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ABSTRACT

In this paper we present a characteristic method for solving the transfer equation

in differentially moving media in a curved spacetime. The method is completely

general, but its capabilities are exploited at best in presence of symmetries, when

the existence of conserved quantities allows to derive analytical expressions for

the photon trajectories in phase space. In spherically–symmetric, stationary

configurations the solution of the transfer problem is reduced to the integration

of a single ordinary differential equation along the bi–parametric family of

characteristic rays. Accurate expressions for the radiative processes relevant to

continuum transfer in a hot astrophysical plasma have been used in evaluating

the source term, including relativistic e–p, e–e bremsstrahlung and Compton

scattering. A numerical code for the solution of the transfer problem in moving

media in a Schwarzschild spacetime has been developed and tested. Some

applications, concerning “hot” and “cold” accretion onto non–rotating black

holes as well as static atmospheres around neutron stars, are presented and

discussed.

Subject headings: accretion, accretion disks – numerical methods – radiative

transfer – relativity

2



1. INTRODUCTION

Radiative transfer in high energy, fast moving plasmas in a strong gravitational

field is today at the basis of a large number of currently interesting astrophysical

applications; accretion onto compact objects, jets, stellar collapse and supernova

expanding envelopes are just some examples of this.

Since the pioneering works by Thomas (1930), Simon (1963) and Lindquist

(1966), astrophysical relativistic transfer received wide attention (see e.g.

Mihalas & Mihalas 1984 for references to earlier papers). It was realized

long ago (see Castor 1972, Mihalas 1980 and references therein) that, for

relativistic flows, the interaction between matter and radiation is most easily

described if the material properties and the radiation field are evaluated in

the frame in which the medium is at rest. The comoving frame transfer

equation (CTE) has been considered by Mihalas (1980), Hauschildt & Wehrse

(1991) in the framework of special relativity, and by Schmidt–Burgk (1978),

Thorne (1981), Schinder & Bludman (1989) in the general–relativistic case.

Different approaches for the solution of the relativistic transfer problem in

planar or spherical geometry have been suggested. They can be grouped,

schematically, into three wide classes: direct solution of the CTE using

discretization techniques, moment expansion and integration of the CTE along

characteristic directions.

The solution of the CTE by finite differencing, like in the DOME method

(Hauschildt & Wehrse 1991), works well in geometrically thin layers, but

the treatment of extended atmospheres requires a prohibitive number of

discrete elements to obtain a fair angular resolution. In the relatively simple

case examined by Hauschildt & Wehrse, the numerical calculations must be

performed on supercomputers even for low resolution grids.

The expansion of the specific intensity in spherical harmonics (moments)
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has the main advantage of reducing the dimensionality of the problem since

the angular dependence is suppressed. On the other hand the solution of the

transfer problem is reconduced to the solution of a recursive system of partial

differential equations that must be truncated at a given order, introducing a

certain number of closure conditions. This approach is at the basis of the

flux limited diffusion theory (FDT) developed by Levermore & Pomraining

(1981) and generalized by Pomraning (1983), Anile & Sammartino (1989)

and Anile & Romano (1992). Although in the gray case the FDT provides

a self–consistent closure function by solving the differential equation for the

flux limiter, the extension to the frequency–dependent problem seems far from

being obvious. A very sophisticated, general–relativistic version of the moment

formalism was presented by Thorne (1981). It is based on an expansion in

projected, symmetric, trace–free (PSTF) moments and, upon truncation, the

resulting system of equations can be solved introducing the required number of

closure conditions. The closure functions must be specified “a priori” and should

reproduce the correct asymptotic limits for the radiation moments when free

streaming and diffusion are approached. This method has been fruitfully applied

to the solution of astrophysical problems with planar or spherical symmetry,

both in the gray and in the frequency–dependent case (see e.g. Turolla &

Nobili 1988, Nobili, Turolla & Zampieri 1993, Zampieri, Turolla & Treves 1993).

While the arbitrariness of the closure functions is not a serious problem in

the gray case, where a large number of moments can be used, it becomes a

major complication when frequency–dependent transfer is tackled. In fact, to

make the numerical solution affordable, only the first two moments can be

taken into account, so that the choice of the closures has a non negligible

impact on the results. Moreover, the extension to the bidimensional case is

very complicated and requires the specification of 12 closure relations, making
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the method unacceptably dependent on the choice of a large number of free

functions.

Characteristics methods are based on the fact that the transfer equation

is just the Boltzmann equation for the photon distribution function in phase–

space (see e.g. Lindquist 1966). The hyperbolic character of the Boltzmann

equation implies that the CTE can be always reduced to a single ordinary

differential equation along the characteristic rays. The tangent ray method

(TRM) developed in a series of papers by Mihalas and coworkers (Mihalas,

Kunasz & Hummer 1975, 1976a, b, Mihalas 1980) uses a semi–characteristic

approach in which the integration is performed along the characteristics of

the “spatial” part of the differential operator (the tangent rays), while the

frequency derivative is treated by means of a standard finite–differences scheme.

A fully characteristic method for the solution of the general–relativistic transfer

problem has been discussed by Schmidt–Burgk (1978), Schinder (1988) and

Schinder & Bludman (1989). All these investigations dealt with stationary,

spherically symmetric space–times, which admit three Killing vectors: the

existence of the associated constants of the motion can be used to obtain

simple expressions for the characteristic rays. The analysis by Schinder &

Bludman (1989) was actually restricted to a spacetime characterized by a

stationary lagrangian line–element, which corresponds to a vanishing eulerian

velocity field for the matter configuration; their test models refer, in fact, to a

static atmosphere. The work by Schmidt–Burgk (1978), although finalized to

accretion onto a Schwarzschild hole, is, to our knowledge, the only example of an

exact solution of the CTE taking into account both the effects of dynamics and

strong gravity. For their simple mathematical structure, characteristic methods

seem to be promising to cope with realistic astrophysical problems. Moreover,

they can be quite naturally extended to more than one spatial dimension, the
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major complication coming from the higher number of ODEs that must be

solved to compute the characteristic trajectories.

Previous investigations were mainly concerned with the development of

efficient methods for the solution of the CTE, assuming rather simple, often “ad

hoc”, expressions for the emission and absorption coefficients. This approach

is completely justified if one is interested in investigating the formation of

particular spectral features, like lines or absorption edges. On the other

hand, in all situations in which attention is focussed on the continuum,

an accurate treatment of all relevant radiative processes becomes important.

When dealing with hot plasmas, the dominant radiative processes are non–

conservative scattering and bremsstrahlung. Solutions presented by Schmidt–

Burgk (1978) refers to a hot, magnetized plasma and takes into account

scattering absorption and synchrotron absorption/emission; the collisional term

in the Boltzmann equation is written using suitable approximations. On the

other hand, approaches based on moment expansion (see e.g. Pomraining 1973

and references therein, Thorne 1981, Prasad et al. 1988) do not permit an

exact description of anisotropic and non–coherent scattering, usually treated

in the Fokker–Planck approximation. A rigorous treatments of the Compton

scattering can be found in Kershaw, Prasad & Beason (1986), Kershaw (1987),

Shestakov, Kershaw & Prasad (1988), but their results are never been included

in transfer codes devoted to astrophysical applications.

In the following we discuss a fully characteristic approach to the solution

of the transfer equation in its more general form; results are then specialized to

stationary, spherically–symmetric or plane–parallel configurations. Particular

care will be devoted to a detailed treatment of the source term for an

unmagnetized, fully ionized, non–degenerate hydrogen gas. A numerical code

is described and applications to accretion onto black holes and neutron stars
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are finally presented.

2. RADIATIVE TRANSFER

In this section we consider the characteristic form of the radiative transfer

equation in the comoving frame. In subsection a) the CTE and the equations

for its characteristic trajectories are derived in the more general case, when

no symmetries are present. A particularization to spherically–symmetric

configurations is presented in subsection b). Finally in subsection c) the choice

of boundary conditions is discussed. In relativistic transfer the radiation field

is naturally described by the photon distribution function in the phase–space,

f , that is related to the specific intensity by 2f = c2I/h4ν3. Geometrized

units (c = G = h = 1) are used throughout and lengths are in units of the

gravitational radius r = 2M .

a) The Radiative Transfer Equation

The relativistic transfer equation, written in covariant form, is just the

Boltzmann equation for f(x,p)

df

dξ
= g(x,p) (1)

where p ≡ dx/dξ is the photon 4–momentum, ξ is an affine parameter along the

null geodesic and the collisional term g accounts for the interactions between

matter and radiation (see e.g. Lindquist 1966, Thorne 1981). The differential

operator in equation (1) acts not merely in spacetime but in the full photons

phase–space, made up by the spacetime plus the null tangent space at each

point along the photon trajectory.

Since f(x,p) is a relativistic invariant, equation (1) holds in any frame.

