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Abstract:

In a previous work, I discussed the effect of the primordial black holes (PBHs) quantum evaporation on
the reionization of the Universe at small redshifts (z ≤ 60): in principle, the photons emitted during the
evaporation of such objects could drive a new ionization for the Universe after the recombination epoch
(z ∼ 1200); this reionization process should happen during the last stages of the PBHs life, when they
totally evaporate and emit a lot of massive and non massive particles. The critical mass of a black hole
whose lifetime is equal to the present age of the Universe is ∼ 4.4× 1014 h−0.3 g: thus, PBHs having a mass
M ∼ 1014 g are the ideal candidates to induce a reionization at small redshifts.

While in my previous study I considered an exact blackbody photon emission spectrum, here I will
adopt a more realistic one, taking into account the quark and gluons jets emission through the contribution
of a known fragmentation function. When the BH temperature rises above the QCD confinement scale
ΛQCD, one should expect an important contribution from quarks and gluons emission in the form of jets. In
this paper I also improved my analysis by considering without any approximation the cooling effects in the
plasma temperature evolution; as a result, I obtained a satisfactory “late and sudden” reionization process,
characterised by a very well controlled rise of the plasma temperature: the plasma heating is not so high to
induce a strong distortion of the CBR spectrum, in agreement with the recent FIRAS upper limit on the
comptonization parameter, yc < 2.5× 10−5.
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1. INTRODUCTION

The possibility that the Universe has been reionized after the recombination is strongly suggested by
many experimental evidences as, for instance, the Gunn Peterson test [1]: the absence of the Lyman-α
absorption line in the spectrum of high redshift quasars and the unexpected, low density of neutral hydrogen
(nHI < 10−11 cm−3) in the intergalactic medium (IGM) suggest this hypothesis.

The causes of such a reionization for the Universe are unclear: the collisional ionization of the IGM by
cosmic rays [2] or by far-UV photons produced by quasars [3] have been proposed as a possible source but,
in general, a complete theory describing this phenomenon is not yet available.

An useful classification of the theoretical models presently known can be found in Ref. [4], where one
distinguishes ”late and sudden” (LS) models (where typically the reionization happens at zR < 60 and it is
very fast) and ”early and gradual” (EG) models, including, for instance, those mechanisms that assume as
a ionizing source the UV radiation from decaying, massive neutrinos [5].

In Ref. [6] I discussed a possible LS reionization mechanism based on the quantum evaporation of
primordial black holes: as Hawking proved [7], the evolution of a black hole involves a continuous loss of
mass, a phenomenon ending with the complete evaporation of such an object. This is a typical quantum
effect: in fact, in a classical sense, a black hole can only absorb particles but the quantum mechanical
handling of the matter fields in a curved space-time involves some ambiguities in the decomposition of
the field operators into positive and negative frequency components. Thus, the annihilation and creation
operators finally work on a vacuum state that is different in regions of the space-time having a different
curvature [7] and, as a consequence, the creation of particles at the expense of the black hole mass becomes
possible.

As I proved in Ref. [6], the photons emitted during the evaporation process may induce the reionization
of the Universe; however, in order that such a mechanism works, one should be careful the emitted photons
do not heat in an excessive way the background plasma. Such a heating should contradict the FIRAS upper
limit on the comptonization parameter, yc < 2.5×10−5 [8], a value that definitely rules out the possibility of a
relevant distortion of the CBR blackbody spectrum via the Sunyaev Zel’dovich effect [9]. The proportionality
of yc to the plasma temperature clearly excludes the possibility that some processes in the past might have
strongly heated the background plasma: if this is the case, very effective cooling mechanisms should have
operated to cut off the temperature.

Due to some numerical problems, in Ref. [6] I solved in an approximate way the coupled differential
equations system giving the evolution of the ionization degree x and of the plasma temperature Te: thus the
collisional and excitation cooling terms were underestimated.

In the following sections, I will present an improved calculation that solves the equation system taking
into account in an exact way all the cooling terms; moreover, I will consider a modified, non blackbody photon
emission spectrum which contains also the effect of quantum jets produced by PBHs at high temperatures
(T > ΛQCD): the importance of such a jets emission has been put in evidence in Ref. [10] and may have
some influence on the reionization process.

As a consequence of these improvements, I obtained a satisfactory evolution of both the ionization degree
x and the plasma temperature Te: in particular, the plasma heating is less relevant than in my previous
study. The modification of the emission spectrum has the consequence that a lower density of primordial
black holes is necessary to produce a significant reionization, because in this case the photons coming from
the secondary decays of hadrons add to the ones produced by the direct evaporation; a rough estimate of
the present density parameter ΩPBH inferred from this calculation is also given.

