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Abstract. We derive practical expressions for a rapid and
accurate evaluation of electric and thermal conductivities
and thermopower of degenerate relativistic electrons along
quantizing magnetic fields in outer neutron star crusts. We
consider the electron Coulomb scattering on ions in liquid
matter, as well as on high-temperature phonons or charged
impurities in solid matter. We propose also a reasonable
semi-quantitative treatment of low-temperature phonons.
The transport properties are expressed through the energy
dependent effective electron relaxation time averaged over
electron energies. We calculate this relaxation time, using
the theoretical formalism of the previous work, obtain ac-
curate fitting expressions, and propose an efficient energy
averaging procedure. We create a computer code which
calculates the longitudinal transport properties of degen-
erate electrons in strong magnetic fields for any parame-
ters of dense stellar matter of practical interest. We anal-
yse quantum oscillations of the transport coefficients ver-
sus density at various temperatures and magnetic fields.

Key words: stars: neutron – dense matter – magnetic
fields

1. Introduction

Transport properties of neutron star crusts are important
for studies of thermal evolution (cooling) of neutron stars,
evolution of their magnetic fields, etc. For instance, the
heat in the outer crusts of magnetized neutron stars is
mainly transported by electrons along the magnetic fields.
As a rule, the electrons in the crust are strongly degener-
ate, and they may be relativistic. The main electron scat-
tering mechanisms are the Coulomb scattering on ions in

Send offprint requests to: A.Y.Potekhin (Ioffe Institute)
⋆ E-mail: palex@astro.ioffe.rssi.ru

the liquid phase, and the scattering on phonons or charged
impurities in the solid phase; the magnetic field can quan-
tize electron motion.

In the present work we study the electron transport
properties in the outer crusts of neutron stars along quan-
tizing magnetic fields. The problem has been considered
earlier by several authors. The first were Canuto and
his colleagues in 1970s; the results were summarized by
Canuto & Ventura (1977). An adequate kinetic equation
for the electron distribution function was proposed by
Yakovlev (1980), and used for calculating the transport
coefficients by Yakovlev (1980, 1984), Hernquist (1984),
Van Riper (1988) and Schaaf (1988). Although much work
has been done, these studies are not fully complete. First,
the approach based on the distribution function formalism
is not invariant: the results depend slightly on the choice
of the electron wave functions (due to the spin degener-
acy) in the magnetic field. Second, the results are not easy
for practical use. Third, the previous studies neglected
the Debye–Waller reduction of electron-phonon scattering
rate in solid magnetized matter, although the importance
of the Debye–Waller factor was demonstrated by Itoh et
al. (1984, 1993) for the non-magnetic case.

Recently Potekhin (1995, hereafter Paper I) has devel-
oped an invariant formalism of the longitudinal electron
conduction problem based on the spin polarization den-
sity matrix of the electrons. The results of Paper I have
been compared with those obtained using the traditional
methods with various electron basic functions. The lat-
ter methods are simpler for calculations, while the den-
sity matrix formalism enables one to choose which basis
is more adequate at given parameters of stellar matter.
Paper I has presented also efficient numerical techniques
for calculating the electron transport coefficients includ-
ing the Debye–Waller factor and demonstrated that this
factor is much more significant when the field is strongly
quantizing.

http://arxiv.org/abs/astro-ph/9604130v2
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In this paper we obtain practical formulae for a simple
and rapid evaluation of the longitudinal transport coeffi-
cients using the theory developed in Paper I.

2. Physical conditions

We consider degenerate layers of an outer neutron star
crust (at densities ρ <∼ 4 × 1011 g cm−3, below the neu-
tron drip). Matter of these layers consists of electrons and
ions. We study not too low densities (see below), at which
the electrons are nearly free, and the ionization is com-
plete due to the high electron pressure. The ions give the
major contribution into the density while the electrons –
into the pressure. For simplicity, we mainly consider one
component plasma of ions (=nuclei (A, Z)); the electron
and ion number densities are related as ne = Zni. A com-
prehensive study of thermodynamic properties of magne-
tized neutron star crusts has been performed recently by
Rögnvaldsson et al. (1993) using the Thomas–Fermi ap-
proximation. Since we avoid low densities, we base our
consideration on the approximation of free electrons. This
will enable us to evaluate the transport properties of mat-
ter. We will include the effects of non-ideality of electrons
in a phenomenological manner in Sects. 5 and 6.

Let µ be the electron chemical potential (including the
electron rest-mass energy, mc2). The domain of strongly
degenerate electrons we are interested in corresponds to
T ≪ TF, where TF = (µ − mc2)/kB is the degener-
acy temperature and kB is the Boltzmann constant. If
(µ−mc2) ≪ mc2, then the electron gas is non-relativistic,
while for µ ≫ mc2 it becomes ultra-relativistic.

In the absence of the magnetic field, one has the famil-
iar result

ne =
1

π2h̄3

∫ ∞

0

f(ε)p2dp, (1)

where

f(ε) =

[

exp

(

ε− µ

kBT

)

+ 1

]−1

(2)

is the Fermi–Dirac distribution function, and ε =
c
√

(mc)2 + p2 is the electron energy. In the case of strong
degeneracy, one has µ ≈ µ0, where

µ0 =
√

m2c4 + c2p2F0, pF0 = h̄(3π2ne)
1/3, (3)

and pF0 is the field-free electron Fermi momentum
(pF0/(mc) ≈ 1.009(ρ6Z/A)

1/3, ρ6 being density in units
of 106 g cm−3). The appropriate degeneracy temperature
is plotted in Fig. 1 by short-dashed line. For small ρ and
T , the effects of incomplete ionization and electron gas
non-ideality become important. This domain is shown
schematically by the short-dashed line N . The line cor-
responds to ε̄ = |εa|, where ε̄ is the mean energy per

Fig. 1. ρ – T diagram of 56Fe matter for several magnetic fields
strengths. TF – electron degeneracy temperature, Tl – ion cou-
pling temperature (Γ = 1), Tm – melting temperature, Tp –
ion plasma temperature, TB – electron quantization tempera-
ture; arrows indicate strongly quantizing densities ρB. Lines N
restrict the low-T low-ρ domain of incomplete ionization and
electron gas non-ideality. TF, TB, and N curves depend on the
magnetic field. Dashes show the curves for B = 0, solid lines
for B = 1012 G, and thick long-dash lines for B = 1013 G.

electron in the free electron gas, and εa is the mean en-
ergy per electron for isolated atoms in the Thomas–Fermi
approximation (e.g., Landau & Lifshitz 1976).