However, the material properties (e.g. opacity and emission coefficients,

scattering cross–section), which enter the expression of the source term g, are
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naturally defined with respect to observers who are locally and instantaneously

at rest with the matter (LRF). In the following we adopt a fiducial observer

comoving with the fluid, which carries a tetrad eâ and has 4–velocity u ≡

e0̂. If spacetime, matter and radiation share some common symmetries, the

orientation of some of the spatial vectors of the tetrad follows in a natural way.

For example, in spherical symmetry, as it will be discussed in detail later on, it

is convenient to chose e1̂ orthogonal to the θ and φ coordinate directions. With

respect to the tetrad, the components of the photon 4–momentum are

pâ = (E,Eµ,E(1− µ2)1/2 cosΦ, E(1− µ2)1/2 sinΦ) (2)

where E is the photon energy, µ is the cosine of the angle between the photon

direction and e1̂, and Φ is the corresponding azimuthal angle, all measured in

the LRF. The three quantities E, µ and Φ have an immediate physical meaning

and they will be used as independent variables (momentum variables) together

with the spacetime coordinates xi to tick events on the light–cone of the phase–

space. The total derivative in equation (1) can be explicitated as

∂f

∂xi
pi +

∂f

∂pâ
dpâ

dξ
=

∂f

∂xi
pi +

∂f

∂E

dE

dξ
+

∂f

∂µ

dµ

dξ
+

∂f

∂Φ

dΦ

dξ
= g ,

(3)

where pi = pâeiâ. The variation of E, µ and Φ along the photon trajectory can

be obtained from the equation of the null geodesic, written in terms of pâ

dpâ

dξ
+ Γâ

b̂ĉ
pb̂pĉ = 0 , (4)

where Γâ
b̂ĉ

= eâi e
j

b̂
eiĉ;j are the Ricci rotation coefficients. Recalling the expression

of pâ given in equation (2), we finally get
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dE

dξ
= −Γ0̂

b̂ĉ
pb̂pĉ (5a)

dµ

dξ
= − 1

E

(

Γ1̂
b̂ĉ
− µΓ0̂

b̂ĉ

)

pb̂pĉ (5b)

dΦ

dξ
= − 1

E(1− µ2)1/2

(

cosΦΓ3̂
b̂ĉ
− sinΦΓ2̂

b̂ĉ

)

pb̂pĉ . (5c)

We note that all the information about the spacetime curvature and the flow

dynamics are contained in the tetrad field and enter the Boltzmann equation

via the tetrad vectors themselves and their local rates of change which appear

in the Ricci coefficients.

Equation (3), together with the set (5), is the more general form of the

transfer equation and holds for arbitrary flow motions in any given spacetime.

In the next subsection we will discuss how the existence of spacetime symmetries

implies that the distribution function is independent on some of the phase–space

variables, easing the solution of the transfer problem.

b) Transfer in Spherically–symmetric Spacetimes

Let us consider the more general spherically–symmetric spacetime,

described, in spherical coordinates, by the line–element

ds2 = g00(r, t)dt
2 + g11(r, t)dr

2 + r2(dθ2 + sin2 θdφ2) .

Spherical symmetry implies that there exist two constants of the motion, Lz

and L, which are related to the components of the photon 4–momentum by

Lz = p3 = r2 sin2 θp3, L2 = r4[(p3)2 sin2 θ + (p2)2]. These two expressions take

a very simple form, and lead to a major simplification in the transfer equation,

if the fluid configuration and the radiation field are themselves spherically–

symmetric. In this case the spatial 3–velocity ~v of the comoving observer,
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measured by the stationary observer δi0/
√−g00, is in the radial direction and

the most convenient choice for the tetrad is

ei
0̂
=

(

γ√−g00
,

γv√
g11

, 0, 0

)

ei
1̂
=

(

γv√−g00
,

γ√
g11

, 0, 0

)

ei
2̂
= (0, 0, r−1, 0)

ei
3̂
= (0, 0, 0, r−1 sin−1 θ)

(6)

where γ = (1 − v2)−1/2. The constants Lz and L may be then expressed in

terms of the tetrad components pâ as

Lz = L sinΦ sin θ (7a)

L2 = r2E2(1− µ2) . (7b)

In spherical symmetry, the photon distribution function must be independent

on both the polar angles φ and θ. Since, from equation (7a), we have Φ = Φ(θ),

it follows that isotropy in coordinate space implies also that ∂f/∂Φ = 0 and

the Boltzmann equation reduces to

∂f

∂t
p0 +

∂f

∂r
p1 +

∂f

∂E

dE

dξ
+

∂f

∂µ

dµ

dξ
= g . (8)

In the further hypothesis that the spacetime is stationary, the existence

of a time–like Killing vector provides a third conserved quantity, p0 ≡ −E∞,

which can be used to obtain a simple expression for the photon energy along

each ray in the LRF

E =
E∞

y(1 + µv)
; (9)

in the previous expression y = γ
√−g00 is the specific energy of the fluid, as

measured by a static observer at infinity. Clearly the differential operator in
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the transfer equation is Pfaffian, so it is always possible to solve the Boltzmann

equation along its characteristic directions, i.e. along the photon trajectories

in the 7–dimensional phase–space. In the case at hand, these trajectories lie in

a 4–dimensional hypersurface and can be obtained solving equations (5a) and

(5b) together with

dt

dξ
= p0 = −E∞

g00
(10a)

dr

dξ
= p1 =

Ey

rg
(µ+ v) . (10b)

Actually, the existence of the two constants of motion L and E∞ yields

analytical expressions for both µ and E, as functions of r, along each photon

trajectory:

µ =
−y2vb2 ± r

(

r2 + b2g00
)1/2

r2 + b2y2v2
(11a)

E =
b2y2v2 + r2

[

r2 ± rv (r2 + b2g00)
1/2
]

y
E∞ (11b)

where the impact parameter b = L/E∞ has been introduced. Due to spherical

symmetry, only positive b’s need to be considered, negative values of the angular

momentum give exactly the specular picture, so in the following b2 will be used

as a parameter. It can be easily shown that the plus/minus sign in equations

(11) refers to photons for which µ+ v is always positive/negative. This implies,

see equation (10b), that the radial coordinate is always increasing/decreasing

along the path and that the condition µ + v = 0 defines the locus of turning

points for the trajectories. This is just a manifestation of aberration: the

turning points, in fact, are located where the cosine of the angle between the

photon and radial directions, measured by the stationary observer, vanishes.

Specializing to the vacuum Schwarzschild solution, photon trajectories in

physical space may be divided into three classes (see e.g. Misner, Thorne &
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Wheeler 1973): a) those connecting radial infinity with the event horizon,

characterized by impact parameters in the range 0 ≤ b2 < 27/4; b) those

that are trapped in the region 1 ≤ r < 3/2 and c) those for which it is always

r > 3/2. Trajectories of the latter two types have b2 > 27/4. The limiting value

b2 = 27/4 corresponds to the circular photon orbit. The plot of µ = µ(r; b) and

of E/E∞ = ǫ(r; b) is shown in figures 1a and 1b for a free–fall velocity law,

u1 = r−1/2. As can be seen from the the figures, photons starting at the

horizon can reach infinity with non–zero energy only if they are emitted exactly

in the radial direction (µ = 1) with an infinite energy, while ingoing photons

that leave infinity with zero angular momentum reach the horizon halving their

initial energy. At large values of r all rays concentrate at µ = ±1, as radial

streaming is approached. Trajectories with an impact parameter equal to the

critical value b2 = 27/4 exhibit a saddle point at r = 3/2.

In the following we will concentrate on the case in which both matter

and the radiation field are stationary. Under this assumption the distribution

function depends only on three variables, r, E and µ, and since it is E = E(r),

µ = µ(r) (see equations [11a], [11b]), the radial coordinate itself can serve as a

(non–affine) parameter along the null geodesics. The Boltzmann equation can

be then integrated in the domain of existence of each photon trajectory. This

particular choice appears to be convenient for a number of reasons, although it

poses some numerical problems, as it will be discussed later on. First of all, the

treatment of boundary conditions is much simpler when the radial coordinate

is the independent variable and this avoids also the integration of equation

(10b) along with the transfer equation. Moreover, when scattering is taken into

account, the source term depends on the integrals of f over angles, which must

be evaluated at both constant r and E. The knowledge of f(r) avoids the use of

spline or other interpolation algorithms, which is time–consuming and would be
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needed in the case of a different parametrization of the photon trajectories. In

conclusion, at least for what concerns the radiation field, the transfer problem

can be solved integrating numerically the single differential equation

df

dr
=

rg
y(µ+ v)

g

E
(12)

for different values of the two parameters b and E∞.

