang

1995).

To illustrate the accuracy with which f(v

r

) dv

r

in Equation (2) agrees with the simulations,

we have analyzed an experiment with 10,000 galaxies (kindly provided by M. Itoh and S. Inagaki),

all of the same mass, starting from Poisson initial conditions in an 


0

= 1 Universe (Model S of

Itoh et al. 1993, at an expansion factor of 8). The histogram in Figure 10 shows f(v

r

) dv

r

for this

simulation. The dotted curve is a Maxwell-Boltzmann distribution with the same value of hv

2

r

i

as the simulation. It has about the same shape relative to the simulation as the corresponding

Maxwell-Boltzmann distribution in Figures 2 has to the observed galaxy distribution function.

The solid curve in Figure 10 is not deliberately drawn through the histogram. It is the best �t of

Equation (2) to the simulation.

Note that in Figures 3{5 & 10, the best �t value of �, which is the total velocity dispersion,

is very close to 3hv

2

r

i. This indicates that the velocities are very nearly isotropic. For the data in
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Figure 10: The distribution of radial peculiar velocities for the 10,000

galaxies in the simulation (model S) of Itoh et al. (1993), where all galaxies

are of equal mass. The simulations start from Poisson initial conditions, and

are observed at an expansion factor of 8. The dotted line is the Maxwell-

Boltzmann distribution with the same velocity dispersion as the sample. The

solid line is the best-�tting gravitational distribution, whose parameters are

in the upper right-hand corner.

Figure 3, however, this relation does not hold quite so accurately, indicating some residual velocity

anisotropy. Interestingly, the anisotropy appears to be larger after subtracting the Courteau et al.

(1993) bulk ow from the velocity pattern (Figure 5) than after subtracting an extra expansion.

This may be due to uncertainties in the direction and magnitude of the bulk ow, or the inappro-

priateness of the Courteau et al. ow for the region of our Mathewson subsample. We can also

estimate a \Mach Number" M = �v

r

=hv

2

r

i

1

2

' 599=717 ' 0:84 for the bulk ow from Figure 2a.
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This value of hv

2

r

i

1

2

however includes rich clusters as well as �eld galaxies.

Spatial distributions of galaxies in the ESO catalog, from which most of the Mathewson

et al. sample is drawn, are described well by the spatial distribution function of Equation (12),

which is consistent with the radial velocity distribution (Lahav & Saslaw 1992). Partly as a result

of sparse sampling and other selection procedures, the spatial pattern value of b ' 0:6 for large

cells in the ESO may be reduced from its value of about 0.75 in the Zwicky catalog (Saslaw &

Crane 1991). The numerical simulations of Figure 10 also give a spatial pattern value of b � 0:75

for large cells (Itoh et al. 1993). This spatial value is about 80% of b

velocity

' 0:9 in Figure 2a,

where the Dressler et al. subtraction is used. Numerical simulations for a range of more realistic

mass spectra than the single mass simulation in Figure 10 also generally show b

velocity

> b

pattern

,

depending on the details of the mass spectrum and the value of 


0

. (Itoh et al. 1993). A partial

reason for this di�erence is that in the simulations and in the observations the �ts of the velocity

distributions involve all the galaxies present (and all the dark matter in the observations), whereas

the �ts of the spatial distributions generally involve less representative subsamples.

To compare our observed distribution function with the N-body simulations of Itoh et al.

(1993), we have to scale their velocities to the observed sample. The simulations use \natural

units" with G=m=R=1. They are converted into physical units by (Saslaw et al. 1990)

v

scale

=

v

physical

v

natural

=

h

Gm

D

1

r

Ei

1

2

=

h

1:35GmN

1

3

R

�1

i

1

2

; (13)

for a simulation containing N galaxies in a sphere of radius R, so that one natural unit of the

simulation velocity equals v

scale

units of physical velocity, e.g. km s

�1

. Assuming all of the mass

(� = �

crit

) in a sphere of radius R

Mpc

is associated with N galaxies, the average mass of a galaxy in

the simulation ism = M=N = 6:5�10

11

N

�1

R

3

Mpc

h

2

75




0

(M

�

), where h

75

= H

0

=75 km s

�1

Mpc

�1

.

For �xed m, this, together with (13) provides the velocity scale factor

v

scale

= 143

h

N

10

4

i

�

1

3

h

R

50 Mpc

i h

h

75




1

2

i

km s

�1

: (14)

In Figure 2a, for all 825 galaxies with distance R � 66

2

3

Mpc (H

0

= 75), we �nd

hv

2

r(physical)

i

1

2

= 717 km s

�1

. Continuing the comparison with the simulation in Figure 10 as

an illustration, we have (model S of Itoh et al. 1993) N = 10

4

, 


0

= 1 and hv

2

r(natural)

i

1

2

= 4:1.