Let the magnetic field B be directed along the z-axis.
We shall use the Landau gauge of the vector potential:
A = (−By, 0, 0). Quantum states of a free electron can be
labelled by four quantum numbers (px, pz, n, s), where px
determines the y-coordinate of the electron guiding center,
yB = px/(mωB), pz is the longitudinal electron momen-
tum, n=0,1,2,. . . enumerates the Landau levels, and s is
a spin variable. Here ωB = eB/(mc) is the electron cy-
clotron frequency, and (−e) is the electron charge. The
ground Landau level n = 0 is non-degenerate with re-
spect to spin while the excited levels n > 0 are doubly
degenerate. Various sets of electron basic wave functions
are analysed, e.g., in Paper I. An energy ε of a relativistic
electron in the magnetic field is

ε = εn ≡ Emc2

=
√

m2c4 + c2p2z + 2mc2h̄ωBn, (4)

where E is the natural dimensionless energy.
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The number density of free electrons in a magnetic
field is

ne =
mωB

(2πh̄)2

∫ +∞

−∞

dpz
∑

n,s

f(εn)

=

∫ ∞

mc2
Ne(ε)

(

−∂f

∂ε

)

dε, (5)

Ne(ε) =
2mωB

(2πh̄)2

∑

s

n(E)
∑

n=0

pn(ε). (6)

Here pn(ε) ≡ mcPn(E) is the largest z-momentum of an
electron with energy ε at a given Landau level, n(E) =
Int(ν) is the highest Landau level occupied by an electron
with energy ε,

Pn(E) =
√

E2 − 1− 2bn, ν = (E2 − 1)/(2b), (7)

Int(ν) is integer part of ν, and b is the dimensionless
magnetic field expressed in units of the ‘critical field’ Bc

(h̄ωBc = mc2),

b =
B

Bc
, Bc =

m2c3

eh̄
= 4.414× 1013 G. (8)

Mass density ρ equals ρ ≈ mini ≈ (A/Z)mune, where
mi is the ion mass, mu = 1.660 × 10−24 g is the atomic
mass unit, and A/Z is the number of baryons per electron.
Equation (5) determines ne as a function of T , µ and B.

Simple analysis of Eq. (5) yields the following. Strongly
degenerate electrons populate the only ground Landau
level when density is not too high, ρ < ρB, where ρB =
2.07 × 106 b3/2(A/Z) g cm−3. In this case the Fermi mo-
mentum is

pF =
2π2h̄2ne

mωB
=

2

3b
pF0

(pF0
mc

)2

. (9)

In the domain of ρ ≪ ρB the magnetic field strongly
reduces the electron Fermi energy and widens the re-
gion of incomplete ionization and electron gas non-ideality
(Yakovlev 1984, Hernquist 1984, Van Riper 1988), as
shown in Fig. 1 by solid and long-dashed lines. In this
case, lines N correspond to ε̄ = |εa|, where εa depends on
B (Rögnvaldsson et al. 1993).

If B is fixed, then µ increases with ρ, and degenerate
electrons populate higher Landau levels n. If ρ ≫ ρB,
many Landau levels are populated, and the Fermi energy
is almost independent of B (pF ≈ pF0).

It is convenient to introduce the temperature

TB =
h̄ω∗

B

kB
≈ 1.34× 108B12

mc2

ε∗
K, (10)

where ω∗
B = eBc/ε∗ is the gyrofrequency of an elec-

tron with the typical energy ε∗ = max(ε̄, µ), and B12 =
B/(1012 G). When T ≫ TB the electrons occupy many
Landau levels for any ρ due to high thermal energy. In

this case the thermal widths of the Landau energy lev-
els (∼ kBT ) are higher than the inter-level spacing, and
the magnetic field acts as non-quantizing, regardless of the
electron degeneracy.

In the domain of T <∼ TB and ρ < ρB (separated into
the subdomains of degenerate and non-degenerate electron
gas) the electrons populate mostly the ground Landau
level. In this domain, the magnetic field is strongly quan-

tizing, and it affects significantly all properties of matter
(e.g., Van Riper 1988, Yakovlev & Kaminker 1994).

Finally, in the domain of T <∼ TB and ρ ≫ ρB the elec-
trons are degenerate and populate many Landau levels but
the inter-level spacing exceeds kBT . Then the magnetic
field is weakly quantizing. It does not affect noticeably the
bulk properties (pressure, electron chemical potential) de-
termined by all the electron Fermi sea but it affects the
transport properties determined by thermal electrons near
the Fermi level.

The state of ions can be characterized by the ion cou-
pling parameter

Γ =
Z2e2

akBT
= 2.275

Z2

T7

(ρ6
A

)1/3

, (11)

where a = [3/(4πni)]
1/3 is the ion sphere radius, and T7

is temperature in units of 107 K.
At high T , when Γ ≪ 1, the ions form a classical Boltz-

mann gas. With decreasing T , the gas gradually (without
any phase transition) becomes a Coulomb liquid. The liq-
uid is formed (Hansen 1973) at Γ ≈ 1, i.e., at T ≈ Tl

(Fig. 1). The liquid solidifies into the Coulomb crystal
(Nagara et al. 1987) at Γ = 172 (T = Tm). According
to Fig. 1, we always have strongly coupled Fe ions, if elec-
trons are degenerate (Tl > TF). However, for light ions, Tl

can be lower than TF.
At low T , zero-point ion vibrations become important

in ion motion. These effects are especially pronounced if
T ≪ Tp, where

Tp = h̄ωp/kB ≈ 7.832× 106(Z/A)ρ
1/2
6 K, (12)

and ωp =
√

4πZ2e2ni/mi is the ion plasma frequency.
The amplitude of zero-point vibrations is commonly much
smaller than the typical inter-ion distance, a. With in-
creasing ρ, the amplitude-to-a ratio becomes larger, so
that the vibrations can prevent crystallization at high ρ
(Mochkovitch & Hansen 1979, Ceperley & Alder 1980).
This effect is especially pronounced for H and He. Note
that the Debye temperature of the Coulomb bcc crystal is
TD = 0.45Tp (Carr 1961).

We assume that the magnetic fields do not affect the
properties of the ion plasma component, for instance, the
phonon spectrum of the crystal. This is so (e.g., Usov et al.
1980) if ωB = ZeB/(mic) ≪ ωp, i.e., if B ≪ 1014

√
ρ6 G.

3. Transport properties
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3.1. Electron scattering mechanisms

The electron transport properties are determined by the
electron scattering mechanisms. Consider three important
cases when the electron scattering is almost elastic (an
energy transfer in a collision event is ≪ kBT ): (i) the
Coulomb scattering on ions in the liquid or gaseous phase
(T > Tm, Fig. 1), (ii) the scattering on high-temperature
phonons (TD <∼ T < Tm); (iii) the Coulomb scattering on
charged impurities in the lattice (important for T ≪ TD).
The impurities represent ions of charge Zimp 6= Z im-
mersed accidentally in lattice sites. Accordingly, our re-
sults cover a wide range of temperatures.