At variance with what happens using other methods, like for example

expansion in PSTF moments, this kind of approach makes a great simplification

in the mathematical structure of the problem: in fact, the non–grey problem

can be solved without integration of complicated systems of partial differential

equations. Moreover, no closure is needed and this formalism gives as result

the full radial, frequency and angle dependent solution. As we will discuss in

detail in the next section, is just the knowledge of the angular dependence of

the distribution function, lost when the moments of f are used as dependent

variables, that gives the possibility to use the characteristic rays method to

study the Compton scattering in its more general form; this approach naturally

preserves the hyperbolic character of the Boltzmann equation.

In this investigation we focus our attention on the calculation of the

radiation field and, thus, we restrict our discussion to the case in which velocity,

density and temperature profiles are fixed a priori , similarly to what was done

by Mihalas (1980) in the special relativistic case and Schinder & Bludman (1989)

in the general relativistic, static case. Clearly, the full solution of the radiation

hydrodynamical problem requires the simultaneous integration of the transfer

equation together with the Euler, continuity and energy equations that, in turn,

depend on the gray mean intensity J and on the gray radiative flux H:

J =
1

2

∫

∞

0

dν

∫ 1

−1

Idµ =
1

2

∫

∞

0

dν

∫ 1

−1

fν3dµ
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H =
1

2

∫

∞

0

dν

∫ 1

−1

Iµdµ =
1

2

∫

∞

0

dν

∫ 1

−1

fν3µdµ .

The coupled solution of the transfer and gasdynamical equation poses, therefore,

the same difficulty encountered in the integration of the transfer equation alone

in presence of scattering. A numerical technique for the solution of the integro–

differential scattering equation is discussed in section 4a. The same method

can be applied to the full radiation hydrodynamical problem and an example is

presented in section 5c.

c) Boundary Conditions

Because there is not a one–to–one map between r and ξ, equation (12)

must be integrated twice for each value of b2, in correspondence with the

two solutions for µ and E given by equations (11a), (11b). At the same

time, two different boundary conditions for the distribution function f must

be imposed, taking into account that the plus (minus) sign in equations (11)

corresponds to outgoing (ingoing) trajectories. The boundary condition for

ingoing characteristics of type a) is prescribed in the standard way: for a non–

illuminated atmosphere, for example, it is just f = 0 at the outer edge of the

integration domain. This is also the only condition required to integrate the

transfer equation along all characteristics of type c), since integration can be

started at large r with, say, f = 0 and carried out until the turning point

is reached storing the computed value of f , which is then used as the initial

condition along the outgoing branch of the trajectory. The remaining rays,

including characteristics of type b), can be treated much in the same way if

there exists a region in the flow where the effective depth τeff becomes larger

than unity at any frequency and LTE is attained. In this case, in fact, the

required boundary condition is simply f = Bν(T )/E
3, Bν(T ) is the Planck

function at temperature T , at a radius r such that τeff (r) > 1.
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Although this is the standard case for stellar atmospheres, including

accretion flows onto compact stars, a different situation may arise when dealing

with accretion onto black holes: for low values of the accretion rate, for example,

the flow is optically thin all the way down to the horizon (see e.g. Nobili, Turolla

& Zampieri 1991). Now a boundary condition for f must be imposed at r = 1

for rays starting at the event horizon. Since E goes to infinity there, both the

distribution function and g must vanish. The product E(µ+ v), however, does

not vanish for all outgoing rays at the horizon, so g = 0 implies also df/dr = 0.

In order to avoid numerical overflows, integration is started at a radius rin

fractionally larger than unity, with the regularity condition df/dr = 0. The two

rays with b2 = 27/4 are peculiar since they intersect at r = 3/2 (the saddle

point) which is also a critical point for equation (12). We still integrate the

transfer equation along these particular rays taking as a regularity condition

g = 0 at r = 3/2. Strictly speaking, this condition is exact only in the case in

which the effective optical depth is larger than unity at the last photon orbit; in

other cases there is no physical reason to ask for thermalization and the value

of f may be undetermined. However, since the radial derivative of f diverges

at the critical point, we found that, in a finite differences numerical scheme, the

solution of the differential equation fast relaxes and the final result is probably

not strongly affected by the value of the distribution function at r = 3/2.
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3. THE SOURCE FUNCTION

In the following we deal with an unmagnetized, fully ionized, non–degenerate

hydrogen gas in which emitters and absorbers are in local thermal equilibrium

at a temperature T . We consider also the case in which electrons are relativistic

(T∼> 5× 109 K), and present a fully general treatment of Compton scattering.

However, for the sake of simplicity, we focus our attention only on thermal

emission and absorption together with scattering from free electrons; other

processes, as pair production and double Compton scattering, that may be

relevant at such high temperatures, are outside the scope of this paper. In this

section physical units are used; γ and τ denote the dimensionless photon energy

and electron temperature, both in units of mec
2; Kp(x) is the modified Bessel

function of the second kind.

a) Thermal bremsstrahlung

The source term for spontaneous emission and absorption, including

stimulated emission, can be written as

g =
η

4πhcE2
− χEf , (13)

where η and χ are the emission and absorption coefficients, measured in the

comoving frame. Because of the assumed equilibrium, Kirchhoff law yields:

η

4πχ
= Bν (T )

with ν = E/h. In the medium we are considering, the dominant true

emission and absorption processes are electron–proton and electron–electron

bremsstrahlung; in the following we will indicate as κff the correspondent total

opacity. The free–free contribution to the source term is then

gff
E

= ̺κff

(

Bν

hcE3
− f

)

. (14)
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The photon spectrum from bremsstrahlung is usually described in terms of

the velocity–averaged Gaunt factor G; in the non relativistic regime tables for

G have been presented by Karzas & Latter (1961). However, as discussed

by Gould (1980), contributions to the total energy loss rate due both to

relativistic corrections in the electron velocity distribution and to electron–

electron bremsstrahlung are already of order 10 % at T ∼ 108 K become as large

as 30 % at T ∼ 109 K. Free–free emissivity from a relativistic thermal plasma

has been investigated by several authors (see e.g. Alexanian 1968; Quigg 1968;

Haug 1975; Gould 1980; Stepney & Guilbert 1983; Dermer 1984, Dermer 1986).

The photon spectrum from e–p emission involves a single quadrature over the

relative Lorentz factor of the interacting particles γr (see e.g. Dermer 1986)

ηe−p(γ, τ) =
nenpc

τK2(1/τ)

∫

∞

1+γ

dγr
(

γ2
r − 1

) dσB−H (γ, γr)

dγ
exp

(

−γr
τ

)

,

where dσB−H(γ, γr)/dγ is the Bethe–Heitler cross section corrected for the

Elwert factor (see e.g. Heitler 1936) and ne, np are the number density of

electrons and protons. The previous expression holds for τ ≪ mp/me, so that

protons can assumed to be at rest in the lab–frame.

Electron–electron emissivity is more complicated since now both particles

have the same mass and a quadrupole contribution appears. The standard

expression involves a five–fold integral of the totally differential cross–section

(Haug 1975), but, as shown by Dermer (1984, 1986), it can be reduced to

a triple integral exploiting the covariance of Haug’s formula to evaluate the

cross–section in the CM–frame. The final result is

ηe−e(γ, τ) =
n2
ec

4τK2
2(1/τ)

∫

∞

1

dγr

(

γ2
r − 1

)

[2 (γr + 1)]
1/2

∫ ζ(γr)

0

dγ∗

γ∗

dσ∗

e−e(γ
∗, γr)

dγ∗
×

exp

{

− [2 (γr + 1)]
1/2

τ

(

γ2 + γ∗2

2γγ∗

)

}
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(see Dermer 1986 for notation).

The numerical evaluation of both ηe−p and ηe−e poses no particular

problems and has been carried out following Dermer (1986) in the ranges

2 × 10−2 ≤ τ ≤ 10, 2 × 10−2 ≤ hν/KT ≤ 25.12. Numerical results for the

total Gaunt factor were then fitted with the analytical function (see Stepney &

Guilbert 1983)

G =







(A+Bx) ln(1/x) + C +Dx, x = hν/KT ≤ 2.51

αx2 + βx+ γ + δ/x, x > 2.51,

deriving, for each τ , the set of coefficients A, . . . , δ. The Gaunt factor can

be then obtained at any value of τ and hν/KT by means of a suitable

interpolation/extrapolation. At temperatures below ∼ 10 keV (τ∼< 0.01), the

asymptotic limits of Gould (1980) are used for both e–p and e–e emissivity.

b) Electron scattering

The second important radiative process we consider is scattering from free

electrons: we recall that one of the major complications encountered in solving

the transfer equation comes from its non–local character. In fact, even limiting

to the coherent and isotropic case, the source term is

ges
E

= ̺κes (jν − f) , (15)

where κes is the Thomson opacity and

jν =
1

2

∫ 1

−1

f (r, µ, E)dµ

is the zero–th moment of the distribution function. Allowing for the more

realistic case of Thomson scattering, the correspondent cross section has a
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monopole plus a quadrupole angular dependence (see e.g. Chandrasekhar 1960)

yielding

ges
E

= ̺κes

[

3

8

[

(3jν − kν)− µ2 (jν − 3kν)
]

− f

]

, (16)

where

kν =
1

2

∫ 1

−1

f (r, µ, E)µ2dµ .

