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ABSTRACT

We propose a new approach to study the dynamical implications of mass models of
clusters for the velocity structure of galaxies in the core. Strong and weak lensing data
are used to construct the total mass profile of the cluster, which is used in conjunction
with the optical galaxy data to solve in detail for the nature of galaxy orbits and the
velocity anisotropy in the central regions. We also examine other observationally and
physically motivated mass models, specifically those obtained from X-ray observations
and N-body simulations. The aim of this analysis is to understand qualitatively the
structure of the core and test some of the key assumptions of the standard picture of
cluster formation regarding relaxation, virialization and equilibrium. This technique is
applied to the cluster Abell 2218, where we find evidence for an anisotropic core, which
we interpret to indicate the existence of a dynamically disturbed central region. We
find that the requirement of physically meaningful solutions for the velocity anisotropy
places stringent bounds on the slope of cluster density profiles in the inner regions.

Key words: galaxy clusters: lensing – galaxy clusters: galaxy orbits – galaxy clusters:
dynamics

1 INTRODUCTION

Studying the velocity structure of the cores of clusters of
galaxies promises to provide new insights into the physics of
the formation of clusters. The crucial physical consequence
of the cumulative dynamical history of a cluster is its un-
derlying mass distribution. We propose a new approach to
study the dynamics of cluster galaxies using the mass pro-
file measured from gravitational lensing. Lensing provides
the most accurate determination of the mass profile, and
is independent of assumptions as to the kinematics of the
cluster.

The dramatic arcs and multiple images produced by
rich clusters tightly constrains the mass of the cluster in
the inner-most regions, on the scale of the Einstein radius,
with typical range 30 < rE < 200 h−1

50 kpc (Kneib &
Soucail 1996). Current progress in observational techniques
have made it possible to map the cluster mass out to large
radii from the weak shearing of faint background galaxies.
While uncertainties arise due to the correction for the point-
spread function and the unknown redshift-distribution of
background galaxies, reliable mass profiles for an increas-
ing number of clusters should be available in the near future
(Kaiser, Squires, & Broadhurst 1995). Combining this with
knowledge of the spatial distribution and line-of-sight com-
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ponent of the velocities of cluster galaxies, and assuming
them to be good tracers of the cluster potential well, we can
solve in detail for the variation of the velocity anisotropy
parameter β with distance from the cluster centre.

It is an observational challenge to perform a compre-
hensive redshift survey of distant clusters, z > 0.1 in suffi-
cient detail to interpret the velocity histogram and efficiently
disentangle the effects of substructure, existence of velocity
anisotropy and axisymmetric infall. However, securing 200
to 800 velocities for distant cluster galaxies is now becom-
ing possible with the newly developed MOS multi-object
imaging spectrographs (Yee, Ellingson, & Carlberg (1996a)
and Lefevre et al. (1994)). This would enable constructing
secure line-of-sight velocity dispersion profiles for high red-
shift clusters.

Recent optical surveys by Colless & Dunn (1996) and
X-ray studies of clusters by Briel & Henry (1995) seem to
indicate that while the X-ray isophotes of cluster cores have
an overall smooth appearance most of them are not only
dynamically young but also quite disturbed. The nature of
orbits is therefore an important indicator of the dynami-
cal state of both the inner and outer regions of the cluster.
Principally radial orbits, expected at the outskirts, are the
signature of a region dominated by infall, whereas isotropic
orbits imply the existence of a well-mixed region.

Previous studies of the velocity dispersion profile and
estimates of the degree of anisotropy in clusters have pro-
vided ambiguous results, primarily due to the lack of knowl-
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edge of the underlying mass distribution. The velocity struc-
ture of galaxies in clusters have been studied in detail (Coma
and A2670) by Kent & Gunn (1982); The & White (1986);
Merritt (1987); Sharples, Ellis, & Gray (1988); Colless &
Dunn (1996) and several other groups. These analyses used
the observed galaxy positions and velocities to constrain
the distribution of total mass and simultaneously find con-
sistent and physically meaningful solutions for the velocity
anisotropy.

The & White (1986) examined the uncertainties in the
virial mass profiles derived for Coma from observational
data. They showed that a wide range of mass models are
consistent, consequently permitting a large range of orbital
structures. Mass models that were more compact (but had
low overall masses) implied circular orbits for the galaxies
whereas the higher mass models implied predominantly ra-
dial orbits. Merritt (1987) examined the relative distribution
of the dark and luminous matter in Coma and showed that
it was impossible to distinguish between models where the
galaxies trace the total mass and were on isotropic orbits
versus those in which the dark matter was very concentrated
and the galaxies were on primarily transverse orbits. There-
fore, sufficient constraints on the total mass distribution and
the velocity anisotropy cannot be obtained simultaneously
using only the luminous tracers. In the recent survey of the
Coma cluster by Colless & Dunn (1996), they find that the
velocity distribution is highly non-Gaussian. The dynamics
can be better interpreted in terms of an on-going merger
between two sub-clusters, thus indicating that the system is
not in virial equilibrium.

Similar studies of the cluster A2670 have also been
inconclusive; in the faint photometric and spectroscopic
survey by Sharples, Ellis, & Gray (1988), both extremely
anisotropic models and nearly isotropic ones were indistin-
guishable in terms of goodness of fit with respect to the
available data.

In these clusters and others that have been studied, the
principal uncertainty in the determination of the anisotropy
arises from ignorance of the distribution of the total mass. In
our analysis, independent data from lensing that constrains
the overall mass distribution allows the elimination of this
largest source of uncertainty.

The plan of this paper is as follows: in Section 2 we re-
view observational probes of the internal dynamics of clus-
ters and construct mass models from X-ray data, lensing
data, and from N-body simulations. The mathematical for-
malism that forms the basis of our approach is presented
in Sections 3 & 4. The robustness of the method is demon-
strated for several fiducial forms of the total mass profile
(Section 5), and the technique is then applied to the clus-
ter A2218 (Section 6). Finally, we discuss our results and
their implications for the physical state of the core of A2218.
Throughout this paper, we assume H0 = 50 km s−1Mpc−1,
Ω = 1 and Λ = 0.