Future improvements are still possible: for instance, one may investigate how the production of massive
particles, in particular electrons, might modify the background plasma and possibly influence the Inverse
Compton scattering processes. Note however that the emission of charged particles represents a problem
not immediately solvable because, in this case, one should also study the charge evolution of the black
hole: from the theory, we know that the loss of charge and angular momentum of a charged, rotating
black hole is very fast [11] but, as pointed out in Ref. [12], large, electrically charged BHs have a very
interesting evolution towards the extreme Reissner-Nordström limit. During this evolution, very peculiar
thermodynamic properties appear and various phase transitions may income during the evaporation process.
The consequences of this particular evolution are a lifetime many order of magnitude larger than the one
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of a common Schwarzschild black hole and an emission spectrum explicitly containing the charge evolution
[13]: probably, in these conditions, my analysis of the reionization should be radically modified and the
conclusions I drew for the uncharged case cannot be simply extended without a deep examination of the
processes involved in the BHs discharge.

The consideration of the jets emission represents the first step toward a deeper understanding of the
problem: in this paper, I will compare the characteristics of the reionization process both in the case of an
exact Hawking spectrum and in the one when a jet fragmentation function is introduced in order to consider
also the secondary photon emission from the hadron decays.

This paper is structured as follows: in Sec. 2, I will discuss the general properties of primordial black
holes, in particular the characteristic of their quantum evaporation with and without jets emission; in Sec.
3, I will recall the main formulas and results of my previous work, in particular discussing the differential
equations system for the variables x and Te; in Sec. 4 I will present an improved numerical solution method
that uses the new photon spectrum and does not involve any approximations for the cooling terms; in such
a way, a noteworthy improvement in the plasma temperature behaviour is obtained.

An estimate of the density of PBHs one needs in order to have a significant reionization for the Universe
is also given: it corresponds to a present density parameter ΩPBH ranging from 1.12× 10−12 to 1.65× 10−8,
depending on the PBHs formation time one assumes.

Finally, in sec. 5 I will discuss the new results in comparison with the ones obtained in Ref. [6]; the
conclusion is that the proposed model of a reionization induced by quantum evaporation of PBHs seems to
work without producing an excessive plasma heating and seems to be effective in the range of reionization
redshifts [15, 60] here considered. Further extensions to higher zR values are also possible.

2. THE PHYSICS OF THE PRIMORDIAL BLACK HOLES:
QUANTUM EVAPORATION AND PHOTON

EMISSION SPECTRUM.

The fundamental work of Hawking about black holes physics [7] puts in evidence many interesting
properties for such objects, in particular their peculiar connections with the general thermodynamics.

The creation of a black hole becomes possible when a mass contracts to a size less than its gravitational
radius: typically, this is the case for large mass stars at the end of their evolution; however, for objects
having smaller masses, a compression to huge densities is necessary in order to create a black hole; in the
same time, the large pressure forces counteracting the compression should also be overcome.

For this reason, the formation of black holes having a small mass (M << M⊙) is very improbable in
the contemporary Universe: however, Hawking’s quantum evaporation phenomena are just important for
small-mass black holes, the blackbody temperature of the emission being:

kT =
h̄c3

8πGM
∼ 1.06

[ M

1013 g

]−1

GeV. (2.1)

Therefore, our interest is mainly fixed upon the so-called primordial black holes (PBHs): at the early stages
of the cosmological expansion, the density of the matter was really huge, thus enabling the formation of
small-mass BHs.

As stressed in Ref. [14], small perturbations in a homogeneous, isotropic, hot Universe would not be
able to produce relevant inhomogeneities without the contemporary presence of large fluctuations in the
gravitational field; the possibility of the creation of a black hole just appears when the quantity l = ct
(t is the time elapsed since the Big Bang) grows to a value in the order of the metric perturbation size
and its resulting mass will be equal to the mass contained in a volume l3 at the time t [14]. The rôle of
primordial density perturbations in the PBHs formation processes is discussed in a more extensive way in
[15]; in particular, a study of the effect of the adiabatic inflaton quantum fluctuations in chaotic models can
be found in [16]; other possible formation mechanisms might be a cosmological phase transition involving
bubbles collision [17], a softening of the Universe equation of state [18] or a collapse of cosmic strings [19].
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In this work, my interest is mainly concentrated on the evaporation of PBHs that form during the first
stages of the expansion of the Universe: a choice of the possible birth times will be done in the next sections
in connection with the calculation of the PBHs initial density we need in order to have an appreciable
reionization.

The kind of the emitted particles obviously depends on the blackbody temperature of the PBHs: fol-
lowing eq. (2.1), the mass loss during the quantum evaporation of a BH makes it hotter and hotter, thus
enabling it to produce more and more massive particles. Typically, BHs having a mass larger than 1017 g
emit massless particles only, like photons, neutrinos and, may be, gravitons; electron production should
be expected by BHs whose mass is in a range 1015 g < M < 1017 g and muon production for a range
1014 g < M < 1015 g.

Here I will consider PBHs that survive till the post-recombination epoch, thus having a mass M ∼
O(1014) g, near to the critical mass, Mc ∼ 4.4× 1014 h−0.3 g. These PBHs should reionize the Universe at
a redshift zR that corresponds to the time of their complete evaporation.

