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The spectrum of cosmological perturbations
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Abstract

We derive general analytic formulae for the power spectrum and spectral index of
the curvature perturbation produced during inflation driven by a multi-component
inflaton field, up to the second order in the slow-roll approximation. We do not
assume any specific properties of the potential or the metric on the scalar field
space, except for the slow-roll condition, Einstein gravity, and the absence of any
permanent isocurvature modes.
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1 Introduction

Inflation of the early universe [1] magnifies microscopic quantum fluctuations in the infla-
ton field φ into macroscopic classical perturbations in space-time and matter. The latter
are supposed to be the seeds that grow to become the rich structures, such as galaxies
or clusters of galaxies, that are observed today. Thus the power spectrum P and spectral
index n predicted by a model of inflation can be tested from observation of the large-scale
structures, and it is therefore important to calculate them as accurately as possible.
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Standard calculations [2] of P and n work to lowest order in the slow-roll approximation,
and assume that φ has only one dynamical degree of freedom. However, the latter as-
sumption has no theoretical or observational justification. Previously, Stewart & Lyth [3]
computed P and n up to the second order in the slow-roll approximation, in the single
component inflaton case. Sasaki & Stewart [4] derived general formulae for P and n in
the multi-component inflaton case, but only up to the first order in the slow-roll approx-
imation. In this paper, we calculate P and n for a multi-component inflaton up to the
second order in the slow-roll approximation. The method of our calculation also refines
the earlier one in Ref.[4]. We use the units c = h̄ = 8πG = 1.

2 Homogeneous background and slow-roll approximation

Let φa be the multiple scalar fields that slowly roll on the potential V (φ) during inflation.
We start from the action of the form:

S =
∫

d4x
√
−g

[

1

2
habg

µν∂µφ
a∂νφ

b − V (φ)− 1

2
R
]

(1)

where gµν and R are the metric and curvature scalar in space-time, and hab is the metric
on the φ-space (which may be curved). In an exactly homogeneous universe, we have
∂iφ

a = 0 (i = 1, 2, 3) and

ds2 := gµνdx
µdxν = dt2 − a2(t)δijdx

idxj (2)

(we assume that the background universe is spatially flat). Then, from Eqs.1 and 2,
φ̇a := ∂0φ

a(t) obeys the equation

φ̈a + 3Hφ̇a + V ,a = 0 (3)

where φ̈a := (D/dt)φ̇a := φ̇b∇bφ̇
a, ∇a is the covariant derivative operator associated with

hab, and H := ȧ/a is the Hubble parameter. Raising and lowering of indices abc · · · are
always done by hab. Also we have from the Einstein equation

3H2 =
1

2
φ̇aφ̇a + V , (4)

Ḣ = −1

2
φ̇aφ̇a . (5)

We assume that the potential V (φ) has a sufficiently gentle slope:

V,aV
,a ≪ V 2, (V;abV

;ab)1/2 ≪ V , etc. (6)

2



(we list all the assumptions we need in this paper more rigorously in Appendix A). Then,
from Eqs.3 and 4, φa(t) soon approaches a slowly rolling state given by

φ̇a

H
≃ − V ,a

3H2
≃ −V ,a

V
. (7)

Let us define

α := − Ḣ

H2
, β :=

φ̈aφ̇a

Hφ̇aφ̇a

. (8)

These are small quantities (≪ 1) of the same order in the slow-roll approximation. They
are slowly varying and their time derivatives (divided by H) are smaller quantities of the
next order. For example

H−1α̇ = 2α(α+ β) (9)

is a second order quantity. We use the notation ≃ when the equality is valid only up to
the lowest order in the slow-roll approximation.

3 Perturbation

A scalar perturbation in the space-time metric is most generally written as [5]

ds2 = (1 + 2A)dt2 − 2a(∂iB)dtdxi − a2[(1 + 2R)δij + 2∂i∂jE]dxidxj . (10)

Here R is interpreted as the intrinsic-curvature perturbation in the constant time hyper-
surface. Let δφa be the perturbation in the scalar fields around φa(t). In appendix B, we
derived from Eqs.1 and 10 the equation of motion of δφa on flat hypersurfaces:

D2

dt2
δφa + 3H

D

dt
δφa +Ra

cbdφ̇
cφ̇dδφb +

(

k

a

)2

δφa + δφbV
;ab =

δφb

a3
D

dt

[

a3

H
φ̇aφ̇b

]