2 OBSERVED PROPERTIES OF THE CORE

2.1 Photometric and spectroscopic studies

With the rapid progress in photometric and spectroscopic
techniques, the precision of observationally determined pa-
rameters for clusters has improved significantly in the past

decade. The main limitations are the errors incurred in
establishing cluster membership (Aragon-Salamanca et al.
1993) due to contamination from the field population
for photometrically selected samples. On the spectroscopic
front, while surveys are pushing down to fainter magnitude
limits, a commensurate gain in the number of cluster galax-
ies sampled cannot be achieved since the number of faint
background field galaxies grows more rapidly. In the follow-
ing subsections we examine the observationally determined
quantities that we use in our present analysis.

2.1.1 Galaxy surface density profiles from optical

data

Galaxy surface density profiles are generally determined
by fitting the observed number density in a given cluster
to physically motivated functional forms (Kent & Gunn
1982). Since to define cluster membership, one usually uses
the color-magnitude relation of the E & S0 galaxies (given
the limited spectroscopic samples available), the computed
galaxy distribution profile preferentially probes the E & S0
cluster galaxies. The other morphological types in the clus-
ter, could in principle have different profiles, but given the
limitations of the available data we implicitly assume that
the E & S0’s efficiently trace the overall mass distribution.

While it can be argued that there is insufficient ob-
servational evidence for a core in the galaxy distribution
in clusters (Carlberg et al. (1996) and Merritt & Tremblay
(1994)), it is nevertheless instructive to examine the mod-
ified Hubble law profile which provides a reasonable fit to
sparser samples.
PROFILE A:

νg(r) =
ν0

(1 + r2

r2g
)1.5

. (1)

The core radius rg for typical clusters ranges from
150 h−1

50 kpc to about 300h−1
50 kpc. A least squares method is

then used to determine the values of ρ0 and core radius that
simultaneously provide the best-fit to the data. For well-
sampled clusters, (Katgert et al. (1996) and Yee, Ellingson,
& Carlberg (1996b)) it is found that the number density of
galaxies can be fit by a generic profile of the form,
PROFILE B:

νg(r) =
ν0

( r
s
)α(1 + r

s
)2−α

, (2)

with α = 1 and s being a scale-radius ranging from
200 − 400h−1

50 kpc. This profile looks asymptotically like the
modified Hubble law, but has a central cusp. We examine
both these profiles and their implications for the core dy-
namics in detail in Section 5 of this paper.

In principle, non-parametric maximum-likelihood and
regression techniques developed by Merritt & Gebhardt
(1995) and Merritt & Tremblay (1994) are more accurate
in terms of characterizing the surface number density dis-
tribution; given the quality of data available at present for
lensing clusters (at moderately high redshift) with a secure
mass model, good photometry and sufficient velocities, we
restrict our current analysis to a parametric approach, pri-
marily on the basis of statistical adequacy given the sample
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sizes that we are dealing with and the convenience of work-
ing with analytic forms. Besides, the non-parametric meth-
ods necessarily involve smoothing the data in order to yield
confidence limits, which introduces a bias that increases with
the degree of smoothing employed and is hence undesirable
for sparse samples. For a more complete data-set however,
a non-parametric likelihood method would be more appro-
priate.

2.1.2 Line-of-sight velocity dispersion profiles

The only measured component of the velocity dispersion of
the galaxies is the projection along the line-of-sight. The in-
terpretation of this measurement might be severely affected
by substructure in the cluster and the presence of inter-
acting sub-groups. For any distant cluster ( z > 0.1), the
line-of-sight velocity dispersion is not determined accurately
enough at present to construct a secure radial profile. Even
for nearby clusters, the rich region close to the centre and the
outer regions, are not sampled adequately to infer conclu-
sively the asymptotic behavior. For the well-studied cluster
Abell 2218, the error bars in the measurements (see Fig. 6)
are too large to perform any sensible fit to the available data
and extract a radial profile.

2.1.3 X-ray observations

X-ray observations by Einstein, ROSAT and ASCA map the
thermal bremsstrahlung emission from the hot intracluster
gas at temperatures around 107 −108K; the typical observed
X-ray luminosities range from 1042 − 1045 ergs s−1 (in the
0.5 – 4.5 keV band). The measured gas mass within the cen-
tral few Mpc is of the order of 1014 M⊙, and the inferred
cooling times for the gas in some clusters is of the order of
109 years (Fabian, Nulsen, & Canizares 1982). The surface
brightness profiles of clusters are sharply peaked at the cen-
tre. From X-ray observations, with a few exceptions, most
cluster cores appear smooth and uniform with very regular
isophotes. Accurate measurements of the temperature pro-
file in the cores are only now becoming feasible (for z < 0.1
clusters) with the ASCA satellite.

2.1.4 Mass profiles from X-ray data

Standard deprojection analysis of the X-ray surface bright-
ness profile gives the density profile of the gas, and the clus-
ter potential within which the gas is confined (Sarazin 1988).
The main limiting assumptions are spherical symmetry, hy-
drostatic equilibrium, the inability to take sub-structure into
account and assumptions regarding the unknown radial tem-
perature profile of the gas (Nulsen & Böhringer 1995). The
latter assumption is particularly important when modelling
the inner parts of cluster cores with either strong cooling
flows, where one expects to have a multiphase ICM (Allen,
Fabian, & Kneib 1996), or in clusters which have undergone
recent mergers, resulting in a complex temperature struc-
ture. Preliminary results of measurements of the tempera-
ture structure of the core of A2256 (Briel & Henry 1995)
seem to indicate that this cluster, which was believed to be
one of the smoothest and most uniform from its X-ray image

shows strong evidence for temperature gradients in the core
(Markevitch et al. 1996).

2.2 N-body simulations

N-body simulations provide the crucial link in understand-
ing how the observed structure in clusters arises in the con-
text of their evolution from the initial perturbations in the
gravitational instability picture.