The initial mass Mi is connected to the lifetime of a PBH by the following formula [20]:

tevap ∼ 1.19× 103
G2M3

i

h̄c4 f(Mi)
∼ 6.24× 10−27 f(Mi)

−1 M3
i sec, (2.2)

where the function f(M) contains the contributions of the different species of particles and it is normalized
to the unit for very massive (M ≥ 1017 g) BHs, emitting massless particles only; a suitable way to express
these contributions is given by the following formula [20]:

f(M) = 1.569 + 0.569

[

exp
[ −M

4.53 · 1014
]

µ
+ 6 exp

[ −M

1.60 · 1014
]

u,d
+

+ 3 exp
[ −M

9.60 · 1013
]

s
+ 3 exp

[ −M

2.56 · 1013
]

c
+ exp

[ −M

2.68 · 1013
]

τ
+

+ 3 exp
[ −M

9.07 · 1012
]

b
+ 3 exp

[ −M

0.48 · 1012
]

t

]

+

+ 0.963
[

exp
[ −M

1.10 · 1014
]

gluons

]

. (2.3)

In eq. (2.3) the first addendum in the right-hand side expresses the contribution of electrons, positrons,
photons and neutrinos; heavier particles contributions are considered in the remaining terms, following their
relative importance; the factor 3 takes into account the presence of the color charge for quarks and the
denominators in the exponential terms are defined as the product βsjMj , where Mj is the mass of a black
hole whose temperature is equal to the rest mass µj of the j species and βsj is a spin-dependent factor
defined [20] in such a way the energy of a BH having M = βsjMj has a peak at µj .

Eq. (2.3) is fundamental in the determination of the mass evolution of a PBH that evaporates: in fact,
in Refs. [10], [20], Carr, Mac Gibbon and Webber show that the quarks and gluons emission processes should
not be neglected at the stages when the BH mass falls below 1014 g and the temperature T becomes larger
than the confinement scale ΛQCD: at this time one should expect a copious production of jets and this is
the case we are interested in, due to the particular range of initial masses chosen for the PBHs.

Through the function f(M), eq. (2.3), we can take into account the quarks/gluons emission processes:
the mass evolution is given by:

dM

dt
= −

∑

j

1

2πh̄

∫

Γj

[

exp
[ 8πGQM

h̄c3

]

− (−1)2sj

]−1

× Q dQ

c2
; (2.4)

eq. (2.4) means that the emission of a parent particle j with total energy Q decreases the BH mass by Q/c2;
here Γj is the absorption probability for the j particle having a spin sj [21] and a sum on all the emitted
species has been performed [20]. After the integration over the energy Q, eq. (2.4) can be rewritten as [20]:

dM

dt
= −5.34× 1025 f(M) M−2 g sec−1 (2.5)
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Now, the Hawking emission rate of particles having an energy in the range (E,E + dE) from a black hole
having an angular velocity ω, an electric potential φ and a surface gravity κ is [7]:

dN

dt
=

Γ dE

2πh̄

[

exp

(

E − nh̄ω − eφ

h̄κ/2πc

)

± 1

]−1

, (2.6)

where the signs ± respectively refer to fermions and bosons and Γ is the absorption probability of the emitted
species: for photons, it reads as [21]:

Γs=1 =
4A

9π

( M

MPL

)2 ( ω

ωPL

)4

; (2.7)

here A is the surface area of the BH and the Planck mass and energy have been introduced in order to work
with dimensionless quantities as in Ref. [21].

In most cases, one assumes that the charge and the angular momentum of a black hole are negligible
because, as Page proved [13], their loss through quantum evaporation happens on a time scale shorter than
the one characterizing the mass loss; this assumption is certainly reasonable but one should also note that
in some way it may be relevant to determine the influence of the black hole charge evolution (in particular
studying the discharge process) in connection with the modification of the electron background; thus, one
should rather follow the approach suggested in ref. [12].

In Ref. [6] I studied the reionization of the Universe induced by quantum evaporation of PBHs by using a
photon emission spectrum as the one of eq. (2.6), i.e. an exact blackbody spectrum; this assumption enabled
me just to test if the proposed model of reionization might work at least under very general conditions. After
this satisfactory test, I will now improve my previous calculation by studying the effect of the presence of
a jet fragmentation function contribution in the emission spectrum: then, eq. (2.6) should be rewritten as
[22]:

dNx

dtdE
=
∑

j

∫ +∞

0

Γj(Q, T )