(11)

where Ra
bcd is the Riemannian curvature tensor in the φ-space. We work in k-space

throughout and simply use δφa as the Fourier transform of the perturbation. The conformal
time η is defined by

η :=
∫ dt

a
= − 1

aH
+
∫ αda

a2H
. (12)
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Since α is slowly varying (see Eq.9), we take α out of the integral and obtain

η = −(1 + α)/(aH) . (13)

Defining ua := aδφa and working to the first order in α, β, etc., Eq.11 is rewritten as

D2

dη2
ua + k2ua =

1

η2
(2ua + 3ǫabu

b) (14)

where we regard

ǫab := αhab +
(

hachbd −
1

3
Racbd

)

φ̇cφ̇d

H2
− V;ab

3H2
(15)

as a first order quantity. In order to solve the differential equation 14, we introduce
the orthonormal basis ea

A
(A runs over the number of scalar field components) parallel-

transported along the unperturbed trajectory φa(t):

D

dη
ea
A
= 0 (16)

so that the symmetric tensor ǫab is diagonalized along φa(t) as

ǫab ≃
∑

A

ǫA(e
a
A
⊗ eb

A
) . (17)

This diagonalization is justified as follows. At some point on φa(t), ǫab can be diagonalized
exactly as in Eq.17 with the eigen-vectors ea

A
. As one moves along φa(t) with ea

A
parallel-

transported, ea
A
will not remain the eigen-vectors and off-diagonal components may appear

in Eq.17. However, since we are assuming (see Eq.A2) that ǫab is covariantly changing
slowly along φa(t), the off-diagonal components are second order quantities. Therefore,
Eq.17 is valid up to the lowest order in the slow-roll approximation. In short, we treated
ǫab as a constant in Eq.17, just as we treated α as a constant in Eq.12. From Eqs.16 and
17, the A-component of Eq.14 is written as

d2uA

dη2
+ k2uA =

1

η2
(2 + 3ǫA)uA (18)

where uA := uae
a
A
. First let us consider microscopic fluctuations, the physical wavelength

of which is well-inside the horizon (−kη → ∞). When −kη → ∞, the right hand side
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(RHS) of Eq.18 is negligible compared with the k2 term, and thus the uA behave like
(real) massless Klein-Gordon fields:

uA(k) =
1√
2k

[

aA(k)e
−ikη + a†

A
(−k)eikη

]

(19)

where a†
A
and aA are the creation and annihilation operators of an A-particle:

[aA(k), a
†
B
(k′)] = δABδ

3(k − k
′), aA|0〉 = 0. (20)

As −kη approaches unity, the RHS of Eq.18 becomes comparable to the k2 term, and the
solution is written in terms of the Hankel functions as

uA(k) = (−kη)1/2
[

CA(k)H
(1)

νA
(−kη) + C†

A
(−k)H (2)

νA
(−kη)

]

(21)

where

νA :=
3

2
+ ǫA . (22)

Using the asymptotic behavior of the Hankel functions at infinity, the integral constants
CA are determined from Eq.19 as

CA(k) =

√

π

2
exp

[

iπ

4
(2νA + 1)

]

aA(k)√
2k

. (23)

Next we go well-outside the horizon, i.e., −kη → 0 [but − ln(−kη) is not too large]. Using
H (1,2)

ν (x) → ±Γ (ν)(2/x)ν/(iπ) as x → 0, and expanding up to the first order in ǫA, one
finds

uA(k)→
i√
2k

(

−1

kη

)

Γ (νA)

Γ (3/2)

(

−2

kη

)ǫA

bA(k) (24)

=
i√
2k

(

−1

kη

)

{1 + [c− ln(−kη)]ǫA} bA(k) (25)

where

bA(k) := eiπǫA/2aA(k)− e−iπǫA/2a†
A
(−k) , (26)

and c := 2 − ln 2 − γ = 0.7296 · · · with the Euler number γ. It is clear from Eq.25 that
the perturbations become completely classical as we go outside the horizon, because aA
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and a†
A
appear only in the combination of bA and hence [uA, u̇A] = 0 follows. Going back

to general coordinates, we obtain

δφa =
iH√
2k3

{

(1− α)ha
b +

[

c+ ln
(

aH

k

)]

ǫab

}

bb (27)

with ba :=
∑

A bAe
a
A
. For later use, we note that

〈ba(k)b†b(k′)〉 = habδ
3(k − k

′) (28)

where 〈· · ·〉 reads the vacuum expectation value.