From Equation (14), this leads to a reasonable value of the Hubble parameter h

75

= 0:92. How-

ever, it gives a value of m = 1:6�10

13

(M

�

), which is about an order of magnitude too high. This

is a well-known result of the relatively small value of N in the simulations and shows the necessity

of increasing N to about 10

5

for more realistic comparisons in the 


0

= 1 case. By increasing N ,

altering the mass spectrum, the initial conditions and the value of 


0

in the simulations, and H

0

in

the measured peculiar velocities, the consistency of h can be improved. A systematic exploration

of such models will provide a new method of determining H

0

and 


0

.
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An understanding of the non-linear velocity distribution of galaxies has been a classic un-

solved problem of cosmology ever since Milne (1935) posed it quantitatively. The agreement

between our observed velocity distribution function here and the earlier non-linear gravitational

prediction for this velocity distribution function is evidence that most of what we observe on

these scales results from non-linear gravitational clustering. The consistency between the velocity

distribution function and the spatial distribution function of galaxies is further evidence for this

result. Naturally, many related questions such as the role (if any) of dark matter outside the

galaxies, the e�ects of merging, and the detection of any memory of initial conditions still remain

to be explored. However, they will all be strongly constrained to agree with this observed velocity

distribution function.
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APPENDIX: THE EFFECT OF INHOMOGENEOUS MALMQUIST BIAS

If there is a dispersion in the magnitudes of galaxies, either intrinsic or from observational

uncertainties, then the boundary of a magnitude-limited sample is not well-de�ned. There will

be a tendency for more galaxies at the boundary to appear in the sample than a uniform spatial

density would suggest. This is because there are more galaxies in the larger shell beyond the

boundary whose magnitude dispersion makes them appear within the sample, and fewer galaxies

in the smaller shell within the boundary which appear to be outside.

However this homogeneous Malmquist bias is modi�ed by density inhomogeneities due to clus-

tering. The resulting inhomogeneous Malmquist bias is usually a second order e�ect. It may be

signi�cant if there happens to be a dense cluster or large void near the boundary. These e�ects

can modify the observed velocity distribution, and the inhomogeneous Malmquist bias can mimic

a bulk ow (Landy & Szalay 1992). Without some a priori model of the density distribution

n (d) of the galaxies, it is di�cult to remove the e�ect of inhomogeneous Malmquist bias from the

observed data to reconstruct the true distribution.

Since the simulation shown in Figure 10 is a good representation of the observed spatial and

velocity distribution functions, it provides a useful estimate of the e�ects of the inhomogeneous

Malmquist bias on the observed distribution function. For the \galaxies" in the simulation, since

we know both distances and velocities, we have prior knowledge of the density distribution n (d).

We simulate \observations" by subjecting each galaxy in the simulation to a correction for (a)

a homogeneous Malmquist bias with � = 0:36 mag as described in x2.1 and used throughout this

paper, and (b) an inhomogeneous Malmquist bias following Landy and Szalay (1992). For the

latter, we used a density distribution n (d) / d

2:5

, as determined directly from the simulation. In

each case, as shown by Landy and Szalay (1992), the resultant histogram is not centered on zero,

showing that the correction has an e�ect similar to a bulk ow in the sample. We remove this

e�ect by subtracting the mean peculiar velocity in �ve distance bins to center the histogram on

zero (equivalent to a bulk ow correction).

These would therefore be the \observed" histograms if we had not corrected for the homoge-

neous Malmquist bias and inhomogenous Malmquist bias respectively.
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Figure 11: The contribution of corrections for inhomogeneous Malmquist bias to an

observed sample. The 10000 particle Kyoto simulation (as used in Fig 10) is \observed"

here with distances being perturbed by an inhomogenous Malmquist bias corresponding to

� = 0:33 and n(d) � d

2:5

as obtained from the simulation itself. We then subtracted the

mean peculiar velocity in �ve distance bins to center the histogram on zero. Comparison of

the resultant histogram with Figure 10 shows that inhomogenous Malmquist bias corrections

cannot make substantial di�erences to the pro�le of the peculiar velocity distribution.

These produce almost identical distributions: in Figure 11 we show only the case of the inho-

mogeneous Malmquist bias. The histogram shows a slight displacement (about half a bin), but the

best �t has hardly changed, and the di�erence from the Maxwell-Boltzmann distribution remains.