2πh̄

(

exp
Q

T
± 1

)−1 dgjx(Q,E)

dE
dQ; (2.8)

here x and j respectively refer to the final and the directly emitted particles and the last factor, containing
the fragmentation function gjx, expresses the number of particles with energy in the range (E,E + dE)
coming from a jet having an energy equal to Q: namely, it reads as [22]:

dgjx(Q,E)

dE
=

1

E

(

1− E

Q

)2m−1

θ(E − kmhc
2), (2.9)

where mh is the hadron mass, k is a constant O(1) and m is an index equal to 1 for mesons and 2 for baryons.
After determining the dominant contribution to the integral over Q and summing over the final states,

one can approximate eq. (2.8) by the following formulas [22]:

dN

dtdE
∼ E2 exp

(−E

T

)

for E >> T Q ∼ E, (2.10a)

dN

dtdE
∼ E−1 for T ∼ E >> mh Q ∼ T, (2.10b)

dN

dtdE
∼ dg

dE
for E ∼ mh << T Q ∼ mh, (2.10c)

where the different expressions refer to the specified Q-value that dominates. A more exhaustive discussion
of the characteristics of the spectrum given by eqs. (2.10a), (2.10b) and (2.10c) can be found in Ref. [22].

In the next Section, I will examine the problem of the reionization of the Universe by considering as a
source of the ionizing photons the quantum evaporation of PBHs in presence of quarks and gluons jets.

3. THE TIME EVOLUTION OF THE IONIZATION DEGREE
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AND PLASMA TEMPERATURE FOR A REIONIZED UNIVERSE.

As I discussed in Ref. [6], the basic equations that control the ionization degree x and the plasma
temperature Te evolution with the time are [23]:

dx

dt
= t−1

pi + t−1
coll − t−1

r , (3.1)

and
dTe

dt
= −2

Ṙ

R
Te − Te

(1 + x)

dx

dt
+

2

3(1 + x)
(Γ− Λ), (3.2)

where t−1
pi , t

−1
coll, t

−1
r are, respectively, the photoionization, the collisional and the recombination rates, given

by [23]:

t−1
pi =

8πmeα
5

3
√
3

(1− x)
1

π2

∫ ωmax

ωmin

dω
nγ

ω3
; (3.3)

t−1
r ∼ 10−13 sec−1

(∆

Te

)1/2

x2
(Ωb h2

0.025

) (1 + z

200

)3

(∆ = 1 Ry); (3.4)

t−1
coll = 6× 10−8 sec−1

(Te

∆

)1/2

e−∆/Te x (1− x)
(Ωb h2

0.025

) (1 + z

200

)3

. (3.5)

Eq. (3.1) expresses the combined effects of the photoionization and the recombination and the influence of
the collisional interactions putting the neutral hydrogen in an excited or ionized state. In eq. (3.2), the
heating Γ mainly comes from the photoionization process and reads as

Γ = Γpi =
8πmeα

5

3
√
3

(1− x)
1

π2

∫ ωmax

ωmin

dω
(ω −∆)

ω3
nγ ; (3.6)

on the contrary, the cooling Λ takes into account a lot of contributions having a relevant importance in
order to limit the rise of the plasma temperature induced by the quantum evaporation of PBHs. These
contributions are due to the recombination, collisional and excitation processes, Compton scattering and to
the adiabatic cooling due to the expansion of the Universe. The total cooling reads as

Λ = Λr + Λexc + Λcoll + ΛCompt + Λexp, (3.7)

where, respectively:

Λr = 2× 10−21 GeV sec−1
(Te

∆

)1/2

x2
(Ωb h2

0.025

) (1 + z

200

)3

; (3.8)

Λexc = 10−15 GeV sec−1 e−3∆/4Te

(Te

∆

)1/2

x (1 − x)
(Ωb h2

0.025

) (1 + z

200

)3

; (3.9)

Λcoll = 8× 10−16 GeV sec−1
(Te

∆

)1/2

e−∆/Te x (1− x)
(Ωb h2

0.025

) (1 + z

200

)3

; (3.10)

ΛCompt = 10−19 Gev sec−1 x
(Te − TCMB

∆

) (1 + z

200

)4

; (3.11)

Λexp = 2.× 10−22 GeV sec−1
(Te

∆

)

(1 + x)
(1 + z

200

)1.5

. (3.12)

(TCMB is the Cosmic Microwave Background temperature). Both the equations (3.3) and (3.6) explicitly
contain the photon number density nγ : the time evolution of this variable is quite difficult to establish
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because it depends on many processes not simply correlated; the best way to describe this evolution is
through a differential equation that reads as follows [6]:

∂nγ(ω, t)

∂t
+

Ṙ

R

∂nγ(ω, t)

∂ω
ωNOR − 2

Ṙ

R

nγ(ω, t)

ω
ωNOR =

=
( dnγR

dt
− dnγPI

dt

)

+
2

ω

dω

dt
[nγPI − nγR] +

∂nγPR

∂ω∂t
ωNOR; (3.13)

here nγPI , nγR are the photon number densities respectively involved in the processes of photoionization
and recombination and ωNOR is a normalization factor, equal to 10−6 GeV : this normalization assures one is
working with dimensionless quantities in the numerical routine that solves the differential equation system.
The last term in eq. (3.13) is the contribution of the photon source, in our case a number nPBH of primordial
black holes that evaporate.