4 Power spectrum and spectral index of Rc

Sasaki & Stewart [4] showed that the curvature perturbation on a comoving hypersurface
Rc (see Eq.10) during the radiation-dominated phase (after complete reheating) is related
to δφa as

Rc = N,aδφ
a . (29)

The RHS is to be evaluated at some time (say t1) during inflation soon after the scale of
the perturbation goes well-outside the horizon (but does not depend on the exact value
of t1, as shown below). It is also assumed in Eq.29 that the space-time is foliated on a flat
hypersurface at t1, in accord with Eq.11. Here

N(φ) :=

t2
∫

t1(φ)

Hdt (30)

is the number of e-folds in the background universe, and t2 is the time corresponding to
some fixed energy density during the radiation-dominated phase. In general N can depend
on both φa(t1) and φ̇a(t1). However, as we are assuming that slow-roll has been achieved,
the φ̇-dependence should be eliminated using the slow-roll trajectory which is given in
Eq.C12 up to second order. The power spectrum P (k) of Rc is defined by

〈Rc(k)R†
c(k

′)〉 = 2π2k−3P (k)δ3(k − k
′) . (31)

From Eqs.27, 28 and 29, one finds

P (k) = N,cN,c

(

H

2π

)2 {

1− 2α + 2
[

c+ ln
(

aH

k

)]

ǫabM
ab
}

(32)
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where Mab := N,aN,b/N
,cN,c. Thus the spectral index is

n := 1 +
d lnP

d ln k
= 1− 2ǫabM

ab (33)

which is the identical result with Ref.[4]. In order to calculate n up to the second order,
we rewrite Eq.32 to show more explicitly that P (k) does not depend on time. We expand
the prefactor of Eq.32 as

N,cN,cH
2 = (N,cN,cH

2)aH=k

[

1 +
d ln(N,cN,cH

2)

d ln a

∣

∣

∣

∣

∣

aH=k

ln
(

aH

k

)

]

. (34)

Substituting Eq.34 into 32, and using Eq.C11, we see that the ln(aH/k) terms cancel and
obtain

P (k) = N,cN,c

(

H

2π

)2

(1− 2α+ 2cǫabM
ab)

∣

∣

∣

∣

∣

aH=k

. (35)

In this expression for P (k), the k-dependence of the LHS is such that the RHS (which
is a function only of time) is evaluated at the horizon-crossing time aH = k. Thus P (k)
does not depend on time, as noted above. To avoid any confusion, let us define Q(a) to
be the RHS of Eq.35 so that

P (k) = Q(a)|aH=k . (36)

Then, using Eqs.9, C10 and C14, n is calculated up to second order as

n=1 +
d lnQ

d ln aH
= 1 + (1 + α)

d lnQ

d ln a
(37)

= 1− 2α + 2λabM
ab − 2(3− 2c)α2 − 4(1− c)αβ +

8

3
αλabM

ab + 4c(λabM
ab)2

−2

3
(6c− 1)Mabλ

c
aλbc −

4

3

N,a

N,cN,c

φ̇b

H

V;ab

3H2
− 2α

N,aN,a

− 2

3
(3c+ 1)

Mab

H

D

dt
λab (38)

where

λab :=
(

1

3
Racbd − hachbd

)

φ̇cφ̇d

H2
+

V;ab

3H2
(39)

= αhab − ǫab . (40)

[Note that 1/(N,aN,a) is a first order quantity.] The k-dependence of n is understood in
the same way as in Eq.35. Rewriting Eq.38 in terms of V , we find
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n = 1− U ,aU,a + 2MabWab −
1

2
(U ,aU,a)

2 − 2

3
(3c− 2)U ;abU,aU,b +MabU;abU

,cU,c

+4c(MabWab)
2 − 2

3
(6c− 1)MabWacW

c
b +

2

3
(3c+ 1)Mab[U;abcU

,c +
1

3
Racbd;eU

,cU,dU,e]

+
4

9
MabRacbdU

,cU,e[U
,eU,d + (3c+ 2)U ;ed] (41)

where

U := lnV , (42)

Wab := U;ab +
1

3
RacbdU

,cU ,d ≃ λab . (43)

(U,aU,b and U;ab are first order quantities.)