High-resolution simulations that incorporate gas dy-
namics and some of the important gas physics like shocks
and radiative cooling are being used to study the formation,
dynamics and evolution of galaxy clusters in the scenario
where structure is built up hierarchically in a universe dom-
inated by cold dark matter (Evrard 1990;Cen, Gnedin, &
Ostriker 1993; Navarro & White 1994; Frenk et al. 1995).
The evolution of both the dark matter and the baryonic
component can be tracked to within the resolution limit.
While the core of an individual cluster cannot be resolved in
enough detail to understand relaxation processes, an ensem-
ble of clusters can be studied for their ‘average’ properties
(Navarro, Frenk, & White 1994).

The density profiles of clusters formed in these simu-
lations are sensitive to the underlying cosmological model,
the initial conditions, the accuracy of modelling gas dynamic
processes and prescriptions for galaxy and star formation.
Efsthathiou et al. (1985) found that in simulations with
only dark matter particles, the slope of the density pro-
file on cluster scales steepens with increasing n, where n
is the spectral index of the scale-free, initial perturbations
in an Einstein-de Sitter cosmology. It has been suggested
by Crone, Evrard, & Richstone (1994) and Navarro, Frenk,
& White (1994) that ensemble cluster properties, like abun-
dance, clustering and density profiles might be a useful dis-
criminant of cosmological parameters. However, properties
of currently simulated clusters are not consistent in detail
with their observed properties, primarily a reflection of the
lack of understanding of the physics of galaxy formation and
the role of non-gravitational processes coupled with the lack
of knowledge of Ω. Qualitatively though, the morphology of
simulated clusters is quite similar to ROSAT observations of
X-ray clusters, and the physical effects of mass segregation
due to dynamical friction and luminosity segregation seem
to be borne out in the simulations - evidence to support our
naive theoretical picture of the formation of clusters.

In a recent paper, Navarro, Frenk, & White (1996) re-
port the results of their N-body + SPH simulations, wherein
a ‘universal density profile’ is found to be a good fit over a
large range of scales for dark halos in standard CDM mod-
els. The halo profiles are more or less isothermal, shallower
than r−2 near the central regions and steeper close to the
virial radius. The density profile has the following form,

ρ (r) =
ρ0

r
rs
(1 + r

rs
)2

(3)

where rs is a scale radius. The corresponding mass profile is
given by:

M(r) = M0 [ ln(1 +
r

rs
) +

1

(1 + r
rs
)
]. (4)

We examine this mass model and its consequences for the
resulting dynamics of cluster cores in section 5.
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2.3 LENSING BY CLUSTERS

Clusters of galaxies have the optimum cross-section for lens-
ing the nearly isotropically distributed high redshift faint
galaxy population. Lensing by an extended mass concentra-
tion can be understood in terms of a mathematical map-
ping (e.g. Blandford & Narayan 1987 and Fort & Mellier
1994) from the source plane onto the image plane with the
properties that it conserves surface brightness and is achro-
matic. The deflections produced are non-linear with impact
parameter and therefore produce both amplification and dis-
tortion of the background sources. There are two important
effects: the isotropic magnification and the non-isotropic dis-
tortion. The isotropic magnification is caused by mass inte-
rior to the beam and is pronounced in the region of the
image plane where the local surface mass density Σ is of
the order of the critical surface mass density, Σcrit, which
occurs in the dense cores of rich clusters producing multiple
images and arcs. (Σcrit depends on the angular distance to
the source and lens and hence on cosmological parameters).
The anisotropic distortion of images is caused by the gradi-
ent of the two-dimensional potential and characterizes the
‘weak lensing’ regime, the signal being arclets (single weakly
sheared images) produced even at large distances from the
cluster centre.

A composite mass profile for a cluster can be con-
structed using a variety of constraints from lensing effects
over a range of scales. The strong lensing regime constrains
the total mass enclosed within the ‘Einstein radius’, while
weak shear effects (measured statistically from the elliptici-
ties of the faint background galaxies) determine the slope of
the mass profile at the outskirts.

2.3.1 Constraints from Strong Lensing

The input from observations for the mass modelling are arc
positions, the number of merging images and their parities,
and the width, shape and curvature of the arcs. They are
used to determine the location of the critical lines in the im-
age plane which are then mapped back to the source plane
in the method developed by Kneib (1993). The difference in
parameters implied by each of the multiple images is then
minimized in the χ2 sense in the source plane. In order to
calibrate the lens model, at least one arc redshift needs to
be measured. The usual mass profiles used in modelling the
cluster mass distributions are the cored isothermal profile
(Blandford & Kochanek 1987), the pseudo-isothermal ellip-
tical mass distribution (PIEMD) (Kassiola & Kovner 1993)
or a linear combination of them. The PIEMD model has a
2-D surface mass density defined by:

Σ(r) =
Σ0

√

1 + r2

r2
0

, (5)

The corresponding 3-dimensional density profile and the
mass are,

ρ(r) =
ρo

1 + r2

r2
0

, (6)

M(r) = M0 [
r

r0
− tan−1 r

r0
]. (7)

Modelling the arcs with this profile, the normalization and
the core radius (which is a measure of the compactness of the
mass distribution) are determined. The core radius of most
lensing clusters is observed to be quite small, 30h−1

50 kpc≤
ro ≤ 100h−1

50 kpc.

2.3.2 Constraints from Weak Lensing

The slope of the mass profile at large radii ( r > 200h−1
50 kpc)

is constrained by the observed weak distortion effects. The
weak shear γ induced by the cluster on the background im-
ages can be written for the circularly symmetric case as:

γ ∝ 〈D(zs)〉 (Σ̄(< r) − Σ(r)), (8)

where 〈D(zs)〉 is the mean of the ratio of the angular dis-
tances Dlens−source/Dobserver−source and Σ̄ the mean sur-
face density within radius r. The Kaiser-Squires technique
(Kaiser & Squires 1993) defines a mapping that relates the
image ellipticities to the relative mass map Σ(r) for a clus-
ter. To construct the surface mass density profile one uses
the statistic suggested by Fahlman et al. (1994) & Squires
et al. (1996),

Σ̄(< r1) − Σ̄(r1 < r < r2) =
2Σcrit

1− r21/r
2
2

∫ r2

r1

〈ǫt〉 dr
r
, (9)

where 〈ǫt〉 is the mean tangential component of the image
ellipticities. For this inversion, deep optical images under
exquisite seeing conditions of a wide field over the lensing
cluster are required. Details of correction and compensation
for the anisotropy of the point-spread function and bad see-
ing conditions have been demonstrated by Kaiser (1995) and
Bonnet & Mellier (1995).