From the basic work of Peebles [24], the first term on the right-hand side of eq. (3.14) has the following
form:

( dnγR

dt
− dnγPI

dt

)

= −dne

dt
= C

(

αen
2
e − βen1se

−ωα/T
)

− ne

n

dn

dt
. (3.14)

Explicitly, αen
2
e is the rate of recombination to excited states, ignoring the recombination direct to the ground

state, αe = 〈σν〉 is the recombination coefficient and βen1se
−ωα/T expresses the rate of photoionization; βe

is a constant proportional to αe, n1s is the population of the 1s state of the hydrogen atom, ωα is the energy
corresponding to the transition Lα, T the radiation temperature and n is the nucleon number density. Finally,
C is a reduction factor which takes into account the effect of the Lα resonance photons. All the numerical
values of these quantities can be found in Ref. [25]; really, we do not mind this contribution because it proves
to be negligible with respect to the difference nγPI − nγR.

Now, as in Ref. [6], I put
nγ = nγPR − nγPI + nγR, (3.15)

and with the same substitution performed in [6] I obtain:

∂nγ(ω, t)

∂t
+ 2

nγ

ω

[

− Ṙ

R
ωNOR +

dω

dt

]

+
Ṙ

R

∂nγ(ω, t)

∂ω
ωNOR =

= C
(

αex
2n2 − βen1se

−ωα/T
)

− x
dn

dt
+

∂nγPR

∂ω∂t

( 2

ω

dω

dt
+ ωNOR

)

. (3.16)

At this point my present analysis of the problem differs from the approach I followed in Ref. [6]: in fact, here
I will take as a source term in eq. (3.13) the photon emission spectrum corrected by using a jet fragmentation
function (eqs. (2.8), (2.10a), (2.10b), (2.10c)) while previously I used an exact Hawking photon spectrum,
eq. (2.6).

4. THE NUMERICAL SOLUTION OF THE DIFFERENTIAL
EQUATION SYSTEM.

I will start the present analysis of the reionization mechanism by evaluating the total photon number
density coming from the quantum evaporation of PBHs: eqs. (2.10a), (2.10b) and (2.10c) give the emission
rate for various values of the energy characterizing the emitted particles.

As I stressed in Ref. [6], I would take into account only the contribution of those photons that may
really reionize the Universe, i.e., I want to select the components of the emission spectrum really effective by
comparing the time scale characterizing the photon interactions with the expansion time for the Universe.
The following condition should be satisfied:

tint < texp. (4.1)

As a consequence of the condition (4.1), the latest time at which the photon interactions may be relevant is
[10]:

tfree = ( nX σ )−1. (4.2)
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(nX = number density of the background particles, σ = interaction cross-section).
Among the possible interaction processes, I want to consider the ionization and the recombination: the

range of energy where these processes are dominating is typically Eγ ≤ 14 KeV but, indeed, the maximum
allowed energy for photons having a rôle in the reionization of the Universe is further constricted by the
condition (4.1); in the pregalactic, matter-dominated era, a photon is affected by ionization losses only before
a redshift [10]:

1 + zfree ∼ 1.0× 1019 h−2
(0.2

Ωp

)

E3.5, (4.3)

where Ωp ∼ 0.2 is the present density parameter for protons, h = 0.5 and the energy is expressed in GeV .
Eq. (4.3) can be inversely used in order to determine Emax at a particular value of z, corresponding to

the reionization redshift zR: in tab. 1 I listed the values I obtained, typically smaller than 8 KeV for a late
reionization with zR < 60.

Coming back to the eqs. (2.10a), (2.10b) and (2.10c), due to the upper limit we have for the photon
energy, the form of the spectrum is the one expressed by eq. (2.10c), holding in the case E << T .

Taking the jet fragmentation function as in eq. (2.9) and separating the mesons and baryons contribu-
tions, I can write:

∂nγ

∂ω∂t
|Tot =

∂nγ

∂ω∂t
|Mes +

∂nγ

∂ω∂t
|Bar, (4.4)

(for convenience, in the following discussion the energy of the final photons will be called ω).
For Q = mhadr ∼ 300 MeV , eq. (4.4) simply reads:

∂nγ

∂ω∂t
|tot =

1

ω

(

1− ω

Q

)

+
1

ω

(

1− ω

Q

)3

, (4.5)

the dominating contribution being the mesonic one.
Turning now to the solution of the photon density equation, it is useful to adopt dimensionless rescaled

variables, ω̃ = ω/ωNOR with ωNOR = 10−6 GeV , M̃ = M/1014 g and t̃ = t/1015 sec and to write eq. (3.16)
in the form

∂nγ

∂t̃
+

2

3t̃

∂nγ

∂ω̃
=

4

3t̃

nγ

ω̃
− 2

nγ

ω̃

dω̃

dt̃
+

∂nγPR

∂t̃∂ω̃

(

1 +
2× 10−9

ω̃

dω̃

dt̃

)

. (4.6)

In eq. (4.6) the constant 2× 10−9 is a numerical factor coming from the transformation to the new rescaled
variables and all the negligible terms have been skipped away.