The Thomson limit can be assumed to correctly describe electron scattering

when the energy exchange in a single collision can be safely ignored. On the

other hand, in high temperature regions non–conservative effects and quantum

corrections play a fundamental role in shaping the emergent spectrum. The

derivation of the general expression for the Compton source term can be found

e.g. in Pomraning (1973) and is briefly outlined below, mainly to introduce

some basic ideas which will be used later on when the numerical scheme is

discussed. With reference to a single scattering, ~n denotes the incident photon

direction and ξ = ~n · ~n′, where primed quantities refer to the scattered photon.

For an incident photon energy γ and an electron velocity ~ve, the Klein–Nishina

formula gives the probability of scattering into the energy γ′ and the direction

~n′

σ (γ → γ′, ~n → ~n′, ~ve) =
r20

2γνλ

{

1 +

[

1− (1− ξ)

λ2DD′

]2

+
(1− ξ)

2
γγ′

λ2DD′

}

× δ

[

ξ − 1 + λ
D

γ′
− λ

D′

γ

]

,

(17)

where

D = 1− ~n · ~ve/c, D′ = 1− ~n′ · ~ve/c, λ =

(

1− v2e
c2

)−1/2

,

r0 is the classical electron radius and δ is the Dirac delta function. Integration

over the relativistic maxwellian distribution

fe(ve) =
λ5 exp (−λ/τ)

4πτc3K2 (1/τ)
(18)
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gives the Compton Scattering Kernel (CSK)

σ (γ → γ′, ξ, τ) =
3

16πγν

∫

d~ve
fe (ve)

λ

{

1 +

[

1− 1− ξ

λ2DD′

]2

+

(1− ξ)
2
γγ′

λ2DD′

}

δ

(

ξ − 1 + λ
D

γ′
− λ

D′

γ

)

.

(19)

Here the CSK is normalized with respect to κes̺, which is reciprocal of the

Thomson mean free path; the inverse probability, related to the scattering

emissivity, can be obtained from the detailed balance condition

σ (γ → γ′, ξ, τ)γ2 exp (−γ/τ) = σ (γ′ → γ, ξ, τ)γ′2 exp (−γ′/τ) . (20)

Further integrations over all outgoing photon directions and energies

provide the source term appearing in the Boltzmann equation

gC
E

=κes̺

∫

∞

0

dγ′

∫

4π

dΩ′

(

γ′

γ

)2

σ (γ′ → γ, ξ, τ)f (r, ~n′, γ′)

[

1 +
f (r, ~n, γ)

2

]

− κes̺

∫

∞

0

dγ′

∫

4π

dΩ′σ (γ → γ′, ξ, τ)f (r, ~n, γ)

[

1 +
f (r, ~n′, γ′)

2

]

.

(21)

Inserting equation (20) into equation (21), the latter can be written in the more

compact form

gC
E

=κes̺

∫

∞

0

dγ′

[

exp

(

−γ − γ′

2

)(

f

2
+ 1

)

− f

2

]
∫

4π

dΩ′σ (γ → γ′, ξ, τ)f ′

− κes̺σ00f ,

(22)

where f ′ = f(r, ~n′, γ′) and

σ00 =

∫

∞

0

dγ′

∫

4π

dΩ′σ (γ → γ′, ξ, τ) (23)

is the zero–th moment of the CSK (Shestakov, Kershaw & Prasad 1988). In

the previous expressions, non–linear terms account for stimulated scattering.
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The general task of computing the moments of the CSK was undertaken by

Shestakov et al. (1988). They have shown that by performing the integration

over γ′ first and exploiting the δ–function, the expression of the zero–th moment,

which is originally a fivefold integral, can be reduced, after a lot of non–trivial

algebra, to a single quadrature

σ00 =
1/γ

2K2 (1/τ)

∫

∞

0

dzγzσ0 (γz) exp

[

− 1

2τ

(

z +
1

z

)]

(24a)

where:

yσ0 (y) =
3

8y

[

y2 − 2y − 2

y
ln (2y + 1) +

2y3 + 18y2 + 16y + 4

(2y + 1)
2

]

=y

(

1− 2y +
26

5
y2 − 133

10
y3 +

1144

35
y4 − · · ·

)

for |y| < 1

2
.

(24b)

The full evaluation of the Compton source term involves a number of

very complicated six dimensional integrals of the distribution function weighted

by the CSK for each value of γ, τ , µ. Because only discrete values of the

distribution function will be available, all the six quadratures should be, in

principle, evaluated numerically at each grid–point and this would make the

integration of the transfer equation prohibitively time–consuming. However,

as discuss by Kershaw, Prasad & Beason (1986), two of the three integrals in

the CSK become analytical if a particular polar axis for projecting the electron

velocity is chosen. Moreover, Kershaw (1987) presented an efficient method

for calculating the single integral of the CSK over γ′ or ξ and the double

integral over both these variables. A detailed discussion of our algorithm for the

evaluation of the first addendum in the Compton source term, that is essentially

a re–adaptation of Kershaw’s method, is presented later on.

Although the treatment we have just described is the more general to

handle Comptonization and proved to be reasonably fast, it remains very time–

consuming, so it is useful to have approximated expressions of gC that can be
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used in some regimes. As it is well known, the complicated nature of the CSK

has led many authors to model the Boltzmann equation by a diffusion equation

in the frequency space. This approach, the Fokker–Planck approximation, was

firstly used by Kompaneets (1956) in the limit of small γ and τ . Relativistic

corrections to the Kompaneets equation can be included modifying the diffusion

coefficient, and a number of efforts were devoted to extend its original form

(Fraser 1966, as quoted in Pomraning 1973, Cooper 1971). More recently,

Prasad et al. (1988) derived an exact analytical expression for the diffusion

coefficient that holds for arbitrary values of γ and τ , in the assumption of

a nearly isotropic radiation field. The main simplification introduced by the

Fokker–Planck approximation is that the integral operator in the transfer

equation is replaced by an infinite order differential operator that, for small

values of γ and τ , truncates at a finite order. The method, originally developed

for the non–relativistic transfer equation, is based on an expansion of the specific

intensity in a Taylor series about ν′ = ν. At the first order in γ and τ , Fraser’s

result is

gCE
2 =− κes̺ (1− 2γ) I + κes̺

∫

4π

dΩ′

3
∑

n=0

(

2n+ 1

4π

)

Pn (ξ)SnI

− 3κes̺

16π

c2

hν3
γI

(

1− ν
∂

∂ν

)
∫

4π

dΩ′
[

1− ξ + ξ2 − ξ3
]

I ′ ,

(25)

where Pn is the Legendre polynomial of order n and Sn (n = 0, . . . , 3) are

second order differential operators (see Pomraning 1973). Using the standard

relation

ξ = µµ′ +
√

1− µ′2
√

1− µ2 cos (Φ− Φ′) ,

22



the previous expression can be cast into the form

gC
E

=κes̺
[

A1 + µA2 +
(

1− µ2
)

A3 + µ
(

3− 5µ2
)

A4

]

− κes̺f {1− 2γ+

τ
[

A5 − µ2A6 + µ
(

3µ2 − 5
)

A7 + µ
(

3− 5µ2
)

A8

]}

.

(26)

The quantities Ai, containing the first four moments of f ′ and their first

and second frequency derivatives, are reported in Appendix A. This is the

expression of gC needed in the general relativistic transfer equation in Fraser’s

approximation. We stress that up to now no assumptions have been made about

the angular dependence in the energy exchange terms. A further simplification

can be introduced if all terms, but f , in equation (26) are assumed to be

isotropic and are replaced with their zero–th moments. The Compton source

term becomes then

gC
E

=κes̺jν

{

1− γ + γ
∂ lnJν
∂ ln ν

+ τ

[

∂2 ln Jν
∂ ln ν2

+

(

∂ lnJν
∂ ln ν

)2

−3
∂ ln Jν
∂ ln ν

]}

− κes̺f

[

1− 2γ +
1

meν2
Jν

(

1− ∂ lnJν
∂ ln ν

)]

,

(27)

where

Jν =
1

2

∫ 1

−1

Idµ ,

is the mean intensity. The approximated expressions (26) and (27) are to

be preferred whenever a non–relativistic plasma is considered, since their

evaluation is much faster than that of the general source term given by equation

(22). Moreover, equation (27) contains far fewer terms than (26), and has the

great advantage that all the angular dependence is contained in f .