2.3.3 Constraints from the cD galaxy

Dark matter in clusters is sharply peaked about the cluster
centre around which the lensed images are seen. In most
clusters with spectacular arcs, the centre of the brightest
cluster galaxy and the centre of the dark matter distribution
as determined both from X-ray and lensing studies seem to
be coincident to within the errors - of the order of a few
arcseconds.

The central bright elliptical galaxies are often cDs with
diffuse halos extending out to beyond the Einstein radius.
The orbits of the stars in these halos trace the overall dark
matter potential. The density profiles of cD galaxies are
fairly well-determined observationally (Kneib et al. 1995)
and are best fit by a difference of 2 PIEMD models,

ρ(r) =
ρ0r

2
1r

2
cut

(r2cut − r21)
[

1

r2 + r21
− 1

r2 + r2cut
], (10)

where r1 is the core radius and rcut is the truncation radius.
The velocity dispersion profile of giant ellipticals is also mea-
sured in a number of clusters (Fisher, Illingworth, & Franx
1995) and is found to be, σ∗ ∼ 300−500 kms−1. Close to the
cluster centre, the overall mass profile has to be consistent
with the measured isotropic velocity dispersion of stars in
the cD (Miralda-Escude 1995).
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3 DYNAMICAL EQUATIONS

We model the cluster as a collisionless system in which the
individual galaxies move under the influence of the mean
gravitational field φ generated by all the constituents. The
system is characterized by its phase-space density f(x , v , t),
and a given configuration of the system is specified by
f(x, v, t) d3x d3v – the number of galaxies having positions
in the infinitesimal volume d3x, with velocities in the range
d3v. It should be noted here that in phase-space x and v

are independent variables and the potential is not a func-
tion of v. The density of points in phase-space satisfies the
continuity equation,

Df

Dt
=

δf

δt
+ v .∇f −∇φ.

δf

δv
= 0, (11)

which is the collisionless Boltzmann equation. Neglecting the
explicit time derivative; taking the first velocity moment;
integrating over all possible velocities for a spherical system,
we obtain the Jeans equation:

d(ρσ2
r)

dr
+

ρ [2σ2
r − (σ2

θ + σ2
φ)]

r
= −ρ

dφ

dr
, (12)

where ρ is the density profile and σ2
i are the components

of the velocity dispersion. If, additionally, the velocities and
the density are invariant under rotations about the cluster
centre we have,

σ2
t ≡ σ2

θ = σ2
φ, (13)

d(ρσ2
r)

dr
+

2β σ2
r ρ

r
= −ρ

dφ

dr
. (14)

The velocity anisotropy parameter β at a given point is,

β(r) = (1− σ2
t

σ2
r

) (15)

3.1 The Isotropic Jeans equation

The isotropic Jeans equation is a special case of the more
general equation above, wherein the galaxies are on isotropic
orbits. Hence β = 0, and σ2

r = σ2
t ,

d (ρ σ2 )

dr
= −GM(r)ρ(r)

r2
= −ρ v2c

r
, (16)

where vc(r) is defined to be the circular velocity. The solu-
tions for the isotropic velocity dispersion are given by:

σ2(R) =
G

ρ

∫

∞

R

M(r)ρ(r) dr

r2
=

1

ρ

∫

∞

R

ρ(r) v2c (r)
dr

r
. (17)

The velocity dispersion of both the galaxies and the
total mass can therefore be computed given their respective
density profiles and the underlying mass distribution. We
plot the solutions obtained for a mass model of the form,

M(r) = M0 [
r

r0
− tan−1 r

r0
], (18)

with r0 = 50 kpc, σ0 = 1200 km s−1, and generic density
profiles for the tracers (galaxies or isothermal gas) of the
form,

ρ(r) =
ρo

(1 + r2

r2c
)
α . (19)

The solutions for α =1.0, 1.2 and 1.5 and for various val-
ues of rc/r0 =1.0, 2.5 and 5.0 are plotted in Fig. 1. The
solutions have the following interesting properties:

(i) the velocity dispersion falls in the centre for small core
radii,

(ii) the smaller the core radius of the tracer, the lower the
central value of the velocity dispersion,

(iii) the mean value of the velocity dispersion is a weak
function of rc but depends on the slope α.

Therefore one can have different mean values of the velocity

dispersion for different components if they do not have the

same radial profile.

In Fig. 1, we also plot the ratio of the velocity disper-
sions of dark matter and galaxies, which provides a qual-
itative understanding of the velocity bias (as found in the
numerical simulations by Carlberg 1994). The difference in
the asymptotic slope of the density profiles of dark mat-
ter and galaxies, and the ratio of the core radii is found to
determine the velocity bias. To first order, the asymptotic
behavior (regardless of core size) is:

(

σDM

σg

)2

≃ αDM

αg

(20)

3.2 Anisotropic Jeans equation

The Jeans equation is a mathematical statement of detailed
pressure balance for an equilibrium stellar system. The dy-
namical evolution of clusters in N-body simulations has been
studied using the distribution function formalism (Natara-
jan, Hjorth, & Van Kampen 1996). This analysis indicates
that clusters evolve from one quasi-equilibrium state to an-
other. A cluster in a quasi-equilibrium configuration is found
to be virialized and has a smooth potential, which is traced
by galaxies with one of the following orbital structures :

(i) β = 0, isotropic orbits
(ii) 0 < β ≤ 1, orbits are mostly radial
(iii) β < 0, when the orbits are primarily transverse.