From the explicit calculation of eq. (4.5), one has:

∂nγPR

∂t̃∂ω̃
∼ 2× 1015

ω̃
. (4.7)

Now, the general solution of eq. (4.6) can be found in an analytical way by using the method discussed in
Ref. [6]: here, I would like just to recall that the general solution of a first order, linear partial differential
equation that reads as

Pp + Qq = R, (4.8)

(p = ∂z
∂x , q = ∂z

∂y and P, Q, R are any function of the general variables x, y, z) is a function F (u, v) that

also solves [26] the equations

|dx
P

| = |dy
Q

| = |dz
R

|; (4.9)

here u(x, y, z) = c1, v(x, y, z) = c2 are implicit functions and the constants c1, c2 should be fixed by imposing
suitable boundary conditions to the particular problem one is studying.

After the identification of the first variable, x, with the time t̃, the second one, y, with the energy ω̃
and finally z with the photon number density nγ , I obtain:

P = 1 Q =
2

3t̃
, (4.10a)
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R =
8

3t̃

nγ

ω̃
+

2× 1015

ω̃
; (4.10b)

the main difference with the expression found in ref. [6] consists in the modified source photon term.
Contrarily to my previous analysis, here I do not examine the very particular case when one has equilibrium
between photoionization and recombination.

The left-hand side of the equality (4.9) gives:

dω̃

dt̃
= − 2

3t̃
, (4.11)

as in Ref. [6], while for the photon density nγ I calculate

dnγ

dω̃
=

3t̃

2
R =

1

ω̃

[

4nγ +
3t̃

2
a
]

, (4.12)

where a = 2× 1015. After solving the linear equation (4.12) one finds:

nγ(ω̃) = −3

8
a t̃ + c2 ω̃4; (4.13)

the integration constant c2 is fixed by imposing that the final number of emitted photon is zero for t = t0:

c =
3

8
a

t̃0
ω̃4
0

, (4.14)

where t̃0 = t0/10
15 sec and a good choice for ω̃0 should be done in such a way one has a positive photon

density at all times; from such a constraint, one obtains ω̃0 ∼ ω̃max/12; moreover, a lower limit on the
photons energy comes from the request that the emission process is not less than the recombination losses:
this minimum value is equal to 0.20 KeV while, as I discussed in the previous sections, the maximum energy
depends on the reionization redshift zR.

I adopted a numerical Merson routine to solve eqs. (3.1), (3.2): note however that, although Merson is
a very powerful method, it fails if the photon number density evolution as expressed by eq. (4.14) is directly
inserted in in eqs. (3.3), (3.6) for t−1

PI and ΓPI . Really, Merson cannot control the contemporary evolution
of two variables like the time and the photon density in the same equation; a solution is only possible by
making some simplifying assumptions, namely:
a) the collision contribution t−1

coll in eq. (3.1) is neglected with respect to the photoionization one: this
assumption is certainly acceptable if we suppose that the quantum evaporation phenomena is the most
effective contribution to the photon number density. In this way, Merson should not control terms
having coefficients different by many order of magnitude.

b) In eqs. (3.3), (3.6) I took ωmin = 0.20 KeV , i.e. the minimum of the energy previously obtained; then
I put:

A1(t̃) =

∫ ω̃max

ω̃min

dω̃
nγ(ω̃)

ω̃3
; (4.15a)

B1(t̃) = ωNOR

∫ ω̃max

ω̃min

dω̃ (ω̃ − ∆)
nγ(ω̃)

ω̃3
. (4.15b)

Now, I insert in eqs. (3.1) and (3.2) the time-averaged values A1, B1 that I quoted in tab. 2 for various
reionization redshifts: in such a way, the Merson routine must solve a constant coefficients equation
system and no approximations are necessary in the handling of the cooling terms of eq. (3.2).
On the contrary, in ref. [6] I tried to maintain the time dependence in the functions A1, B1 but I was

obliged to insert some cooling terms in an approximate form; the present choice seems most suitable also
because the use of an average number of photons in eq. (3.1), (3.2) probably does not represent an extreme
approximation, due to our poor experimental knowledge of the primeval PBH density parameter ΩPBH ;
further improvements in the mathematical solution of the system are under study.
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As a result of this solution method, I am able to control the rise in the plasma temperature Te while
previously the model involved a too large effect of plasma heating. The effectiveness of the cooling mechanism
can disclose if the suppression due to the negative exponential terms in eqs. (3.9), (3.10), i.e. to the excitation
/ collisional terms, is avoided by choosing to start with a high plasma temperature Te corresponding to an
instantaneous heating.