All forms of the Compton source term based on the Fokker–Planck

approximation contain both first and second frequency–derivatives of the

moments of the distribution function. As noted by Nobili, Turolla & Zampieri
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(1993), in connection with the system of the first two PSTF moment equations,

Compton terms act as singular perturbations, changing the mathematical

character of the differential operator that becomes elliptic. As we discuss in

detail later on, our numerical code is based on an iterative scheme in which

integral terms, together with their derivatives, are treated as forcing terms, the

only full–fledged differential operator being the one contained in the Boltzmann

equation. On the other hand, the characteristic ray method provides the angular

and frequency dependence for f that allows to write the Compton source term

in its original form without resorting to the Fokker–Planck approximation. In

this case the problem of radiative transfer with comptonization can be solved

exactly in any range of energies and optical depths, and the hyperbolic character

of the Boltzmann equation is naturally preserved.

4. THE NUMERICAL METHOD

In this section we describe in some detail the numerical scheme we have

developed for solving the transfer problem. The more general case, which

corresponds to spherical flows in a Schwarzschild spacetime, is discussed in

subsection a); in subsection b) a simplified version of the code, for the solution of

the full radiation hydrodynamical problem in static, plane–parallel atmospheres

is presented; finally subsection c) is devoted to the numerical evaluation of the

Compton source term.

a) The spherical case

As it is well known, in a scattering medium, the transfer equation is an

integro–differential equation, while it has a simple structure when only true

emission–absorption is included; in particular, it reduces to an ODE when

written in its characteristic form. This suggests that its solution can be found

using an iterative method in which the starting point is just the solution of the
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transfer problem with only free–free processes taken into account. Following

this idea, equation (12) has been integrated numerically, with the boundary

conditions previously discussed, for a given set of values of the parameters b2

and E∞ and with the source term g = gff . This provides the zero–th order

approximation, f (0)(r, µ, E) of the distribution function, that can be used to

evaluate the scattering integrals appearing in ges or gC . In the second step, we

use the full expression for g to obtain the first order approximation f (1)(r, µ, E).

This is the solution of the transfer equation written in the form

y(µ+ v)

rg

df (1)

dr
=

gff
E

+ α[f (0)]− β[f (0)]f (1) .

All the expressions of the scattering source term discussed in the previous

section can be cast, and have been presented, in this form. In equations (15),

(16), (26) and (27) β can be immediately identified with the coefficient of f ; in

equation (22) α is the integral term. The scheme is iterated until convergence is

reached, improving at each iteration the functionals α and β making use of the

distribution function computed in the previous step. As a convergence test, we

compared each element of the matrix jν with its value relative to the previous

iteration and stored the maximum relative correction. Cauchy criterion has

been applied to verify the convergence of the succession of such corrections.

Equation (12) has been integrated using a a finite differences method

originally developed by Nobili & Turolla (1988), in which the algebraic system

is iteratively solved using the Henyey technique for matrix manipulation. The

entire radial domain [rin, rend] is divided by M points; rays of type a) are

integrated using this grid. For trajectories which exhibit a turning point, the

transfer equation is solved on the same mesh, picking up the subset of grid points

which cover their region of existence. Although, as we already mentioned, the

choice of r as the parameter along the geodesics has a number of advantages, it
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results in a divergent derivative of f at µ = −v. While, for those branches which

approach the turning point, this introduces some errors at most in the last few

points, trajectories moving away from the turning points may be systematically

affected by an inaccurate determination of their boundary condition. However,

it should be taken into account that when the optical depth at the turning point

is either large or very small, f tends to Bν/hcE
3 or remains vanishingly small,

independently on the boundary condition for equation (12). Numerical errors, if

any, are, then, restricted to rays inverting in regions of moderate optical depth.

The choice of the b–grid strongly constraints the final angular resolution

of f , and requires special care. Let us first assume that a black hole is the

central source; in this case the interval 0 ≤ b2 < 27/4 corresponds to ingoing

and outgoing trajectories of class a). For these two subclasses, we fix N1 and

N2 values of the impact parameter in such a way to produce an equally–spaced

µ–grid, in the range [−1, 1], at the critical point r = 3/2. To discretize the

range b2 ≥ 27/4, we exploit the one–to–one correspondence between b2 and the

position of the turning points, r = rn,

b2n =
r3n

rn − 1
. (28)

We fix N3 and N4 values of rn, the first at r ≤ 3/2 and the latter at r ≥ 3/2; the

rn’s are just the radii of the spherical shells tangent to the orbits of types b) and

c). In such a way, the total number N of µ–points in the interval −1 ≤ µ ≤ 1 is

r–dependent, and it is bounded by N1 +N2 + 1 ≤ N ≤ N1 +N2 + 2N3 − 1 for

r ≤ 3/2 and N1+N2+1 ≤ N ≤ N1+N2+2N4−1 for r ≥ 3/2. A better angular

resolution in all the radial domain can be obtained increasing the number of

photon trajectories. In the case the central source is a star of radius r∗, the

µ–gridding works in a very similar way, but the values of b in the range

0 ≤ b2 <
r3
∗

r∗ − 1
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now produce an equally–spaced µ–mesh at the star radius, the N4 points refers

to r > r∗ while no trajectory of type b) is present. We have found more

convenient to derive the values of the impact parameter starting from the radial

coordinate of the turning points, and not vice versa, since in this way the radial

extent of the photon trajectories, and hence the integration range of equation

(12), is specified without solving the cubic equation (28).

Once the rays are fixed, equation (12) must be integrated for different values

of the parameter E∞ along each trajectory. The range of E∞ should be chosen

in such a way that, at each value of r, we can compute the distribution function

in an interval of the local energy, [Emin, Emax], large enough to cover the

interesting portion of the spectrum. The parameter range [(E∞)min, (E∞)max]

must be larger than [Emin, Emax] at any given radius, since both gravity

and dynamics act in changing the photon energy along the geodesics. For

r < rend, in fact, the energy interval [Emin, Emax] is actually influenced by

some characteristic rays starting at rend with E∞ in the range

(E∞)min = [y (1 + v)]rmin
Emin ≤ E∞ ≤ [y (1− v)]rmin

Emax = (E∞)max .

In the numerical calculations we have used the dimensionless energy x =

E/KT∗, where T∗ is a suitable normalization temperature. For later appli-

cations, we found more convenient to divide the storage window [xmin, xmax]

by means of L points equally–spaced in lnx; the same grid is maintained at

all radii and f is stored at these points as a function of the local dimensionless

energy using an interpolation. In the two remaining ranges [(x∞)min, xmin]

and [xmax, (x∞)max], 2P values of x∞ has been specified. For these values

of the energy at infinity, the transfer equation has been integrated only along

the trajectories of those photons that, at some r, have a local energy within

our storage window. Loading the matrix f(ri, µj, Ek) is particularly convenient
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since it allows a more direct calculation of the scattering integrals, that are

evaluated at both constant r and E. All angular integrals can be obtained

simply performing a weighted sum of f over the µ–index without any additional

scanning of the array or extra interpolations. This has, also, the advantage that

the we are free to choose the most suitable numerical scheme to integrate over

energies since the rearrangement of the energy points at each radius follows

automatically. The numerical evaluation of the frequency–dependent moments

of f has, however, to be carried out with some care. In particular, when

the optical depth drops below unity and radial streaming is approached, the

integration over µ becomes troublesome and we found more convenient to

perform the quadrature over b2, using equation (11a). Since the same change of

variable works well near the horizon, where outgoing rays concentrate towards

µ = 1, it has been used in all the radial range. However, because of the

divergence of dµ/db2 where µ = −v, in a small region around this point the

original µ–integration was performed at each value of r.

b) The Static, plane–parallel case

The numerical scheme we have just presented allows the solution of the

transfer equation along the geodesic rays in the more general case, when

gravity, dynamics and sphericity are all accounted for. In many astrophysical

applications, however, transfer of radiation through a static, geometrically–

thin atmosphere is of interest, like, for example, when studying reprocessing of

thermal radiation in the atmosphere of X–ray bursting neutron stars. In all

these cases, a plane–parallel approach to the solution of the transfer problem is

fully justified since the atmospheric scale height is much less than the star

radius, although the effects of the strong gravitational field must still be

considered. The assumption of hydrostatic equilibrium introduces a major
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simplification in the treatment of radiative transfer because advection and

aberration are no more present. For a vanishing velocity field, equation (9)

reduces to E = E∞/
√−g00, implying that the value of the local energy

at a given radius is the same along all rays. This is just another way of

stating the existence of Thorne’s (1981) Universal Red–shift Function. The

rays are now symmetrical with respect to the µ = 0 line. A further, drastic,

simplification follows if it can be assumed that the radial coordinate is constant

in the atmosphere and equal to the star radius. This is commonly done in

non–relativistic transfer theory, replacing the height above the base of the

atmosphere with the optical depth. The rays are just straight lines, µ = const,

while the photon energy seen at infinity is simply the energy at any depth red–

shifted by the constant factor (1−1/r∗)
1/2. In the light of these considerations,

we have developed and tested a reduced version of our code which uses the

scattering depth as the independent variable. The angular mesh is obtained

specifying directly the values of µ; the energy points at which f is computed

coincide with the energy grid, which is the same at all depths. The calculation

proceeds exactly in the same way as in a non–relativistic problem and the

spectrum at infinity is simply obtained by applying the gravitational red–shift

factor to the spectrum emerging at the top of the atmosphere.