The electron-ion scattering can approximately be de-
scribed (e.g., Yakovlev 1984) by the Debye-screened
Coulomb potential. Its Fourier image U(q) is given by

|Uion(q)|2 =

(

4πZe2

q2 + q2s

)2

, (qions )2 = q2i + q2e , (13)

where qs is an effective screening wavenumber (inverse
screening length), qi and qe are, respectively, the ion and
electron screening wavenumbers. According to Yakovlev
& Urpin (1980) and Yakovlev (1984),

q−2
i = (2a/3)2 + r2D, q2e = 4πe2 (∂ne/∂µ), (14)

where rD is the Debye ion radius, rD = vi/ωp, vi =
√

kBT/mi is the thermal ion velocity. The Debye radius
dominates (qi ≈ 1/rD) in the gaseous regime T ≫ Tl,
while qi ≈ 1.5/a in the most important case of strongly
coupled ion liquid (Tm < T <∼ Tl). Equation (14) allows
us to reproduce the B = 0 transport properties using the
model potential (13) instead of the exact plasma-screened
Coulomb potential.

For the scattering on high-temperature phonons, one
has (e.g., Paper I)

|Uph(q)|2 =

(

4πZe2

q

)2
r2T
3

exp [−2W (q)] , (15)

where r2T = u−2a
2/Γ is the mean squared thermal dis-

placement of ions from their lattice sites, u−2 is a numer-
ical factor determined by the phonon spectrum (u−2 =
13.0 for the body-centered cubic (bcc) lattice, see, e.g.,
Mochkovitch & Hansen 1979), e−2W is the Debye–Waller
factor, 2W (q) ≈ (rT q)

2/3. Theoretical formalism for in-
corporating this factor into the transport properties of
magnetized matter was developed in Paper I. Note that
Eq. (15) is valid for TD <∼ T < Tm.

The scattering on phonons remains to be the dom-
inant electron scattering mechanism at lower tempera-
tures, T ≪ TD. The low-T phonon scattering is inelastic
(electron energy transfer in a collision is ∼ kBT ), and,
strictly speaking, it cannot be described using the formal-
ism of Paper I. However this scattering can approximately
(semi-quantitatively) be treated as elastic (Yakovlev &

Urpin 1980, Raikh & Yakovlev 1982) as long as the Umk-
lapp processes dominate over the normal processes of
electron-phonon interaction. The Umklapp processes are
known to be most important at high temperatures, un-
der typical conditions in neutron star crusts. However
they are “frozen out”, and the electron scattering be-
comes essentially inelastic. For instance, for nonquantiz-
ing fields, this happens at T ≪ TU ∼ TpZ

1/3e2/(h̄vF) ≈
[Z2/3 + 0.98(A/ρ6)

2/3]1/2(Tp/137), where vF is the elec-
tron Fermi velocity. We propose to extend the formal-
ism of high-temperature phonons to T ≪ TD and obtain,
thus, the reliable estimates of low-temperature transport
properties at TU <∼ T ≪ TD. For this purpose, as can be
shown, for instance, from the results of Raikh & Yakovlev
(1982) and Baiko & Yakovlev (1995), the scattering po-
tential (15) should be modified in two ways. First, the pre-
exponent factor r2T should be replaced by r2T1 = r2TG(t),

where G(t) = t/
√

t2 + t20 describes the reduction of ther-
mal ion displacements at low T , t ≡ T/Tp, and t0 ∼ 0.1
is a numerical parameter (t0 = 0.132 for the bcc lattice).
Second, one should remind that the Debye–Waller factor
is determined by the total (thermal + zero point) mean
squared ion displacement r2T2 which reduces to the ther-
mal squared displacement r2T at high T . Thus we should
replace r2T by r2T2 = r2T {1 + exp(−9.1t)[u−1/(2u2t)]} in
the Debye–Waller exponent (Baiko & Yakovlev 1995) for
it to be accurate at low T . In this case, u−1 is another
parameter of the phonon spectrum (u−1 = 2.800, for the
bcc lattice). The above modifications do not violate the
formalism of Paper I.

Finally, the scattering on impurities corresponds to
(e.g., Yakovlev & Urpin 1980)

|Uimp(q)|2 =

[

4π(Zimp − Z)e2

q2 + q2s

]2

. (16)

In this case the screening wavenumber is (qimp
s )2 = q2e +

q2imp, where qe is given by Eq. (14), and qimp is an inverse
impurity correlation length. The scattering on impurities
is similar to that on ions. This scattering acts at T < Tm,
just as the scattering on phonons, but actually it domi-
nates at very low T (see Yakovlev & Urpin 1980).

3.2. Transport coefficients

Let E , ∂µ/∂z and ∂T/∂z be, respectively, weak and locally
constant electric field, electron chemical potential gradi-
ent, and temperature gradient along B. They induce the
electron electric and thermal currents with the current
densities J and Q:

J = σ

(

E +
1

e

∂µ

∂z

)

+ β
∂T

∂z
,

Q = −βT

(

E +
1

e

∂µ

∂z

)

− λ
∂T

∂z
. (17)

Here σ is the longitudinal electric conductivity, while β
and λ are two other auxiliary transport coefficients. The
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appearance of β in the expressions for J and Q reflects
the Onsager symmetry principle. For practical use, the
expressions (17) can be rewritten as

E +
1

e

∂µ

∂z
=

J
σ

− α
∂T

∂z
, Q = −αTJ − κ

∂T

∂z
, (18)

where

α = β/σ, κ = λ− T (β2/σ) (19)

are, respectively, the longitudinal thermopower, and ther-
mal conductivity. The transport coefficients σ, β, and λ
are convenient for calculation (see Eq. (22) below) while
σ, α and κ directly enter the equations which govern the
distributions of temperature and magnetic field in neutron
stars (e.g., Urpin & Yakovlev 1980). The coefficients σ, κ,
and α determine fully the electron transport of charge and
heat along B.

Let ρns′s(z, pz) be the spin polarization density matrix
(Paper I) of electrons for the case when the electron gas is
slightly non-uniform along B. Here s and s′ are the spin
variables (Sect. 2). In the linear regime, deviations from
the equilibrium are small. The zero-order density matrix
is f(ε)δss′ , where f(ε) is a local Fermi–Dirac distribution
(2) which depends on z parametrically through µ and T .
In the first approximation, according to Paper I,

ρnss′(z, pz) = f(ε)δss′ + η l
∂f(ε)

∂ε

[

eE +
∂µ

∂z
+

ε− µ

T

∂T

∂z

]

ϕηnss′ (ε), (20)

where η =sign(pz), and the functions ϕηnss′ (ε) determine
non-equilibrium corrections to the density matrix; l is an
electron scattering length:

lion =
mc2h̄ωB

2πniZ2e4
, lph =

3

4πni

(

h̄c

Ze2rT1

)2

,

limp =
mc2h̄ωB

2πnimp(Zimp − Z)2e4
, (21)

nimp being the number density of impurities. The set of
equations for ϕηnss′ (ε) has been derived in Paper I. Pa-
per I presents also the mathematical formalism for solving
these equations. After introducing the scale lengths (21),
the equations describing the scattering on ions and impu-
rities appear to be formally the same, i.e., there is no need
to consider these scatterings separately. We shall refer to
the scattering on ions and impurities as the Coulomb (C)
scattering. If the functions ϕηnss′ (ε) are found, the trans-
port coefficients in Eqs. (17) can be calculated as (Paper I)