Remembering this assumptions, the couple of differential equations is written as follows:

dx

dt̃
= C1(zR) nPBH (1 − x) − 77.45

x2

t̃2
T̃e

−1/2
; (4.16a)

dT̃e

dt̃
= −1.33

T̃e

t̃
− T̃e

(1 + x)

dx

dt̃
+

0.67

(1 + x)
·
[

C2(zR) nPBH (1− x) −

− 113.40
x2

t̃2
T̃e

1/2 − 5.69× 107 x (1 − x)
1

t̃2

(

1− 1020

T̃e

)

T̃e
1/2 −

− 4.54× 107 x (1− x)
1

t̃2

(

1− 1360

T̃e

)

T̃e
1/2 − 44.10 x

(

T̃e −
1.27

t̃2/3

) 1

t̃8/3
−

− 2.13 (1 + x)
T̃e

t̃

]

; (4.16b)

here T̃e = Te/10
−11 GeV .

In eq. (4.16a) I neglected the collisional term t−1
coll (as I explained above); thus, the addends in eq.

(4.16a) respectively correspond to t−1
pi , t

−1
r and the ones in brackets in eq. (4.16b) to Γpi, Λr, Λexc, Λcoll,

ΛCompt and Λexp. Finally, the coefficients C1(zR), C2(zR) are given by:

C1(zR) = 7.88× 1024 A1(zR), (4.17a)

C2(zR) = 7.88× 1035 B1(zR), (4.17b)

and they are listed in tab. 3 for various zR from 15 to 60.
In eqs. (4.16a) and (4.16b), the parameter nPBH is a weight factor that represents the effective number

of PBHs in the early Universe we need in order to produce an appreciable reionization effect; a suitable value
for this free parameter is nPBH = 10−44; an estimate in terms of an effective initial number density of PBHs
corresponding to this value of nPBH can be roughly obtained by considering the following relations:

ρi ∼ < M > nPBH

R3(tin)
, (4.18)

where < M >∼ 1014 g and
R(tin) ∼ R0 (t0/tin)

α; (4.19)

here R0 = 1.25× 1028 cm = 1.4× 1010 lyr in a typical cosmological model [27] while for α we can take the
value −0.5. Then, if one assumes for the PBHs density a behaviour that approximately scales as a power
with exponent 2/3 of the time and an initial time tin ∼ 10−70 ÷ 10−75 sec, the density parameter ΩPBH at
the present time is:

ΩPBH =
ρ0PBH

ρcr
= 1.12× 10−12 ÷ 1.65× 10−8; (4.20)

In tab. 4 I listed the results obtained by choosing different formation times for the primordial black holes: this
rough estimate is purely indicative but in any case it may reproduce quite well the present experimental upper
limit of the density parameter, derived from the constraints imposed by studying the CMB characteristics
[10]: ΩPBH ≤ (7.6± 2.6)× 10−9 h(−1.95±0.15).

5. RESULTS AND CONCLUSIONS.
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In figs. 1-6 I plotted the behaviour of the ionization degree x vs −z, as results from the solution of eq.
(4.16a): the six different plots refer to values of the reionization redshift zR ranging from 15 to 60; in figs.
7-12 I plotted the evolution vs −z of the plasma temperature; for convenience, I also reported in figs. 13-18
and 19-24 the corresponding results obtained in Ref. [6] by using an exact blackbody spectrum without jets
emission.

The present results should be compared with the ones obtained in [6] by a first order solution of the
differential equation system; we can remark that:
a) as in Ref. [6], the black holes-induced reionization is only partial; a quite relevant effect is obtained for

an evaporation redshift corresponding to zR ≤ 30, while for higher values of zR the process of PBHs
quantum evaporation cannot produce an appreciable phenomenon of reionization; in fact, for zR ≥ 40
the ionization degree is x ≤ 0.35. However, with respect to the results of Ref. [6], a smaller density of
PBHs is necessary to reionize the Universe because in this case, one adds to the direct photon emission
the indirect one, due to the hadrons decays. Moreover, the plasma heating is limited by a powerful
cooling: the overall effect is that in eq. (3.1) the t−1

pi term is suppressed and the t−1
r term enhanced.

b) Discussing now the result obtained for the plasma temperature and looking at figs. 7-12, one can remark
that a real improvement of the calculation has been obtained: the consideration of all the cooling terms
without any approximations enables me to have a maximum plasma temperature of the order of the
tenth of eV while previously the PBHs quantum evaporation was producing an excessive plasma heating;
the irregularities in the plots are due to some numerical fluctuations attributable to the routine solving
the coupled differential equations system.
These fluctuations are more evident when a shorter integration time is considered.

c) Looking at both the results for the ionization degree and the plasma temperature, one can conclude
that this PBHs-induced reionization mechanism should effectively be “late and sudden”: the possibility
of an effective reionization for values zR > 30 should be discarded and thus, in this model, it is very
improbable to have a significative suppression of the CMB temperature fluctuations on small angular
scales as predicted by Bond and Efstathiou [28] and Vittorio and Silk [29]; in these works, one proves
that an early reionization could suppress in a significant way these fluctuations, that, following the
predictions of CDM models and texture scenarios [30], result too large.

d) The PBHs formation time should be put very far in the past: considering the jet emission contribution
in the photon spectrum, the best choice of the PBHs formation conditions that enables to obtain a
well balanced reionization process (i.e. an high ionization degree without an excessive plasma heating)
suggests a formation time in a range tform = 10−70 ÷ 10−75 sec after the Big Bang and an initial density
ρi = 1017 ÷ 1024g/cm3 (see tab. 4), corresponding to a present density parameter ΩPBH ∼ 1.12×10−12

÷ 1.65× 10−8.