An application to isolated neutron stars accreting at low rates is presented

in section 5b. In this problem electrons are far from being relativistic

so Comptonization can be safely treated in the diffusion approximation

using expression (27) for the scattering source term. The much shorter

computational time allowed us to solve also the thermal and pressure structure

of the atmosphere, coupling the hydrostatic balance and the radiative energy

equilibrium to the transfer equation. The hydro equations are solved iteratively,

exploiting the scheme for the computation of the scattering integral we have
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already discussed. Pressure and temperature profiles are computed at each

iteration step, once the frequency–integrated moments have been obtained.

c) Numerical evaluation of the Compton source term

As discussed in section 3, the Compton source term, in the form (22), is the

sum of two contributions. The second addendum, which requires the calculation

of the zero–th moment of the CSK, σ00, poses no problems since it involves a

single quadrature of an analytical function. As proposed by Shestakov et al.

(1988), upon the change of variable

u =
1√
2τ

(√
z − 1√

z

)

,

σ00 can be efficiently evaluated using a Gauss–Hermite quadrature. We have

tested that six points give an accuracy better than 3 parts in 1000, sufficient

for our purposes.

We are left, then, with the problem of finding a fast algorithm for the

numerical calculation of the multiple integral

∫

∞

0

dγ′

[

exp

(

−γ − γ′

2

)(

f

2
+ 1

)

− f

2

]
∫

4π

dΩ′σ (γ → γ′, ξ, τ)f ′ . (29)

First of all, we note that the scattering probability may become strongly peaked;

in the Thomson limit, for example, the CSK tends toward a δ–function at

γ = γ′. In all regimes in which the integrand is fastly–varying particular care

must be used to account for delicate cancellations between opposite terms. We

start considering the CSK itself. As discussed by Kershaw, Prasad and Beason

(1986), the complicated three–dimensional integral in the electron velocity space

can be reduced to a single integral when the solid angle element is defined with

respect to a particular polar axis. In fact, taking the polar axis in the direction

of the photon momentum transfer ~s = (γ′~n′ − γ~n)/q, q =
√

γ2 + γ′2 − 2γγ′ξ,
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and using the Dirac δ–function to integrate over the polar angle, the integration

over the azimuthal angle becomes analytical. The final form of the CSK is then

σ(γ → γ′, ξ, τ) =
3

32γντK2 (1/τ)
exp (−λ+/τ)

{

2γγ′τ

q

+

∫

∞

λ+

exp

(

−λ− λ+

τ

)

{

1

(1− ξ)
2

×







(λ+ γ) (1/γ + 1/γ′)− (1 + ξ)
[

(λ+ γ)
2
+ ω2

]3/2
+

(λ− γ′) (1/γ + 1/γ′) + (1 + ξ)
[

(λ− γ′)
2
+ ω2

]3/2







+

[

−γγ′ +
2

1− ξ
+

2

γγ′ (1− ξ)
2

]

×
[

[

(λ+ γ)
2
+ ω2

]

−1/2

−
[

(λ− γ′)
2
+ ω2

]

−1/2
]}

dλ

}

(30)

where the Lorentz factor λ is now the integration variable, ω2 = (1 + ξ) / (1− ξ)

and

λ+ =
γ′ − γ

2
+

{

[

1 + γγ′
1− ξ

2

]

[

1 +
(γ − γ′)

2

2γγ′ (1− ξ)

]}1/2

.

As stressed by Kershaw et al., the main features of the scattering

probability are contained in the exp(−λ+/τ)/q term: everything is smoothly

varying with respect to this quantity, in particular with respect to the

exponential. Kershaw et al. proposed two methods for the numerical

evaluation of the λ–integral in equation (30); in both cases the CSK is

reduced to an approximate analytical expression. Here we adopt their fastest,

although less accurate, algorithm which is based on a suitable division of

the integration domain into subintervals where the exponential is replaced

by a linear interpolation. To avoid delicate cancellations when τ → 0, a

Taylor expansion of the inner expression in curly brackets is used to obtain

an asymptotic series in terms of Legendre polynomials for the integral; only
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terms up to second order are retained. Using this method the evaluation of

the CSK becomes analytical with an accuracy of about 3 parts in a thousand

in all parameter ranges. The CPU time for a single evaluation is typically few

microseconds on an alpha DEC–3000.

The algorithm we adopt for computing integrals involving the CSK follows

the original method presented by Kershaw (1987) for evaluating the total

scattering cross–section and it is based on the fact that λ+ has a minimum

in both γ′ and ξ. The most important contribution to the CSK comes, in fact,

from regions near this minimum; everywhere else the scattering probability

goes to zero exponentially fast with an e–folding length that is simply τ in λ+.

Having these considerations in mind, the double angular integral in expression

(29) can be written, taking ξ and φ as the polar and azimuthal angles, as

∫

4π

dΩ′σ (γ → γ′, ξ, τ)f ′ =

∫ 1

−1

dξσ (γ → γ′, ξ, τ)

∫ 2π

0

dφf (r, µ′, γ′) .

For each value of r, µ, γ′, ξ the azimuthal integral is evaluated using a Lobatto

quadrature. The values of the distribution function at

µ′

l = µξ +
√

1− µ2
√

1− ξ2 cosφl

where φl are the Lobatto abscissae, are obtained from a linear interpolation.

Once this is done, for each value of γ, γ′, τ , the integration over all polar

directions is carried out picking up the ξ range, within the interval |ξ| ≤ 1,

that provides a non–negligible contribution to the scattering probability: as we

anticipated, this is the region around the minimum of λ+. For fixed γ, γ′ and

τ , the e–folding lengths in λ+, nτ , immediately provide the e–folding lengths

in ξ, ξn. Denoting, in fact, with ξm = 1 − |γ − γ′|/(γγ′) the value of ξ where

λ+ is minimum, ξn is the root of the equation

λ+m1 + nτ = λ+ (γ, γ′, ξn) ,
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where λ+m1 = λ+ (γ, γ′, ξM) and

ξM = max (min (ξm,−1) , 1) .

Within each e–folding interval we use a 4–points Lobatto quadrature and the

number of intervals is fixed by the request that either the fractional contribution

of the last e–folding is less than the desired accuracy (5 × 10−3 in the present

case) or the boundary ξ = ±1 is reached. At γ = γ′ and ξ = 1 the CSK has an

integrable (∼
√
1− ξ) singularity, that can be easily eliminated with the change

of variable η =
√
1− ξ.

The integration in energy is carried out in a similar way. Since the most

important contribution to the inner integral (over ξ in our scheme) comes from

regions where λ+ is near λ+m1, the larger contribution to the outer integral

(over γ′) is provided by regions where λ+m1 itself is minimum. Clearly, the

lowest values of λ+m1 correspond to ξM = ξm, i.e. to ξm ≥ −1; the inequality

ξm ≤ 1 is always satisfied. We distinguish two cases: for γ′ ≤ γ the previous

condition is verified in the interval

γ

1 + 2γ
≤ γ′ ≤ γ

that we call region A, while for γ′ ≥ γ it holds in two different domains, that

we call in general region B, depending on the value of γ:

γ ≤ γ′ ≤ γ

1− 2γ
if γ < 1/2

γ ≤ γ′ < ∞ if γ ≥ 1/2 .

Since in region A λ+m1 = 1, the search for the e–folding lengths is not required

and integration is straightforward. This is not the case in region B, where

λ+m1 = 1 + γ′ − γ. Now, although its minimum value is still λ+m2 = 1, λ+m1
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is not a constant. The corresponding e–folding lengths γ′

n are to be derived

solving the equation

λ+m2 + nτ = λ+ (γ, γ′

n, ξM ) , (36)

which reduces to

1 + nτ = 1 + γ′

n − γ (37)

and gives simply γ′

n = γ + nτ . In region B integration over γ′ is carried out

using the same procedure introduced for the ξ–quadrature. To complete our

discussion, we need to consider the two intervals

0 ≤ γ′ <
γ

1 + 2γ
,

region C, and, if γ < 1/2,

γ

1− 2γ
≤ γ′ < ∞ ,

region D. In both cases λ+m1 = λ+ (γ, γ′,−1) and its minimum is reached at

λ+m2 = λ+m1|γ′=γ/(1+2γ)

or

λ+m2 = λ+m1|γ′=γ/(1−2γ)

in regions C and D respectively. The corresponding e–folding lengths are

obtained from equation (36). Lobatto rule is used everywhere and stepping

is terminated when its fractional contribution becomes less than 5 × 10−3.