While β has no lower bound, it is strictly required to be
less than 1 for any physically admissible solutions for the
velocity dispersion. In this context, it is instructive to ex-
amine and compare with studies of the formation and evo-
lution of elliptical galaxies (Hjorth & Madsen 1991). It has
been shown that the observed uniformity in the properties
of elliptical galaxies can arise from either of two sets of ini-
tial conditions: dissipationless cold collapse or a ‘warm col-
lapse’ (or merger) with dissipation. The predicted evolution
to the final state with a deep potential and significant ra-
dial anisotropy arises from the relaxation brought about by
global potential fluctuations rather than two-body encoun-
ters (Aguilar & Merritt (1990) and Londrillo, Messina, &
Stiavelli (1991)). Therefore, radial anisotropy can arise nat-
urally in most models as a consequence of relaxation, and
as demonstrated by Gerhard (1993) the line-of-sight velocity
profiles being more sensitive to β and less so to the potential
or to the stellar number density profile provide a probe of
the kinematics of the core. Conversely, for a galaxy cluster,
the initial collapse conditions are different and additionally,
many physical processes that can effect energy exchange are
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Figure 1. Left panel: Solutions of the isotropic Jeans equation. The dotted curves are for α = 1.0, dashed curves for α = 1.2 and solid
curves for α = 1.5; for each α, the smaller the core radius for the tracer, the smaller the central velocity dispersion (see text). Right
panel:Ratio of the velocity dispersions for various values of α and core radius r0: solid curves - αDM/αgal = 1.0, rg = 50, 125 and 250
kpc; dotted curves - αDM/αgal = 1/1.2, rg = 50, 125 and 250 kpc; dashed curves - αDM/αgal = 1/1.5 for rg = 50, 125 and 250 kpc

active and do occur in the dense core region. For a clus-
ter core that has virialized, we expect the orbits in the core
to reflect the efficiency of the energy exchange mechanisms,
while outside the core region, we expect and do find that
the orbits are largely radial, 0 < β ≤ 1 (Natarajan, Hjorth,
& Van Kampen 1996).

4 PROPOSED APPROACH

4.1 THE MATHEMATICAL FORMALISM

In our approach, we solve the full Jeans equation for the ve-
locity anisotropy parameter β and for the radial component
of the velocity dispersion σ2

r , using the projected mass pro-
file for the cluster as constructed independently from gravi-
tational lensing.

From the observed projected galaxy positions, we fit to
get a surface number density profile Σg(r) and use the Abel
integral inversion to extract the three-dimensional density
profile νg(r). The key assumption made in the analysis below

is that of spherical symmetry. Starting with the full Jeans
equation,

d (νg σ
2
r)

dr
+

2β(r)νg σ2
r

r
= − G Mtot(r)νg

r2
; (21)

where νg(r) is three-dimensional galaxy density profile,
σ2
r(r) the radial velocity dispersion of the galaxies, β(r) is

the velocity anisotropy and Mtot(r) is the distribution of
total mass (most accurately determined from gravitational
lensing).

In addition, we have the equation that defines the ob-
served line-of-sight velocity dispersion profile σlos(R),

1

2
[ Σg(R)σ2

los(R)] =

∫

∞

R

rνg(r)σ
2
r(r) dr

√

(r2 −R2)

−R2

∫

∞

R

β(r)σ2
r(r)νg(r) dr

r
√

(r2 −R2)
. (22)

We need to solve these two integro-differential equations nu-
merically for σ2

r and β(r). For an individual galaxy with an
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assumed mass profile, these coupled equations have been
solved by Binney (1982) and Bicknell et al. (1989).

We truncate the integration at a large, finite truncation
radius Rt, defined strictly to be the radius at which both
Σg(Rt) and ρg(Rt) tend to zero. Substituting the expression
for β from equation (22) we have,

1

2
[ Σg(R) σ2

los(R)− R2

∫ Rt

R

GMtot(r)νg

r2
√
r2 −R2

dr]

=

∫ Rt

R

rνgσ
2
rdr√

r2 −R2
+

R2

2

∫ Rt

R

d(νgσ
2
r)

dr

dr√
r2 −R2

. (23)

Integrating the first term on the right hand side by parts
and substituting back we have,

1

2
[Σg(R)σ2

los(R)−R2

∫ Rt

R

GMtot(r)νg

r2
√
r2 −R2

dr]

=

∫ Rt

R

( 3R
2

2
− r2)√

r2 −R2

d(νgσ
2
r)

dr
dr. (24)

The equation can be further simplified and reduced after
some algebra (for details see Bicknell et al. 1989) to the
following integrals,

νg(r)σ
2
r = I1(r)− I2(r) + I3(r)− I4(r), (25)

I1(r) =
1

3

∫ Rt

r

GMtot(r) νg
r2

dr, (26)

I2(r) =
−2

3r3

∫ r

0

GMtot(r) νg r dr, (27)

I3(r) =
1

r3

∫ r

0

R Σg(R)σ2
los(R) dR, (28)

I4(r) =
2

πr3

∫ Rt

r

R Σg(R) σ2
los(R)[

r√
R2 − r2

− sin−1 r

R
] dR. (29)

It is to be noted here that the explicit dependence on the
mass profile and the observed line-of-sight velocity disper-
sion profile separate. All the above integrals are well-behaved
with the exception of I4, which has an integrable singularity
which can be taken care of easily via a simple transforma-
tion of variables. Computing these integrals is nevertheless
tricky as the final profile for σ2

r (r) is sensitive to the precise
asymptotic behavior of all the four terms. The numerical
solution for σ2

r(r) is then substituted back into the Jeans
equation to obtain β,

β(r) = − r

2νgσ2
r

[
GMtot(r) νg

r2
+

d

dr
(ρgσ

2
r) ]. (30)

The variation of β with radius can be understood physically
in terms of the relative importance of the mass term and
the ‘galaxy pressure’ gradient term. Rewriting the above
equation as follows,

β(r) = −1

2
[
v2c (r)

σ2
r(r)

+
d ln νg σ

2
r

d ln r
] (31)

we find that the sign of β depends crucially on the asymp-
totic behavior of the mass model at large r, and specifically
for ρtot ranges between r−2 and r−3, it is found to be fairly
insensitive to the slope of the assumed galaxy density pro-
file. The sensitivity of the sign and magnitude of β to the
slope of the mass profile enables its use as a discriminant
between the various mass models.