Summarizing, in this paper I studied a mechanism of reionization for the Universe induced by the
quantum evaporation of primordial black holes. Differently from a previous analysis, here an emission
spectrum taking into account the quark and gluons jets production has been considered.

A most accurate solution of the system of coupled differential equations, giving the ionization degree and
the plasma temperature evolution with the time, is performed; as a result, the reionization of the Universe
happens in an effective, even if partial, way. In the same time, the resulting plasma heating is limited by
an effective cooling, due to excitation and collisional processes; that avoids to have large (experimentally
unseen) distortions of the CBR blackbody spectrum via the Sunyaev- Zel’dovich effect.

As in Ref. [6], I considered here some values of the reionization redshift in the range [15, 60]: the fast
rise of the ionization degree x seems to suggest that such a model of PBHs-induced reionization should be
classified as ”sudden and late”. In fact, the behaviour of x can be approximated by an exponential function:
this result justifies the analysis of Ref. [31], where I studied the consequences of an exponential reionization
of the Universe on the polarization of the Cosmic Microwave Background.

Finally, the possibility to have a total reionization for a redshift zR > 60 seems to be excluded by the
results here found: in this model, no damping of the temperature fluctuations at small angular scales should
be expected.

11



ACKNOWLEDGEMENTS
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Tab. 1: Maximum energy for photons affected by ionization losses before a redshift z̃.

z̃ ωmax (×10−6) GeV

15 5.54

20 6.00

30 6.70

40 7.20

50 7.70

60 8.10
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Tab. 2: Time averaged values of the integrated photon density A1, B1.

zR tR A1 B1

15 6.43 × 1015 sec 10.4 × 1019 3.83 × 1014

20 4.30 × 1015 sec 8.88 × 1019 3.54 × 1014

30 2.38 × 1015 sec 7.12 × 1019 3.17 × 1014

40 1.57 × 1015 sec 6.17 × 1019 2.96 × 1014

50 1.13 × 1015 sec 5.40 × 1019 2.76 × 1014

60 0.86 × 1015 sec 4.88 × 1019 2.63 × 1014

15



Tab. 3: Value of the coefficients C1(zR), C2(zR) respectively appearing in t−1
PI and ΓPI .

zR C1 C2

15 8.20 ×1044 3.02 ×1050

20 6.99 ×1044 2.79 ×1050

30 5.61 ×1044 2.50 ×1050

40 4.86 ×1044 2.33 ×1050

50 4.25 ×1044 2.18 ×1050

60 3.84 ×1044 2.07 ×1050
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Tab. 4: Values of the density parameter ΩPBH and of the PBHs number densities for
different choices of the initial black holes birth time ti (Exp: ΩPBH ≤ (7.6±2.6)×10−9h(−1.95±0.15)).

ti (sec) ρi (g cm−3) ρ0 (g cm−3) ΩPBH

10−75 4.28× 1024 7.74× 10−38 1.65× 10−8

10−73 4.28× 1021 1.66× 10−39 3.53× 10−10

10−71 4.28× 1018 3.59× 10−41 7.64× 10−12

10−70 1.35× 1017 5.26× 10−42 1.12× 10−12
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FIGURE CAPTIONS

Fig. 1: Evolution of the ionization degree x vs −z induced by primordial black holes evaporation; the Hawking
emission spectrum is corrected for the presence of quarks and gluons jets; the plot is obtained by
assuming a reionization redshift z = 15.

Figs. 2-6: The same evolution of x but, respectively, for z = 20, z = 30, z = 40, z = 50, z = 60.

Fig. 7: The evolution of the plasma temperature Te vs −z; the reionization redshift is z = 15.

Fig. 8-12: The same evolution of Te but, respectively, for z = 20, z = 30, z = 40, z = 50, z = 60.

Fig. 13: The evolution of the ionization degree x is calculated by using an exact blackbody emission spectrum in
a first order recursive calculation (see Ref. 6) and plotted as a function of −z; the reionization redshift
considered is z = 15.

Figs. 14-18: The same evolution of x but, respectively, for z = 20, z = 30, z = 40, z = 50, z = 60.

Fig. 19: The evolution of the plasma temperature Te is calculated by using an exact blackbody emission spectrum
in a first order recursive calculation (see Ref. 6) and plotted as a function of −z; the reionization redshift
considered is z = 15.

Figs. 20-24: The same evolution of x but, respectively, for z = 20, z = 30, z = 40, z = 50, z = 60.
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