The most convenient number of Lobatto points depends on the typical relative

values of the photon energy and gas temperature. In fact, for different values

of γ and τ , λ+(γ
′) can be either strongly peaked or very broad near its

minimum. Optimization requires some numerical experimenting, looking for the

best agreement between the direct evaluation of the CSK double integral and σ00
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computed using equations (24). For the test model presented in subsection 5b,

we used either a six or a ten points quadrature. Accordance between the values

of σ00 obtained using the two methods is better than 3–4%, with the larger

errors in the external region where the radiation temperature (mean photon

energy) is very far away from the gas temperature. On the other hand, where

the Compton parameter YC (see e.g. Rybicki & Lightman 1979) is greater than

unity, accuracy is better than 7 parts in a thousand. We finally note that the

choice of a gaussian–type quadrature is motivated, basically, by the fact that we

need to perform integrals of the CSK times f . The distribution function must

be interpolated to obtain its values at the integration points. Clearly, gaussian–

type quadratures with a fixed number of abscissae are much faster, although less

accurate, than step–adaptive schemes, as the Simpson rule originally used by

Kershaw. Computational feasibility is also the reason for which we decided to

evaluate the integral (29) using the values of f relative to the previous iteration.

Clearly, it is possible to rewrite expression (29) as

f

2

∫

∞

0

dγ′

[

exp

(

−γ − γ′

2

)

− 1

]
∫

4π

dΩ′σ (γ → γ′, ξ, τ)f ′

+

∫

∞

0

dγ′ exp

(

−γ − γ′

2

)
∫

4π

dΩ′σ (γ → γ′, ξ, τ)f ′

since f does not depend on γ′. Now f is just the dependent variable of the

transfer equation at any iterative step. The drawback is that the computing

times is about doubled, because of the two multiple integrals. The CPU time for

a single evaluation of expression (29) is typically ∼ 0.1 s and, in an production

run, a ∼ 2× 105 evaluation are required, implying a total time of about 6 hr.
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5. APPLICATIONS

As we stressed several times, accretion flows onto compact objects, and black

holes in particular, provide an ideal arena for applications of relativistic

radiation transfer in differentially–moving media. The accreting matter reaches,

in fact, not only r ∼ 1 with v ∼ 1, but, often, temperatures high enough

(T∼> 109 K) to make a full treatment of Comptonization necessary. For this

reason we decided to present in this section the numerical solutions of the

transfer problem relative to different accretion regimes onto black holes and

neutron stars: “cold” and “hot” black hole accretion is considered in subsections

a) and b), respectively, and subsection c) deals with “cold”, static atmospheres

around neutron stars. The full radiation hydrodynamical problem in solved only

in the latter case, while in the first two examples the flow hydrodynamics is kept

fixed. Since our present goal is to test the capabilities of our method, no attempt

has been made to explore the models parameter space: we just present results

for a single model which we judge useful in illustrating the main features of our

integration scheme. For model c) a direct comparison with the results obtained

by Zampieri et al. (1995) with the moment expansion has been made, showing

a good agreement. No previous solutions for black hole accretion spectra are

available, at least for models which contain an optically thick core. Our attempt

to cross-check results presented in section 5a integrating the moment equations

were hindered by severe numerical problems which arise when the flow is not

effectively thick at the horizon at all frequencies. The moment method can not,

also, be used to compute radiative transfer in “hot” models, where Compton

scattering must be treated outside the Fokker–Planck approximation.

a) Accretion onto black holes: low–luminosity solutions

Spherical, stationary accretion onto a Schwarzschild black hole has been
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throughly investigated in the past and we refer to the paper by Nobili, Turolla

and Zampieri (1991, NTZ in the following) for all details. A distinctive feature

of black hole accretion is that, for the same value of the accretion rate ṁ

which is the only free parameter, two solutions may exist with very different

properties: a “cold”, low–luminosity and a “hot”, high–luminosity one. In

both solutions the sonic point is so far away that we can safely assume that

matter is free–falling with u1 = r−1/2 in our region of interest. Here we refer to

models with high accretion rates, ṁ∼> 1 in Eddington units. In this regime

low–luminosity solutions start to develop an inner region optically thick to

both free–free and scattering and show negligible Comptonization; consequently,

electron scattering can be treated in the Thomson limit, using expression (16).

Under these conditions we expect, however, bulk motion Comptonization in the

converging flow (Blandford & Payne 1981; Payne & Blandford 1981; Nobili,

Turolla & Zampieri 1993) to act efficiently at high frequencies where true

absorption is very low.

For our first test we consider NTZ solution characterized by ṁ = 0.71,

corresponding to a density at the horizon ̺H = 10−6 g cm−3. The gas

temperature is in the range 2 × 104 K∼< T∼< 5 × 105 K, so we have chosen a

normalization temperature lnT∗ = 11. The dimensionless energy window is

xmin = 0.1 < x < xmax = 40, corresponding to the range 0.5–206 eV; here

L = 30 points have been used. Outside this range, P = 10 energies has been

fixed in each of the two additional intervals of x∞ we need, as discussed in

section 3a. Since the effective optical depth at our larger energies is everywhere

< 1, we solved the transfer problem for 10−2 ≤ log r ≤ 5, imposing the boundary

condition df/dr = 0 along trajectories starting at rin. The radial domain has

been divided by M = 250 points; the grid is not uniformly spaced and points are

tighter around r = 3/2. To obtain a good angular resolution, 90 trajectories
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have been followed at each energy, N1 = N2 = 20, N3 = 10, N4 = 40. In

such a way, the number of µ points, which is minimum at r = 3/2, is always

greater than 21. At each value of x within the storage window the scattering

source term was calculated using a linear interpolation for both the matrices

jν and kν ; outside this window an extrapolation has been used. Figures 2a

and 2c show the mean intensity Jν and radiation pressure Kν at different

energies, together with the Planck function at T (rin); each curve corresponds

to a different value of the radial coordinate. The effective frequency–dependent

optical depth goes from 3 × 103 to 10−4 for the lowest frequency, while high

energy photons stream freely at all radii. The low energy portion of the spectral

distribution is a superposition of thermal bremsstrahlung emission at different

temperatures while bulk motion Comptonization produces a power law high–

energy tail. The calculated spectral index, α = −2.9, is due to unsaturated bulk

motion comptonization, being the scattering optical depth ∼ 0.7 at the horizon.

The theoretical value derived by Payne & Blandford, in the limit τes ≫ 1,

is α = −2 for a free–fall velocity. At large radii, where radial streaming is

approached, all moments fall off as r−2; the asymptotic radial gradient we have

found is −1.99. While the evaluation of even moments does not pose particular

problems, in the inner regions, where the radiation field is nearly isotropic, a

direct numerical quadrature for computing odd moments becomes troublesome

because of the delicate cancellations between contributions of opposite sign. To

avoid this problem, the monochromatic flux, presented in figure 2b, has been

replaced with its analytical expression in the diffusion approximation every time

it is τeff > 10. A typical production run required 10–11 iterations to converge

with a fractional accuracy better than 10−4, with a total CPU time of about

20 minutes on an alpha DEC–3000.

b) Accretion onto black holes: high–luminosity solutions
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In “hot” solutions temperature is much higher, typically ∼ 1010 K near

to the horizon. As a consequence, free–free absorption is much lower than

in “cold” models, even for larger accretion rates. Along the high–luminosity

branch, thermal Comptonization is the dominant radiative process and it must

be treated in its more general form, using expression (22). Here we consider

the “hot” solution of NTZ with ṁ = 71, ̺H = 10−4 g cm−3. The flow is

now effectively thin at all frequencies, although an inner core optically thick

to scattering is present. The gas temperature in this model is in the range

105 K ≤ T ≤ 1010 K, so we have chosen lnT∗ = 21 and xmin = 0.008. Now

the energy window is 0.9–4500 keV and L = 35 points have been used. Since

the evaluation of the CSK integrals is very time–consuming, both angular and

radial resolution has been reduced with respect to the previous model: N1 =

N2 = N3 = 10, N4 = 30 and M = 110 in the same radial domain. In this model

convergence has been reached with a fractional accuracy better than 0.02, and

the calculated radial gradient at infinity is −2.04. The resulting mean intensity

is presented in figure 3. In high temperature models, the mean intensity is

always less than Bν , but despite the accreting gas radiates less efficiently than

in low–luminosity optically thick solutions, the efficiency of accretion process

is higher, due to the fact that the matter temperature is now higher in the

whole photospheric region. Since the emergent spectrum is peaked at about 40

keV, these solutions, if stable (see NTZ and Zampieri, Miller & Turolla 1995),

seem to provide a natural way to produce hard X–ray radiation with reasonable

efficiency out of spherical accretion onto black holes.

c) Static, plane–parallel atmospheres around neutron stars

Our last application refers to a static, “cold” atmosphere around an

accreting unmagnetized neutron star. Emitted spectra were firstly derived by
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Zel’dovich & Shakura (1969) and, in more detail, by Alme & Wilson (1973)

in the high luminosity range (l∼> 10−3 in Eddington units). Solutions for

10−7 < l < 10−3 has been recently presented by Zampieri et al. (1995) in

connection with isolated neutron stars accreting the interstellar medium. As

they have shown, the emitted spectrum exhibits an overall hardening with

respect to the blackbody at the neutron star effective temperature with a

hardening ratio, typically ∼ 1.5−3, which increases with decreasing luminosity.