5 Summary

We have derived general analytic formulae for the power spectrum P (Eq.35) and spectral
index n (Eq.38 or 41) of the curvature perturbation Rc produced during inflation driven
by a multi-component inflaton field, up to the second order in the slow-roll approximation.
Once one specifies a model of inflation and calculates the number of e-folds N(φ) (Eq.30)
in the background universe, then the substitution of them into our general formulae
immediately yields the power spectrum and its index with accuracy. We anticipate that,
to lowest order, N,a can be calculated from the inflationary phase only. However, to the
next order, as considered in this paper, the contribution to N,a from the reheating and
radiation-dominated phases should be significant.

The magnitude of the first order terms is of order N−1
end in many inflation models (Nend

is the number of e-folds from the horizon-crossing time to the end of inflation), and if
thermal inflation [6] occurs after ordinary inflation, we have Nend ∼ 30–40. In this case,
the correction terms in Eq.35 should be observable, while those in Eqs.38 and 41 may be
marginally observable. Thus, our formulae may be useful in testing models of inflation
when P and n are observed accurately by presently-planned experiments such as the
Microwave Anisotropy Probe. At the same time, the theories and models of inflation need
to progress to make more precise predictions.

We would like to thank N. Sugiyama for helpful discussions, and D. H. Lyth and Y. Suto
for useful comments. TTN and EDS are supported by JSPS Fellowships at UTAP and
RESCEU, respectively. This work is supported in part by Monbusho Grant-in-Aid for
JSPS Fellows No. 95209.
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Appendices

A Slow-roll conditions

Here we summarize all the conditions assumed in our calculation, without derivation (One
can derive them by differentiating Eq.3 several times and using the resultant equations
recursively). We assumed that i) the potential has sufficiently gentle slope, ii) slow roll
has been achieved, and iii) the curvature of φ-space is not too large and is slowly varying
[ i) is a necessary condition for ii)]. To write the conditions quantitatively, let us define
the “norm”

‖Xa‖ := (XaXa)
1/2, ‖Yab‖ := (YabY

ab)1/2 (A1)

of a vector Xa and a symmetric second-rank tensor Yab = Yba, and introduce a small
quantity ε ≪ 1. Then, in the calculation of P , we assumed [conditions i) and iii)]

‖U,aU,b‖ < ε, ‖U;ab‖ < ε, ‖RacbdU
,cU,d‖ < ε,

‖U;abcU
,c‖ < ε2, ‖(RacbdU

,cU,d);eU
,e‖ < ε2 (A2)

so that Eq.35 is valid up to order ε. Also we need the extra but rather weak condition:

∥

∥

∥

∥

∥

1

H4

D3

dt3
φ̇a

∥

∥

∥

∥

∥

< ε5/2 (A3)

because of ii). The second line in Eq.A2 is necessary to make sure that the first order
quantities are slowly varying. Similarly, in order that Eqs.38 and 41 are valid up to order
ε2, the calculation of n assumes

‖U;abcdU
,cU,d‖ < ε3, ‖U;abcU

;cdU,d‖ < ε3, ‖[(RacbdU
,cU,d);eU

,e];fU
,f‖ < ε3 (A4)

in addition to Eq.A2, and

∥

∥

∥

∥

∥

1

H5

D4

dt4
φ̇a

∥

∥

∥

∥

∥

< ε7/2, (A5)

instead of Eq.A3.
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B Derivation of Eq.11

From Eq.1, the stress tensor is given by

T µ
ν = habg

µρ∂ρφ
a∂νφ

b −
(

1

2
habg

ρσ∂ρφ
a∂σφ

b − V
)

gµν , (B1)

and the Euler-Lagrange equation is

[

D

dxµ
+ (∂µ ln

√
−g )

]

habg
µν∂νφ

b + V,a = 0 (B2)

which yields Eq.3. Choosing the gauge R = B = 0 in Eq.10, the relevant components of
the metric perturbation are (we work in k-space)

δg00 = −δg00 = 2A , δg0i = δg0i = 0 , δ ln
√
−g = A− k2E . (B3)