σ
β
λ



 =
2mωBl

(2πh̄)2

∫ ∞

mc2





e2

e(ε− µ)/T
(ε− µ)2/T





× Φ(ε)

(

−∂f

∂ε

)

dε, (22)

where

Φ(ε) =
1

2

∑

η=±1

n(E)
∑

n=0

∑

s=±1

ϕηnss(ε). (23)

It is also convenient to introduce the function Ψ(E),

ΨC(E) = b2ΦC(ε), Ψph(E) = bΦph(ε). (24)

Equations (22) can be written in a more transparent
form if we introduce the effective energy dependent elec-
tron relaxation time:

τ(ε) =
εlmωB

2(πh̄c)2Ne(ε)
Φ(ε), (25)

where Ne is given by Eq. (6). Then





σ
β
λ



 =

∫ ∞

mc2





e2

e(ε− µ)/T
(ε− µ)2/T





× Ne(ε)τ(ε)c
2

ε

(

−∂f

∂ε

)

dε, (26)

where the energy integration represents the statistical av-
eraging of the relaxation time with the energy derivative
of the Fermi–Dirac distribution. Note that Eqs. (22) and
(26) are valid for any electron degeneracy. Note also that
Eqs. (19) and (41) of Paper I should contain Ne(ε) instead
of ne.

Generally, τ(ε) is an oscillating function of electron en-
ergy as discussed in Sect. 4. Let us mention one important
case when τ(ε) and Ne(ε) vary with ε much slower than
∂f(ε)/∂ε. Then, for strongly degenerate electrons, one ob-
tains the results which look formally similar to those for
B = 0:

σ ≈ e2c2neτ(µ)

µ
, κ ≈ λ ≈ π2kB

2T

3e2
σ,

α ≈ π2kB
2T

3e

∂

∂ε
ln

(Ne(ε)τ(ε)

ε

)∣

∣

∣

∣

ε=µ

, (27)

with ne = Ne(µ).
The equations of this section are equally valid for the

quantizing and non-quantizing magnetic fields.

4. Relaxation time τ (ε) (or Ψ (E))

4.1. Quantum oscillations

Evaluation of the transport coefficients σ, α, and κ con-
sists of two stages. First, the equations of Paper I for
ϕηnss′ (ε) should be solved and the function Φ(ε) (or,
equivalently, Ψ(E), or τ(ε)) determined. Second, the en-
ergy integrations (22) have to be performed, and the trans-
port coefficients (19) found. The second stage corresponds
actually to the energy averaging of the relaxation time; it
will be analysed in Sect. 5. Here we consider the first stage.
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The main problem is to reproduce correctly quantum

oscillations of Ψ(E) or τ(ε) which occur since electrons
of energy ε populate new Landau levels with growing ε.
Population of an n-th level takes place when the energy
variable ν given by Eq. (7) exceeds n. The oscillations orig-
inate from the square root singularities of the density of
states of free electrons in a magnetic field. Just behind the
threshold for a given level (0 < (ν−n) ≪ 1) Φ(ε) and τ(ε)
behave as

√
ν − n which makes the oscillations important

especially for not too high n.
Below we obtain practical equations for Ψ(E) or τ(ε)

at various electron energies.

4.2. Semiclassical approach for ν ≫ 1

If ν ≫ 1 (electrons occupy many Landau levels), Ψ(E) can
be calculated numerically, using the technique of Paper I,
but it cannot be expressed in a closed analytic form. We
will derive (Sect. 4.4) accurate fitting expressions based
on the semiclassical approach described below.

When many Landau levels are occupied, the relaxation
time τ(ε) is expected to be close to the familiar classical
non-magnetic quantity

τ−1(ε) = niv0σtr(ε), (28)

where v0 is the electron velocity without magnetic quan-
tization effects (v0 = p0c

2/ε, p0 = mcP0 = mc
√
E2 − 1),

ni is the number density of scatterers, and σtr(ε) is the
transport scattering cross section:

σtr(ε) =

∫

dΩ

4π

∫

dΩ′σ(Θ) (1− cosΘ). (29)

In this case σ(Θ) is the differential scattering cross sec-
tion, Θ is the scattering angle, dΩ and dΩ′ are the solid
angle elements of non-quantized electron momenta p and
p′ before and after scattering, respectively. In the Born
approximation,

σ(Θ) =
|U(q)|2ε2
4π2h̄4c4

(

1− v20
c2

sin2
Θ

2

)

. (30)

Assuming the isotropic distribution over momentum
transfers h̄q = p′ − p in the non-magnetic case, Eq. (29)
can be rewritten as

σtr(ε) =

∫

dΩdΩ′

4π
σ(Θ)

3h̄2q2z
2p20

. (31)

Now consider weakly quantizing magnetic fields. Using
Eq. (4), we can introduce the quantized transverse momen-
tum p⊥(n) = p0 sinϑ =

√
2mh̄ωBn, where n is a Landau

number, and ϑ is an electron pitch angle. Accordingly, ev-
ery n corresponds to two values of ϑ, below and above π/2.
Then an integration over ϑ from 0 to π can be replaced
as:

∫ π

0

dϑ sinϑ . . . → mh̄ωB

p0|pz|

n(E)
∑

n=0

∑

η=±1

. . . (32)

At this stage we replace the integrals over ϑ and ϑ′ in
Eq. (31) by the sums over n, η and n′, η′. The dips of
τ(ε) or Φ(ε) behind every Landau threshold are caused
by the density-of-state singularity when either n or n′

equals n(E). Since n(E) is assumed to be large, these
terms correspond to ϑ ≈ π/2 or ϑ′ ≈ π/2, respectively.
The sum over η or η′ in these terms is equivalent to in-
troducing a factor 2. Thus, the term n = n(E) can be
evaluated by setting ϑ = π/2 in Eq. (31), multiplying by
2mh̄ωB/(p0|pz|) and integrating over all remaining vari-
ables. The term n′ = n(E) is similar. Then

σtr(ε) = σcl(ε) +
3mh̄ωB

p0|pz|
σq(ε), (33)

where

σcl(ε) =

∫

dΩ′ σ(Θ) (1 − cosΘ), (34)

σq(ε) =

∫

dΩ′ σ(Θ) cos2 ϑ′ =

∫

dΩ′σ(Θ)
sin2 Θ

2
. (35)

The last term in Eq. (33) comes from the terms n = n(E),
n′ = n(E). Its denominator contains the longitudinal mo-
mentum pz at n = n(E) which vanishes just at a new Lan-
dau threshold and produces the required quantum oscilla-
tions. The first term, σcl(ε), is non-oscillating. Actually it
should be somewhat lower since we have subtracted the os-
cillating term from σtr but we neglect this difference in the
present section. Equation (33) can also be inaccurate for
small momenta transfers associated with the transitions
between discrete neighboring n and n′ (which require a
more detailed consideration). In order to allow for this
effect, we introduce the lower momentum transfer cutoff
q = qmin while calculating σcl(ε) and σq(ε). We specify
qmin in Sect. 4.4.