The most important physical processes are free–free emission and absorption;

Compton cooling plays a role only in increasing the temperature in the outer

atmospheric layers, where the low energy tail of the emitted spectrum is

created. Since typical temperatures are very low, Comptonization is treated

by means of the approximated expression (27), which is much faster. The run

of thermodynamical variables is obtained solving the hydrostatic and energy

balance (see Zampieri et al.) together with the transfer equation, using an

iterative scheme. However, in this problem the thermal balance is very delicate

and the zone where photons of different energies thermalize strongly depends

on integrated quantities, J and the absorption mean κ0. Numerical integration

proved more stable if J and H are derived as solution of the first two gray

moment equations. The same approach was used by Zampieri et al., with the

difference that in our scheme the gray moment equations are solved exactly,

computing from the specific intensity the Eddington factors K/J at each depth

and J/H at τ = 0. Here we have recomputed the model with l = 10−4, using

a spectral window xmin = 0.1, xmax = 10 centered around a normalization

temperature logT∗ = 6.6; L = 30 frequency points have been used. The angular

resolution is provided by N1 = N2 = 15 trajectories and the transfer equation

is solved in the range −8 < log(τ) < 0.9 using M = 100 grid points. The

resulting mean intensity is plotted in figure 4. Figures 5 and 6 show the emergent
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spectrum and the temperature profile together with the results of Zampieri et al.

(dashed lines). As can be seen, the agreement both in the spectral shape and the

temperature profile is very good, showing that the approximated solution of the

transfer equation with two moments is rather accurate. To obtain this model,

with a fractional accuracy better than 2 × 10−2, 14 iterations were required,

with a total CPU time of about 3 minutes on an alpha DEC–3000. Agreement

between the gray mean intensity, derived as the double integral of f , and the

solution of the second gray moment equation is always better than few parts in

thousand.

6. CONCLUSIONS

In this paper we have presented a characteristic method for the solution

of the general relativistic transfer equation. If the spacetime admits some

symmetries, the formalism can be simplified; in particular, in presence of three

Killing vectors, two of the three equations for the characteristic rays become

analytical. In addition, using the radial coordinate as the parameter along

the null geodesics, the exact solution of the transfer problem can be obtained

solving a single ordinary differential equation along a bi–parametric family of

characteristic trajectories. A numerical technique, based on an iterative scheme,

has been developed and tested either for the calculation of the radiation field

in a fixed background or for the solution of the full radiation hydrodynamical

problem in spherical and plane–parallel geometry. Particular care has been

devoted to the evaluation of the source term, taking into account radiative

processes which are believed to be of importance in astrophysical accreting

plasmas: electron–electron and electron–proton bremsstrahlung, Thomson and

Compton scattering.

Radiative effects due to magnetic fields and pair production–annihilation
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were not considered in this work. However we stress that the method we

have presented is completely general and additional radiative processes may be

easily included. Source terms not involving integrals of the photon distribution

function can be simply accounted for when the corresponding emissivity and

opacity coefficients are provided. On the other hand, our iterative scheme allows

for the solution of integro–differential equations and can be used to include

also different integral source terms as, for instance, those ones related to pair

production or bound–bound emission. Actually, a self–consistent treatment

of pair production entails the solution of the full radiation hydrodynamical

problem, with the addition of the pair balance equation and was left out on

purpose in our discussion of “hot” accretion solutions which are obtained at

fixed hydrodynamics.

In the test models we discussed magnetic fields and pair production are not

expected to play a relevant role at least for low luminosity solutions. In the case

of accretion onto neutron stars it can be easily shown, in fact, that, for typical

temperatures and densities in the photospheric region, the cyclotron emission

is lower than the free-free emission if B∼< 109 G (see e.g. Schmid–Burgk, 1978).

On the other hand, a relic magnetic field of this order is just what is expected in

isolated neutron stars which evolved beyond the pulsar phase; our models can

be then assumed to describe correctly the emitted spectrum from old neutron

stars accreting the interstellar medium. As far as low–luminosity accretion

onto black holes is concerned, the limiting value is a factor 10−2 smaller, but

it still exceeds the maximum strength of the tangled B–field derived assuming

equipartition between magnetic and thermal energy densities. However, in the

inner regions of high–luminosity models electrons become relativistic and both

pair processes and synchrotron emission start to play a role.
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APPENDIX A

Here we present the expressions of the Ai, i = 1, . . . , 8, terms appearing into

equation (26). Their derivation starts from Fraser’s result, equation (25), and

makes use of relation

ξ = µµ′ +
√

1− µ′2
√

1− µ2 cos (Φ− Φ′) .

At first order in γ and τ , only the first four moments mn
ν of the distribution

function

mn
ν =

1

2

∫ 1

−1

fµndµ

appear in the Compton source term; they will be termed jν , hν , kν and lν ,

using the standard notation. We introduce also the correspondent moments of

the specific intensity I:

Mn
ν = E3mn

ν .

To make the larger number of terms dimensionless, we introduce double

logarithmic frequency derivatives for all even moments; terms containing odd
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moments are written as semi–logarithmic derivatives since odd moments may

become vanishingly small in regions where the effective optical depth is very

large. The final result is:

A1 =jν

{

1− γ

(

1− ∂ lnJν
∂ ln ν

)

+ τ

[

∂2 ln Jν
∂ ln ν2

+

(

∂ lnJν
∂ ln ν

)2

− 3
∂ lnJν
∂ ln ν

]}

A2 =
6

5

[

(γ − τ)hν − 1

E3
(γ − 3τ)

∂Hν

∂ ln ν
− τ

E3

∂2Hν

∂ ln ν2

]

A3 =
1

8

{

(1− γ − 6τ) (jν − 3kν) + (γ − 3τ)

(

jν
∂ lnJν
∂ ln ν

− 3kν
∂ lnKν

∂ ln ν

)

+τ

[

jν

(

(

∂ ln Jν
∂ ln ν

)2

+
∂2 lnJν
∂ ln ν2

)

− 3kν

(

(

∂ lnKν

∂ ln ν

)2

+
∂2 lnKν

∂ ln ν2

)]}

A4 =
3

40

[

(γ + 4τ) (3hν − 5lν)−
1

E3
(γ − 3τ)

(

3
∂Hν

∂ ln ν
− 5

∂Lν

∂ ln ν

)

− τ

E3

(

3
∂2Hν

∂ ln ν2
− 5

∂2Lν

∂ ln ν2

)]

A5 =
3

8

(

3jν − kν − 3jν
∂ ln Jν
∂ ln ν

+ kν
∂ lnKν

∂ ln ν

)

A6 =
3

8

(

jν − 3kν − jν
∂ lnJν
∂ ln ν

+ 3kν
∂ lnKν

∂ ln ν

)

A7 =
3

8

(

hν − 1

E3

∂Hν

∂ ln ν

)

A8 =
3

8

(

lν − 1

E3

∂Lν

∂ ln ν

)
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FIGURE CAPTIONS

Figure 1a. The run of the cosine of the angle between the photon momentum

and the radial direction, as measured by a free–falling observer, along the

characteristic rays. Different curves correspond to different values of the

impact parameter b.

Figure 1b. Same as in figure 1a for the photon energy normalized with respect

to E∞.

Figure 2a. Monochromatic mean intensity at different radii (full lines),

together with the blackbody function at T (rin) (dashed line), for “cold”

accretion onto a black hole with ṁ = 0.71.

Figure 2b. Same as in figure 2a for the monochromatic flux.

Figure 2c. Same as in figure 2a for the monochromatic radiation pressure.

Figure 3. Monochromatic mean intensity at different radii (full lines), together

with the corresponding blackbody function at T (rin) (dashed line), for “hot”

accretion onto a black hole with ṁ = 71.

Figure 4. Monochromatic mean intensity at different scattering depths (full

lines) for a “cold”, static, plane–parallel atmosphere around a neutron

star with l = 10−4. The blackbody function at T (τin) is also drawn for

comparison (dashed line).

Figure 5. The emergent spectrum for the model in figure 4 (full line) compared

with the blackbody at the neutron star effective temperature (dash–dotted

line) and with the solution obtained by Zampieri et al. (1995, dashed line).

Figure 6. The gas temperature profile for the model in figure 4 (full line),

compared with that one found by Zampieri et al. (1995, dashed line).
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