We perturb T µ
ν covariantly with respect to φa and define the covariant perturbation op-

erator δ := δφa∇a; for example, δhab = 0. Since δφa is Lie-transported along φa(t), i.e.,
[δφ, φ̇]a = 0, it follows that

δ(φ̇a) =
D

dt
δφa. (B4)

Using Eq.D.7 in Ref.[5] to calculate the perturbation in the Einstein tensor, δG0
0 = δT 0

0

and δG0
i = δT 0

i give

− 6H2A− 2k2HĖ = −Aφ̇aφ̇a + φ̇aD

dt
δφa + δφaV,a , (B5)

2HA = φ̇aδφ
a, (B6)

respectively. Using Eq.3, one finds

Ȧ+ k2Ė = δφaD

dt

(

φ̇a

H

)

. (B7)

Perturbing Eq.B2 covariantly gives

(

D

dt
+ 3H

)(

D

dt
δφa − 2Aφ̇a

)

+
(

δ
D

dt
− D

dt
δ
)

φ̇a
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+(Ȧ− k2Ė)φ̇a +

(

k

a

)2

δφa + δφbV;ab = 0. (B8)

Here the second term is calculated as

(

δ
D

dt
− D

dt
δ
)

φ̇a=(δφb∇bφ̇
c∇c − φ̇c∇cδφ

b∇b)φ̇a (B9)

=2δφbφ̇cφ̇a;[cb] + δφbφ̇c
;bφ̇a;c − φ̇cδφb

;cφ̇a;b (B10)

=Racbdφ̇
cφ̇dδφb. (B11)

on account of Eq.B4. Therefore

D2

dt2
δφa + 3H

D

dt
δφa +Racbdφ̇

cφ̇dδφb +

(

k

a

)2

δφa + δφbV;ab

= (Ȧ+ k2Ė)φ̇a + 2A(φ̈a + 3Hφ̇a) . (B12)

From Eqs.B6 and B7, it is easy to show that the RHS of Eq.B12 is equivalent to that of
Eq.11.

C Some useful formulae

To evaluate Eqs.34 and 37, we calculate

d ln(N,aN,aH
2)

d ln a
= 2

Ḣ

H2
+ 2

N,aṄ,a

N,cN,cH
(C1)

where Ṅ,a is calculated as

Ṅ,a= φ̇b∇b∇aN (C2)

=∇a(φ̇
b∇bN)− (∇aφ̇

b)(∇bN) (C3)

=−H,a −N,bφ̇b;a . (C4)

Taking the gradient of Eqs.3 and 4, one obtains

H,a =
1

6H
(V,a + φ̇bφ̇b;a) (C5)

φ̇b;a = − 1

3H
[3φ̇bH,a +Racbdφ̇

cφ̇d + V;ab + φ̇c
;aφ̇b;c + (φ̇b;a)̇] . (C6)
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The second term in Eq.C6 arises when one commutes the covariant derivatives of φ̇c∇a∇cφ̇b.
From these equations, φ̇a;b ≃ φ̇b;a holds to the lowest order and thus the second term in
Eq.C5 becomes φ̈a. Using Eq.3 again, one finds

H,a
∼= −1

2
φ̇a . (C7)

We use ∼= when the equation is valid up to the next order. Defining the first order quantity

γab :=
(

1

2
hachbd −

1

3
Racbd

)

φ̇cφ̇d

H2
− V;ab

3H2
, (C8)

Eq.C6 can be written iteratively as

φ̇b;a
∼= Hγab −

1

3
Hγc

aγbc −
(Hγab)̇

3H
. (C9)

From Eqs.C1, C4, C7, C9 and 39, one obtains

d ln(N,aN,aH
2)

d ln a
∼=−2ǫabM

ab +
2

3
Mab

(

λc
aλbc + αλab −

λ̇ab

H

)

− 2α

N,cN,c
− 4

3

N,a

N,cN,c

φ̇b

H

V;ab

3H2
(C10)

≃−2ǫabM
ab . (C11)

Also it is easy to show that

φ̇a

H
∼= −(U ,a +

1

3
U ;abU,b) ≃ −U ,a , (C12)

H−1Ṅ,a ≃ λabN
,b , (C13)

H−1Ṁab ≃ 2(λc
(aMb)c −MabMcdλ

cd) . (C14)
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