From Eq. (13), for the scattering on ions we obtain

σion
cl,q(ε) = 4π

(

Ze2

p0v0

)2

RC
cl,q(E, y), (36)

where

RC
cl(E, y) = Λ1 −

v20
c2

Λ2,

RC
q (E, y) = RC

cl(E, y)− Λ2 +
v20
c2

Λ3,

Λk ≡ 1

2

∫ 1

y

zk dz

(z + u)2
,

Λ1 =
1

2
ln

(

1 + u

y + u

)

− u(1− y)

2(1 + u)(y + u)
,

Λ2 =
1− y

2
− u ln

(

1 + u

y + u

)

+
u2(1− y)

2(1 + u)(y + u)
,

Λ3 =
1− y2

4
− u(1− y)

+
3

2
u2 ln

(

1 + u

y + u

)

− u3(1− y)

2(1 + u)(y + u)
, (37)
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u = [h̄qs/(2p0)]
2 is the screening parameter, and y =

[h̄qmin/(2p0)]
2.

For the scattering on impurities, σimp
cl (ε) and σimp

q (ε)
are obtained from Eq. (36) by replacing Z → (Zimp − Z).

In the case of the scattering on phonons, from Eqs. (15)
and (33) we obtain

σph
cl,q(ε, y) =

8π

3

(

Ze2

h̄v0

)2

r2T1 R
ph
cl,q(E, y), (38)

where

Rph
cl (E, y) = L1 − L2

v20
2c2

,

Rph
q (E, y) = Rph

cl (E, y)− 1

2
L2 +

v20
3c2

L3,

Lk = k

∫ 1

y

zk−1e−wydy,

L1 =
1

w

(

e−wy − e−w
)

,

L2 =
2

w2

[

(1 + wy)e−wy − (1 + w)e−w
]

,

L3 =
3

w3

[

(2 + 2wy + w2y2)e−wy

− (2 + 2w + w2)e−w
]

, (39)

w = (4/3)(p0rT2/h̄)
2. As explained in Sect. 3.1, these

equations are strictly valid at TD <∼ T < Tm, and pro-
duce reasonable estimates at TU <∼ T ≪ TD.

Now, using Eqs. (28) and (33), we can easily express
the inverse energy dependent relaxation time as a sum of
the main (non-oscillating) and oscillating terms.

4.3. Non-magnetic case

If B = 0 the relaxation time of an electron is readily
obtained from Eqs. (28), (33) by omitting the oscillating
term and setting qmin = 0 (y = 0). Then we immedi-
ately recover Eqs. (23) – (28) of Paper I for τ(ε) due to
the Coulomb and phonon scatterings.

The function Ψ(E) is defined by Eq. (24). The function
Ne(ε) which enters Eq. (25) and relates τ(ε) and Ψ(E) is
given by Eq. (6). If B → 0, Ne(ε) is easily calculated by
replacing the sum over n with the integral, which yields
the trivial result Ne(ε) = (p0/h̄)

3/(3π2). The appropriate
functions Ψ(E) are

ΨC(E) =
P 6
0

3Λ(E)E2
, Ψph(E) =

P 4
0

3E2Rph
cl (E, 0)

, (40)

where Λ(E) = RC
cl(E, 0) is the Coulomb logarithm given

by Eq. (24) of Paper I.
Once the energy dependent relaxation time τ0(ε) is

known, the transport properties are easily evaluated from
Eq. (27). In this way we reproduce familiar transport co-
efficients of degenerate electrons for the scattering mech-
anisms of study.

4.4. Fitting expressions for ν > 1

We have performed extensive calculations of Ψ(E) for the
Coulomb and phonon scattering potentials, using the for-
malism of Paper I. We have mainly used the distribu-
tion function framework with the fixed-spin basis. Ac-
cording to Paper I, this yields sufficient accuracy in most
cases of interest. However, the accuracy has been addi-
tionally controlled using the density matrix formalism. We
have considered a wide range of magnetic fields 1010 G <∼
B <∼ 1014 G sufficient for applications. In the case of the
Coulomb potential, ΨC(E) depends also on the screen-
ing wavenumber qs (Sect. 3.1). Instead of qs, it is conve-
nient to introduce the dimensionless screening parameter
u = [h̄qs/(2p0)]

2, defined in Eq. (37). We have calculated
ΨC(E) treating u as a free parameter varied from 0 to
1. These results are equally valid for the scattering on
ions and impurities (Sect. 3). In the case of the scattering
on phonons, Ψph(E) depends on the Debye–Waller factor
defined in Eq. (15). The effect of this factor is described
by the dimensionless parameter w = (4/3)(p0rT2/h̄)

2 in
accordance with Eq. (39). While calculating Ψph(E), we
treat w as a free parameter varied in a wide interval,
0 ≤ w <∼ 10.

Our computations cover an extended range of electron
energies. The energy variable ν has been varied up to 100,
allowing population of up to 100 Landau energy levels.

We have produced vast tables of Ψ(E) (for different E,
b, u, w). They are inconvenient for practical use but we
have been able to fit all the results by analytic formulae.
We have started with simple semiclassical Eqs. (28) and
(33). They reproduce the main features of Ψ(E) at large ν
but they appear to be inexact near the Landau thresholds.
We have managed to modify Eqs. (28) and (33) in such a
way that the resulting formulae fit Ψ(E) accurately for
any parameters b, u, w and for ν > 1. We have treated
the minimum momentum cutoff qmin, or y (Sect. 4.2), as
a fit parameter. The fit formula reads (ν > 1)

Ψ(E) =
√

Ψ2
a(E) + Ψ2

b(E), (41)

Ψa(E) = Ψ0(E)

[

Rcl(E, y)

+
3

P0

(

b

Pn
− b1/4

√

2Pn

)

Rq(E, y)

]−1

, (42)

ΨC
0 (E) =

P 6
0

3E2
, Ψph

0 (E) =
P 4
0

3E2
, (43)

where y = 0.5(Pn/P0)
2, Pn =

√
E2 − 1− 2bn; n =

n(E) = Int(ν) in accordance with Eq. (7); the functions
Rcl(E, y), Rq(E, y) are defined in Eqs. (37) and (39).

The expression for Ψb(E) depends on n. When n ≥ 3,
for all scattering mechanisms of study we have

Ψb(E) =
P0PnΨ0(E)/(3b)

[Rq(E, y+)+Rq(E, y−)](1+ν(Pn/
√
b)5/2)

, (44)
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where y± = 0.5[(Pn−1 ± Pn)/P0]
2. When n = 1 or 2, we

obtain

Ψb(E) =
P0Pn

Q2(ξ+ + ξs, 0, 1) +Q2(ξ− + ξs, 0, 1)

× bk

[(E + 1)/2]2 + [b/(E + 1)]2
, (45)

where kC = 2 and kph = 1 according to Eq. (24), ξ± =
(P0 ± Pn)

2/(2b), ξCs = (amqs)
2/2, ξphs = 0, and am =

√

h̄c/(eB) is the magnetic quantum length. The functions
Q2(ξ, n

′, n) have been introduced in Paper I. We have

QC
2 (ξ, 0, 1) =

∫ ∞

0

ζ e−ζ

(ζ + ξ)2
dζ = (1 + ξ)eξE1(ξ)− 1,

Qph
2 (ξ, 0, 1) =

∫ ∞

0

ζ e−ζg−gξ+ξ

ζ + ξ
dζ

=
e−gξ+ξ

g

[

1− gξegξE1(gξ)
]

, (46)

where g = 1+w/(4ν), and E1(ξ) is the integral exponent
which is easily calculated (Abramowitz & Stegun 1972).