5 RESULTS FOR VARIOUS MASS PROFILES

We consider several physically motivated fiducial density
profiles for the total mass and in what follows, we exam-
ine both galaxy distribution profiles described in equation
(1) (PROFILE A) and equation (2) (PROFILE B). The
asymptotic slope of the density profile is defined to be
γ. All the mass profiles are normalized to have the same
total projected mass enclosed within the Einstein radius
[Marc(rE = rarc) = (5 ± 0.1) × 1013 M⊙], as calibrated
from strong cluster lensing in A2218. The density profiles
and mass models studied are:

MODEL I :

ρ(r) =
ρ0

r(r2 + r20)
α

; γ = 2α+ 1, (32)

M(r) = 2πρ0 ln (r2 + r20) ; α = 1. (33)

MODEL II :

ρ(r) =
ρ0

(r2 + r20)
α

; γ = 2α, (34)

M(r) = 4πρ0r0 [(
r

r0
)− tan−1(

r

r0
) ] ; α = 1. (35)

MODEL III :

ρ(r) =
ρ0

r(r + r0)α
; γ = α+ 1, (36)

M(r) = 4πρ0r0 [
r

r0
− ln (r + r0) ] ; α = 1. (37)

5.1 Dependence on the slope γ

We analyse here the results for the various mass models
with a specified asymptotic slope γ, assuming a core radius
of rg = 250 kpc for the galaxy distribution of PROFILE A
with r0 = 60 kpc for the dark matter.

(i) For γ = −2.0 (Fig. 3 - top panel), and a range of in-
put values of the line of sight velocity dispersion assumed to
be constant (σlos = 800, 1000, and 1400 km s−1); we obtain
unphysical solutions (σr(r) < 0) for the lowest σlos for all
the 3 models. On increasing σlos to 1000 km s−1, the orbits
are primarily transverse in the core progressing to more ra-
dial ones in the outer parts, so that β < 0. For the highest
σlos we find evidence for a small core region with mixed or-
bits, but with primarily radial orbits outside 200 kpc for all
3 models.

(ii) For γ = −2.5 (Fig. 3 - middle panel), unphysical
solutions are obtained for the lower σlos value for all models,
but for σlos = 1000 and 1400 km s−1 we do find physically
admissible solutions. All 3 mass models have a finite core
with mixed orbits leading on to largely radial orbits outside.
Model I has the largest mixed region (of the order of 700 kpc)
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Figure 2. The Integrals - (I1-I2) - dotted curve, I3 - dashed curve, I4 - solid curve, computed for A2218.

while Models II and III have smaller mixed regions which are
of the order of 500 kpc. The highest value of σlos produces
primarily radial orbits from the centre outward.

(iii) For γ = −3.0 (Fig. 3 - bottom panel), and the lowest
value of σlos, we obtain unphysical solutions, but as σlos is
increased there is evidence for a core with transverse orbits.

Assuming the galaxy distribution to be of the form of
PROFILE B with a scale radius s = 200 kpc and r0 =
60 kpc for the dark matter, we find the following trends:

(i) For γ = −2.0 (Fig. 4 - top panel), and the same
range of input values of the line of sight velocity dispersion
(σlos = 800, 1000, and 1400 km s−1), we obtain unphysical
solutions in the core region for the lowest σlos for all the 3
models. On increasing σlos to 1000 km s−1, the orbits tend
to be tranverse so that β < 0. For the highest σlos we find
primarily radial orbits for all 3 models.

(ii) For γ = −2.5 (Fig. 4 - middle panel), unphysical
solutions are obtained for the lower σlos value for all models,
but for σlos = 1000 we find that all 3 mass models have
a finite core (of the order of 500 kpc) with mixed orbits
leading on to largely radial orbits outside. The highest value
of σlos produces primarily radial orbits right from the centre
outward.

(iii) For γ = −3.0 (Fig. 4 - bottom panel), once again
for the lowest value of σlos, we obtain unphysical solutions,
but as σlos is increased there is evidence for a core with
tangential anisotropy.

Both PROFILES A and B require high values of the line-of-
sight velocity dispersion to produce physically meaningful
solutions. The trends above seem to be qualitatively consis-
tent with the physical picture of ongoing isotropization and
regularization in the core for all the 3 fiducial mass models
considered.

5.2 Dependence on the circular velocity

An important parameter for the dynamics of the galaxies in
the global cluster potential is the circular velocity, vc (Fig.
4), which measures the change in slope of the mass profile.

For a given mass model with asymptotic slope γ, increasing
the core radius increases the circular velocity for all three
models (where these were normalized to have the same pro-
jected mass within the radius of the arc).

Comparing different mass models that have the same
asymptotic value of vc (but different r0 and γ), we find that
the velocity structure of the core and anisotropy profiles are
fairly similar. The qualitative behavior of β for fixed asymp-
totic vc depends strongly on σlos; with increasing σlos we
find preferentially radial orbits. For a fixed σlos, increasing
the circular velocity increases the size of the mixed core re-
gion while lowering the value of β at large radius. For both
high and low circular velocities, and −3.0 ≤ γ ≤ −2.0; low
line-of-sight velocity dispersion models σlos < 1000 km s−1

are ruled out purely from the dynamical point of view.