Equations (41) – (42) are valid for the Coulomb and
phonon scatterings. The function Ψa(E) is associated with
the modified semiclassical expression of Ψ(E) (Sect. 4.2),
whereas Ψb(E) is introduced to improve the fit accuracy
just behind a new Landau level threshold, at (ν−n) ≪ 1.
In the limit of B → 0 the equations reproduce the correct
non-magnetic expression Ψ(E) = Ψ0(E)/Rcl(E, 0).

The fitting equations describe the tables of Ψ(E) for
all values of b, u, w (see above) at any energy E. They are
based on the correct semiclassical expressions (Sect. 4.2),
and their accuracy does not become worse with increasing
E as demonstrated in Figs. 2 and 3. The figures present
Φ(E) versus ν for different scattering mechanisms, mag-
netic fields b, and charge numbers Z. For illustration, the
screening wavenumber qs in the case of the Coulomb scat-
tering has been calculated assuming strong degeneracy,
with the Fermi level being equal to the current value of
electron energy, µ = ε. This allows us to find the elec-
tron number density from Eq. (5), and determine then qs
from Eqs. (13) and (14). For the scattering on phonons, we
have considered several values of T which enter the Debye–
Waller factor defined in Eq. (15). If T7 ≪ 1, the Debye–
Waller factor is negligible, i.e., e−2W = 1 in Eq. (15). Fig-
ure 2 demonstrates population of the low-lying Landau
levels n=1, 2, 3 and 4. Figure 3 displays population of
higher levels, n = 20 and n = 99. The overall accuracy of
the fits is around 3% which seems to be satisfactory for
fitting oscillating functions. The accuracy becomes worse
(up to 8% for n > 5) at 0 < ν − n ≪ 1, where Ψ(E) con-
tains dips, but this is not important: the dips are easily
smeared out due to subsequent energy averaging of Ψ(E)
(Sect. 5).

Previously the function Φ(E) was calculated and fit-
ted, accurately and thoroughly, by Hernquist (1984). The

Fig. 2. Calculated and fitted function Φ(E) versus ν for
Coulomb and phonon scatterings at different parameters of
matter in the case when the electrons populate the Landau
levels n=1,2,3,4.

author considered the Coulomb and high-T phonon scat-
terings in iron matter at B = 1010, 3×1010, 1011, 3×1011,
1012, 3 × 1012, 1013, 3 × 1013, 1014 G and included pop-
ulation of n < 30 Landau levels. His fit formula (his Eq.
(178)) contained 3 adjustable parameters for every Landau
level (90 fit parameters for every B and each scattering
mechanism). However, Hernquist (1994) did not take into
account the Debye–Waller factor which made his results
for the phonon scattering not very accurate (Paper I). Our
fitting formulae require no tables of fit parameters; they
are valid for any magnetic field and Landau level number
of practical interest, as well as for any chemical element.

4.5. Low energies, ν < 1

If ν < 1, the electrons with energy ε occupy the ground
Landau level n=0. In this case Ψ(E) is expressed in a



A.Y.Potekhin & D.G.Yakovlev: Electron conduction along quantizing magnetic fields. II 9

Fig. 3. Same as in Fig. 2 for population of the Landau levels
n=20 and 99.

closed form using the results of Paper I. For the Coulomb
and phonon scatterings, we obtain

Φ(E) =
P 2
0

2Q2(ξ+ + ξs, 0, 0)
, (47)

where ξ+ = 2P 2
0 /b, and ξs is defined in (45). The function

Q2(ξ, 0, 0) is (cf. Eq. (46))

QC
2 (ξ, 0, 0) =

∫ ∞

0

e−ζ

(ζ + ξ)2
dζ =

1

ξ
− eξE1(ξ),

Qph
2 (ξ, 0, 0) =

∫ ∞

0

e−ζg−gξ+ξ

ζ + ξ
dζ = eξE1(gξ). (48)

The electron transport properties in the ultra-quantum
limit ν ≪ 1 are discussed, for instance, by Yakovlev (1980,
1984).

5. Energy averaging of relaxation time or Ψ (E)

The results of Sects. 4.4 and 4.5 fully determine Ψ(E). The
next step is to evaluate the longitudinal electron transport

coefficients from Eqs. (19) and (22). This should be done
by a numerical energy integration in Eq. (22). The inte-
gration corresponds to statistical energy averaging of the
relaxation time which broadens the quantum oscillations.
The broadening is produced by the thermal effects: all elec-
trons with energies |ε−µ| <∼ kBT are known to contribute
into the transport properties.

Actually, quantum oscillations can also be broadened
by other mechanisms which have been neglected in Sect. 3
and 4 (since we have used the Born approximation and as-
sumed strictly elastic electron scattering, see Paper I). Ex-
act theory of the broadening would have been very sophis-
ticated, and it is still absent. We incorporate the effects
of the broadening in an approximate manner. In addition
to the thermal broadening, we will take into account the
collisional broadening of the Landau levels, and the broad-
ening due to weak inelasticity of electron collisions.

To include these effects we replace (ε − µ) by (ε −
µ)T/Tk in the integrands of Eq. (22), with Tk = T +[(γ+
∆ε)/(2πkB)]. Here γ is the collisional width of the Landau
energy levels which we set equal to γ = h̄/τ0, τ0 being the
field-free electron relaxation time (Sect. 4.3; Paper I). We
include γ into Tk in a way familiar to the semi-quantitative
treatment of magnetic oscillations in terrestrial metals
(e.g., Shoenberg 1984). In solid matter, T < Tm, we set
γ = γph + γimp (even for T < TU , ignoring the failure of
our low-T phonon treatment for very low T , Sect. 3.1).
The quantity ∆ε is a typical energy transfer of an elec-
tron in a collision event. We set (∆ε)ion ≈ h̄ωp + vipF0,
(∆ε)ph ≈ h̄ωpG0(t), and (∆ε)imp ≈ 0, where ωp is the
ion plasma frequency, vi is the ion thermal velocity, G0(t)
(with t = T/Tp) describes reduction of typical frequencies
of phonons excited or absorbed by electrons at T ≪ TD.
We set G0(t) ∼ G(t), where G(t) is the reduction factor
introduced in Sect. 3.1. Our choice of γ and ∆ε is rather
phenomenological. However the results (the transport co-
efficients) are not too sensitive to this choice. If more ac-
curate values of γ and ∆ε appear in the future, they could
easily be incorporated in our calculation scheme.

Using Eqs. (19), (22), and (24), we obtain the follow-
ing practical equations for the longitudinal electric con-
ductivity σ, thermal conductivity κ and thermopower α
as functions of electron chemical potential µ, temperature
T , magnetic field B, and nuclear composition of matter:

σ = I0, κ =
π2k2B T

3e2
Jκ, α =

kB
e
Jα, (49)

Jκ = I2 −
I21
I0

, Jα =
I1
I0
,

Ij =
σ0

θ

∫ ∞

1

dEΨ(E) ζj
eζ

(eζ − 1)2
,

σion
0 =

m4c6

4π3h̄3e2niZ2
≈ 2.473× 1022

A

ρ6Z2
s−1,

σimp
0 = σion

0

Z2 ni

(Zimp − Z)2 nimp
,
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σph
0 =

m2c4

h̄kBTu−2
≈ 1.794× 1021

1

T7
s−1. (50)

In this case ζ = (ε− µ)/(kBTk), and θ = kBTk/(mc2).
Equations (49) allow us to evaluate the required trans-

port coefficients for any parameters of study indicated in
Sect. 2 and 4.4.

The integration in Ij has been optimized taking into
account oscillating behaviour of Ψ(E) and the square root
singularities at the Landau thresholds En =

√
1 + 2bn.

The integrals are presented as sums of separate integrals
over all those intervals [En, En+1] which fall in range from
E = Eµ − 40θ to E = Eµ + 40θ, with Eµ = µ/(mc2).

For high enough temperatures, when this range cov-
ers more than 25 thresholds of the Landau levels n, in-
tegration in Ij over every selected interval [En, En+1] is
carried out using Eq. 25.4.34 of Abramowitz & Stegun
(1972) with 4 mesh points between neighboring Landau
thresholds. This procedure is specifically adopted for inte-
grand functions which behave as

√
E − En in the vicinity

of E = En.
For low temperatures, a more accurate numerical inte-

gration is required near E = Eµ. For this purpose, we se-
lect those intervals [En, En+1] which span the range from
E = Eµ − 8θ to Eµ + 8θ. One or two of the selected in-
tervals which include the points E = Eµ ± 8θ are further
subdivided by these boundary points. We integrate over
any such interval using the 128-point Simpson formula.
The integration over intervals not spanning the selected
range is done as in the case of high temperatures.

This algorithm ensures fast and accurate (with error
<∼ 0.1%) evaluation of the integrals Ij .

In order to combine the scattering on low-temperature
phonons and impurities at low T we ignore the breakdown
of the low-T phonon approximation at T ∼ TU . We eval-
uate separately the integrals Ij (j=0, 1, 2) in Eqs. (50)
due to the phonon and impurity scatterings at T < Tm.
Then we calculate the total values of Ij for T < Tm as

I−1
j = (Iphj )−1 + (I imp

j )−1, and determine the transport
coefficients from Eqs. (49) and (50).

For practical purpose, we should also calculate the
electron number density ne (which specifies mass density
ρ = mune(A/Z)) and its derivative with respect to the
chemical potential that determines the electron screen-
ing wavenumber qe according to Eq. (14). The practical
expressions for ne and ∂ne/∂µ are given in Appendix C
of Paper I. In these expressions we will also include the
broadening of the Landau levels. The thermal broaden-
ing is naturally implanted in these equations just as in
Eq. (22). The inelastic scattering can be important for the
kinetic properties but is inadequate for thermodynamics.
Thus, we incorporate the collisional broadening by replac-
ing T → Tth = T + [γ/(2πkB)] in Eqs. (C1) and (C3) of
Paper I.

In practice, one often needs the transport coefficients
as a function of mass density ρ rather than the electron

chemical potential µ. The inverse dependence of µ on ρ
and T can be found by iterations from the fitting for-
mula for ne(µ) given in Paper I. For example, if the elec-
trons populate several Landau levels and µ > mc2, we
use the following rapidly converging algorithm. The zero-
order value of µ can be set equal to µ0 = c

√

(mc)2 + p2F0,
the field-free value (3) in the limit of strong degeneracy.
At any subsequent iteration step i = 1, 2, 3, . . ., we calcu-

late n
(i)
e from the fitting formula with µ = µi−1. Then we

determine µi for the next iteration as µi = c
√

(mc)2 + p2i ,

taking p0 = pF0 and pi = pi−1(ne/n
(i−1)
e )1/3.

6. Results and discussion

Using the results of Sect. 4 and 5, we have created a com-
puter code which calculates the longitudinal electric and
thermal conductivities and the thermopower of degenerate
electrons for densities 104 g cm−3 < ρ <∼ 4× 1011 g cm−3,
magnetic fields B <∼ 1014 G, and arbitrary nuclear com-
position in the outer crust of a neutron star (as described
in Sects. 2, 3.1, and 4.4). The code is based on theoretical
formalism that is strictly justified for the Coulomb scat-
tering of electrons on ions at T > Tm, for the scattering
on high-temperature phonons at TD <∼ T <∼ Tm, and for
the scattering on impurities at T < Tm. The results are
also valid (semi-quantitatively) for the low-temperature
phonon scattering at TU <∼ T ≪ TD as discussed in
Sect. 3.1.

Figures 4 – 8 show typical density dependence of the
longitudinal transport coefficients in a neutron star crust
with a strong magnetic field.

Figure 4 demonstrates quantum oscillations of the elec-
tric and thermal conductivities with increasing density
in 56Fe matter for B = 1013 G at two temperatures,
T = 107 K and 108 K. Every oscillation is associated with
population of a new Landau level, starting from the first
excited level n = 1 at ρ ≈ ρB ≈ 5×105 g cm−3 (cf. Fig. 1).
In the displayed density range (105 g cm−3 < ρ < 3× 108

g cm−3), up to about 60 Landau levels are populated. For
comparison, dashed lines show the conductivities σcl and
κcl in the absence of the magnetic field.

For the lower temperature, T = 107 we have T ≪ TB

(see Fig. 1). The adopted magnetic field B = 1013 G is
quantizing (Sect. 2), and the oscillations are quite pro-
nounced. At this temperature, matter is solid (T < Tm),
and the oscillations are produced by the scattering of elec-
trons on phonons. These oscillations are significantly am-
plified by the Debye–Waller suppression of the electron
scattering (Paper I). In the domain of strongly quantizing
magnetic field (ρ <∼ ρB, Sect. 2), the transport coefficients
differ drastically from those at B = 0. With increasing
ρ in the domain of weakly quantizing fields (ρ ≫ ρB,
T ≪ TB), the oscillations become weaker, and the con-
ductivities are seen to be close to the non-magnetic ones.
Every oscillation of the electric conductivity contains one
maximum and subsequent dip, while the oscillation of the
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Fig. 4. Electric (left vertical scale, upper lines) and thermal (right scale, lower lines) conductivities of 56Fe matter vs density
for B = 1013 G (solid lines) and B = 0 (dashes) at T = 107 K and 108 K.

thermal conductivity may show a secondary maximum as
explained, for instance, by Yakovlev (1980, 1984). The
amplitudes of quantum oscillations of the electron con-
ductivity are always stronger than those of the thermal
conductivity.