5.3 Dependence on the central density profile

The best probe of the shape of the density profile at the
very centre comes from the observed velocity dispersion of
the stars in the cD halo (Miralda-Escude 1995). For the fidu-
cial mass models of Section 5, we solve for the line-of-sight
velocity dispersion of the cD halo stars using the isotropic
Jeans equation (neglecting the contribution of the mass of
the cD galaxy to the total mass of the cluster):

d (ρcD σ2
∗ )

dr
= −GMtot(r)ρcD

r2
. (38)

Assuming a scaling of ρcD ∝ r−δ, and ρtot ∝ r−γ , close to
the centre we obtain:

σ∗ = A
r2−γ

(δ + γ − 2)
+ const. (39)

Therefore, for 0 ≤ γ < 2 and δ + γ > 2, we expect the
velocity dispersion of the stars to rise. The cD profile from
section 2.3.4 is used with a core radius r1 = 0.05 kpc and
rcut = 35.0 kpc. The three models studied in the previous
section, predict profiles (Fig. 5) with low central values for
σ∗ that rise steeply with radius. Models I and III have central
values ∼ 200 - 400 km s−1, varying with γ, such that the
steeper the total mass profile the higher the central value.
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Figure 3. Top Panel: β(r) for PROFILE A with rg = 250 kpc, the mass models with asymptotic slope γ = -2.0; solid curve - Model I,
dotted curve - Model II, dashed curve - Model III, for σlos = 800, 1000 and 1400 km s−1 respectively. Centre Panel: β(r) For the mass
models with asymptotic slope γ = -2.5; solid curve - Model I, dotted curve - Model II, dashed curve - Model III, for σlos = 800, 1000
and 1400 km s−1 respectively. Bottom Panel: β(r) For the mass models with asymptotic slope γ = -3.0; solid curve - Model I, dotted
curve - Model II, dashed curve - Model III, for σlos = 800, 1000 and 1400 km s−1 respectively.

For the stars, σlos rises to 700 km s−1 at r = 100 kpc,
which is consistent with the measurements of the cD galaxy
IC1011 in A2029 by Dressler (1979) and Fisher, Illingworth,
& Franx (1995). Model II under-predicts the central value
and is qualitatively incompatible with the data.

5.4 Summary of the important parameters

In the above analysis, there are several parameters to be kept
track of in order to interpret the results for the computed
velocity structure of the cluster core, namely the total mass
distribution and the galaxy positions and velocities.

The mass profile for a given fiducial model is specified
by three parameters, the central density, the core radius, and
the slope. The velocity dispersion of stars in the cD halo fa-
vors mass models with a central ‘cusp’. Lensing constrains
(i) the mass within the radius of the arc (strong regime),

(ii) the circular velocity at large radius (weak-shear), and
the generic shape of the profile. It favors compact cores and
rules out steep slopes, γ < −2.5 for 50 ≤ r ≤ 600 kpc. Our
results show that the dynamics of the core can be recovered
independent of the fine tuning of individual fiducial models,
given the above constraints from lensing and an observation-
ally well-determined line-of-sight velocity dispersion profile.
Although currently limited by the errors in the observation-
ally determined input quantities, this dynamical approach
offers a better understanding of the physical state of the clus-
ter core and can discriminate between various mass models
for an individual lensing cluster.

6 APPLICATION TO A2218

We apply this technique to the Abell cluster A2218, at a
redshift z = 0.175, with a mean measured velocity disper-
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Figure 4. Top Panel: β(r) for PROFILE B with s = 200 kpc, the mass models with asymptotic slope γ = -2.0; solid curve - Model I,
dotted curve - Model II, dashed curve - Model III, for σlos = 800, 1000 and 1400 km s−1 respectively. Centre Panel: β(r) For the mass
models with asymptotic slope γ = -2.5; solid curve - Model I, dotted curve - Model II, dashed curve - Model III, for σlos = 800, 1000
and 1400 km s−1 respectively. Bottom Panel: β(r) For the mass models with asymptotic slope γ = -3.0; solid curve - Model I, dotted
curve - Model II, dashed curve - Model III, for σlos = 800, 1000 and 1400 km s−1 respectively.

sion σmean ∼ 1370+160
−120 km s−1 from 56 cluster members.

A2218 is a cD cluster with a very peaked mass distribution
and a compact core, hence a large number of gravitationally
distorted arcs and arclets are observed. The mass model for
this cluster was constructed using ground data (Kneib et al.
1995) and refined using HST data by (Kneib et al. 1996).
Redshifts of two of the arcs were spectroscopically measured
by Pello et al. (1992) and further redshifts of arclets have
been determined by Ebbels et al. (1996) hence tightly cali-
brating the mass model.

6.1 OBSERVATIONAL DATA

The observational input for the galaxies in A2218 for our
analysis comes primarily from the photometric and spectro-
scopic survey by Le Borgne, Pelló, & Sanahuja (1992).

6.1.1 Line-of-Sight Velocity Dispersion Profile

In order to construct the line-of-sight velocity dispersion
profile (Fig. 6), the galaxies were binned in 100 kpc annuli.
The measurement errors preclude any fitting, and therefore
we assumed a constant value for σlos. This simplifying as-
sumption is the largest source of error for our present analy-
sis, but can be refined with the availability in the near future
of more tightly sampled line-of-sight velocity dispersion pro-
files.

6.1.2 Galaxy density profile from optical data

The observed surface density of galaxies in A2218 was fitted
to a modified Hubble law profile (PROFILE A) with a core
radius rg = 250 h−1

50 kpc,
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Figure 5. Asymptotic behavior of the fiducial mass models - varying the core radius r0 = 30, 60, 100 kpc; solid curves - Model I, dotted
curves - Model II, dashed curves - Model III

Σg(r) =
Σ0

1 + r2

r2g

, (40)

and the corresponding 3-D density profile from equation (1),
as well as by the cuspy profile (PROFILE B) with a scale
radius s = 200 h−1

50 kpc,

Σg(r) =
Σ0

( r
s
)0.1(1 + r

s
)1.9

(41)

and the corresponding density profile from equation (2).

6.1.3 Constructing the mass profile

The lensing mass profile for the cluster was constructed
from, the strong lensing data (arcs, arclets and resolved mul-
tiple images) from ground-based observations and the HST
image by (Kneib et al. 1996), and the weak-lensing mass
map published by Squires et al. (1996).

A2218 is best fit by the following functional form of
MODEL III with α = 1.0 (see Section 5),

M(r) = M0[
r

r0
− ln (1 +

r

r0
)], (42)

where we normalize M0 to the mass enclosed by the arc at

rarc = 78.5 h−1
50 kpc and r0 the core radius is 60h

−1
50 kpc. The

corresponding three-dimensional density profile is as below,

ρ(r) =
ρ0r

2
0

r(r + r0)
, (43)

with ρ0 = 1 · 10−22 g cm−3. The X-ray mass profile was ob-
tained using the standard deprojection technique described
by Fabian et al. (1981) to the archival ROSAT HRI map,
assuming spherical symmetry and hydrostatic equilibrium
for the intracluster gas. The integrated X-ray luminosity (in
the 0.1 – 2.4 keV band) and central temperature of A2218
are measured to be respectively,

Lx = 7 . 1044 erg s−1 ; T = 8 keV, (44)

in good agreement with the Squires et al. (1996) results. The
predicted circular velocity is,

v2c (r) =
GM(r)

r
= − kT

µmp

(
d ( ln ρgas )

d ln r
+

d lnT

d ln r
) (45)

where M(r) is the total mass as inferred from the X-ray
analysis,

The mass model from N-body simulations was also nor-
malized to the mass enclosed within the Einstein radius, and
for consistency with the observed arcs in A2218 the scale
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Figure 6. Computed line-of-sight velocity dispersion for the cD halo stars: solid curve - Model I, dotted curve - Model II, dashed curve
- Model III.

Figure 7. The line-of-sight velocity dispersion profile for A2218
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Figure 8. Projected mass profile: solid triangles - X-ray data, solid circle - weak lensing mass estimates, filled pentagon - mass from cD,
filled square - mass enclosed within giant arc, solid line - HST mass model, dashed line - ‘best fit’ composite lens mass model, dot-dashed
- fitted X-ray mass model, dotted line - ‘best fit’ N-body model.

radius rs (see equation 3) is required to be of the order of
250 h−1

50 kpc (Waxman & Miralda-Escudé 1995).

6.2 Results

Using the total mass profile constructed from lensing as de-
scribed above, we solve the equations to obtain solutions (see
Fig. 8) for σr(r), σt(r) (the radial and transverse velocity
dispersion profiles respectively) and the velocity anisotropy
parameter β(r).

The profile was also checked for consistency with the
measured stellar velocity dispersion of the halo stars in the
cD galaxy (Fig. 9). [It is to be noted here that the measured
line-of-sight velocity dispersion profile for A2218 is incon-
sistent with an isotropic solution.] We find that the orbits
predicted for the best-fit mass model in the central regions,
isconsistent with the picture of a core not in equilibrium,
independent of the assumed form for the galaxy number
density distribution. The precise nature of orbits transverse
(β < 0) or radial (0 > β > 1) depends on the detailed
shape of the line-of-sight velocity dispersion profile, which
is not measured to adequate precision at present. Both σr

and σt fall within the inner 600 h−1
50 kpc, with σr declining

more rapidly and then tending to flatten off. From the slope
of β, the trend with increasing r is that the nature of orbits
tends to being mainly radial at the outskirts, signaling the
existence of a region dominated by infall. The physical pic-
ture that emerges for the description of the dynamical state
of A2218 is one of a dynamically disturbed cluster core. For
lower values of the measured line-of-sight velocity disper-
sion, we find a tendency for the predominance of transverse
orbits in the central 400 kpc (which is precisely of the or-
der of the distance between the 2 distinct optical clumps
seen in the HST image) and could be interpreted as an in-
dication of on-going energy exchange in the core. Using the
mass model from N-body simulations as the input, we find
that the resultant predictions for β(r) agree well with those
calculated for the mass profile reconstructed from lensing.
For the mass profile from X-ray data for A2218, we obtain
qualitative agreement with the predictions from the lensing
mass model.
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Figure 9. The best fit composite mass model for A2218 : The radial and transverse components of the velocity dispersion and the velocity
anisotropy parameter for σlos = 1100, 1200, 1300 km s−1 and the galaxy distribution modeled by PROFILE A with rg = 250 h−1

50 kpc,

7 CONCLUSIONS

Gravitational lensing provides the ‘cleanest’ way to con-
struct the total mass profile for a cluster independent of the
kinematic details; additionally, combining strong and weak
lensing removes the scaling ambiguity allowing the calibra-
tion of other independent mass models. With ‘good’ data
for an individual cluster, the requirements for consistency
on the smallest to the largest scales are stringent enough to
constrain the slope of generic density profiles for rich clus-
ters. Accurate mass profiles are crucial to settling many im-
portant issues such as the baryon fraction problem and in

understanding the discrepancies and biases arising in the
X-ray, lensing and virial mass estimates for clusters.

In this paper, we have demonstrated that the dynam-
ics and velocity structure of the core of galaxy clusters can
be probed given an independently inferred total mass pro-
file. The future applications of our method to study cluster
cores are promising, given the prospect of collecting more
spectro-photometric data of galaxies in cluster lenses (e.g.
Yee, Ellingson, & Carlberg 1996a).

With current data, we find strong evidence for the ex-
istence of an anisotropic central region. This is consistent
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Figure 10. The best fit composite mass model for A2218 : The radial and transverse components of the velocity dispersion and the velocity
anisotropy parameter for σlos = 1100, 1200, 1300 km s−1 and the galaxy distribution modeled by PROFILE B with rs = 200h−1

50 kpc
and α = 0.1.

with the picture of on-going relaxation, wherein anisotropies
in the velocity tensor can arise naturally as a consequence
of the initial conditions coupled with evolution. Given the
range of complex physical processes that operate in cluster
cores that could alter galaxy orbits, for instance; dynamical
friction (dynamical friction in an aspherical cluster can in-
duce and amplify the velocity anisotropy as demonstrated
by Binney (1977), a possible origin for the inferred velocity
anisotropy, specially in the case of A2218), potential fluctu-
ations arising due to the presence of substructure and the

frequent presence of a cD galaxy at the centre of the cluster
potential it is not surprising that the core is not isotropic.

Distinguishing between the dynamical effects of the var-
ious physical mechanisms in order to model them satisfac-
torily, in addition to requiring from the observations more
accurately determined line-of-sight velocity dispersion pro-
files for clusters would enable the application of this tech-
nique more effectively. Further extension of this analysis to
incorporate the dynamics of the intra-cluster gas with the
lensing model self-consistently, is required in order to under-
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Figure 11. Computed line-of-sight velocity dispersion profile for cD halo stars of A2218

stand the possible role of baryons in the dynamics of cluster
cores.
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