For the higher temperature T = 108 K in Fig. 4, the
magnetic field B = 1013 G is less quantizing (the ratio
TB/T remains larger than unity but it is 10 times smaller
than for T = 107 K). Accordingly, the quantum oscilla-
tions are noticeably weaker due to the thermal broadening
of the Landau levels. The broadening is more pronounced
in the thermal conductivity than in the electric conduc-
tivity. The jumps of the transport coefficients at ρ ≈ 108

g cm−3 are associated with solidification. For lower ρ (at
given T ), matter is melted, and the electron relaxation is
produced by the Coulomb scattering on ions. For higher
ρ, ions solidify, and the electrons scatter on phonons just
as at T = 107 K. At higher T ∼ TB, the oscillations would
be entirely smeared out by the thermal broadening. Note
that the transport coefficients in the ion liquid with the
magnetic field at T = 108 K are systematically larger than
those in the non-magnetic matter. This means that the
transport coefficients averaged over magnetic oscillations
are larger than the coefficients for B = 0. This differ-
ence between the oscillation-averaged and non-magnetic

coefficients is explained by the classical effect of the elec-
tron Larmor rotation on the Coulomb logarithm in the
transport cross section for the electron–ion scattering: the
non-quantizing magnetic field decreases the Coulomb log-
arithm (and amplifies the electric and thermal conductivi-
ties) by reducing the maximum effective impact parameter
(e.g., Yakovlev 1980).

Figure 5 shows quantum oscillations of the transport
coefficients in iron matter with weaker magnetic field, B =
1012 G, at lower T (106 and 107 K). Since the magnetic
field is lower, the oscillations associated with population
of the same Landau levels occur at lower ρ (cf. Fig. 1). If
T = 106 K, matter is solid in the displayed density range,
104 g cm−3 < ρ < 107 g cm−3, while for T = 107 K it
solidifies at ρ ≈ 8 × 104 g cm−3. Qualitative behavior of
the curves is the same as in Fig. 4.

Figure 6 presents quantum oscillations of the ther-
mal and electric conductivities in carbon matter for B =
1012 G at T = 106 and 107 K. The main features are the
same as in Figs. 4 and 5, although the melting tempera-
ture Tm (Γ = 172, Eq. (11)) is lower than for iron. Pop-
ulation of the Landau levels is mainly independent of ion
species (A,Z), and occurs at the same ρ as in Fig. 5. If
T = 107 K, matter is melted, in the displayed parame-
ter range. In the case of T = 106 K, matter is liquid for
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Fig. 5. Same as in Fig. 4 for B = 1012 G at T = 106 and 107 K.

Fig. 6. Same as in Fig. 5 for 12C matter.
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Fig. 7. Dimensionless longitudinal thermopower for 56Fe and 12C matter, B = 1012 G and T = 106 and 107 K. Dashes show
the B = 0 curves.

ρ <∼ 105 g cm−3 and solid at higher ρ. In this case quantum
oscillations are pronounced stronger than at T = 107 K.

Figure 7 shows quantum oscillations of the dimension-
less longitudinal thermopower Jα = αe/kB (defined by
Eq. (49)) for B = 1012 G. The upper panel corresponds
to iron matter at T = 107 K (cf. Fig. 5). Two lower panels
correspond to carbon matter for the same conditions as in
Fig. 6. The thermopower is known to be more sensitive
to the electron scattering mechanism, than the conduc-
tivities. Its quantum oscillations are seen to be stronger,
and more complicated. The oscillating thermopower dif-
fers significantly from that at B = 0, and it can change
sign (Yakovlev 1980, 1984). The jumps associated with the
solidification are pronounced weaker than in the conduc-
tivities.

The curves displayed in Figs. 4 – 7 are calculated tak-
ing into account collisional and inelastic-scattering broad-
ening of the Landau levels (Sect. 5). These broadening
mechanisms appear to be less significant than the ther-
mal broadenings for the scattering on ions in Coulomb
liquid and on phonons in the crystalline matter. Never-
theless non-thermal broadenings become more important
with decreasing temperature. In particular, the inelastic-
scattering broadening becomes significant at T ≪ TD,
when the employed approximation of high-temperature
phonons breaks (Sect. 3.1). The collisional and inelastic-

scattering broadenings also become important with de-
creasing density near the domain of incomplete ionization
(Sect. 2).

Figure 8 shows oscillations of the electric and thermal
conductivities produced by electron scattering on charged
impurities in iron matter with B = 1012 G at low tempera-
ture T = 105 K assuming, for illustration, that the scatter-
ing on phonons is inefficient. The impurity number density
is supposed to be nimp = 0.05ni, and the impurity charge
number is Zimp=28. The impurity screening wavenumber
qimp in Eq. (16) is set equal to qimp = (4πnimp/3)

1/3.
At this low temperature, the collisional broadening of the
Landau levels becomes more important. With decreasing
T , the thermal broadening would die out, and the shapes
of the oscillations would be entirely determined by the col-
lisional broadening. Note that we include the non-thermal
broadening mechanisms in an approximate manner. This
introduces an uncertainty into the transport coefficients
at low temperatures. However the case of low tempera-
tures is not very important for applications. Anyway, the
number density and charge number of impurities are not
known, and this introduces much larger uncertainty in our
knowledge of the transport properties of very cold stellar
matter.
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Fig. 8. Same as in Figs. 4 – 6 for electron scattering on charged impurities in 56Fe matter at B = 1012 G.

7. Summary

We have obtained practical formulae for evaluation of the
longitudinal electric and thermal conductivities and lon-
gitudinal thermopower in degenerate dense matter (104

g cm−3 <∼ ρ <∼ 4 × 1011 g cm−3) of outer neutron star
crusts with strong magnetic fields B = 1010 – 1014 G
(at stronger fields, the splitting of electron Landau lev-
els concerned with anomalous electron magnetic moment
should be taken into account). The results are expressed
in terms of the energy averaged electron relaxation time
τ(ε) or the function Ψ(E). We have found (Sect. 4) accu-
rate and simple analytic fits for Ψ(E), which are valid in
wide ranges of the parameters of stellar matter for three
electron scattering mechanisms: for the Coulomb scatter-
ing on ions in gaseous or liquid phases, for the scattering
on high-temperature phonons in solid matter, and for the
scattering on charged impurities in solids at low temper-
atures. We have proposed (Sect. 5) an efficient energy av-
eraging procedure which allows us to evaluate rapidly any
longitudinal electron transport coefficient. The numerical
examples are given in Sect. 6.

Note that our formalism can easily be extended to
higher densities, ρ > 4 × 1011 g cm−3, in the inner crust
of a neutron star, where free neutrons appear in matter in
addition to electrons and atomic nuclei. In this case nu-
clei can occupy substantial part of volume, and one should

take into account finite sizes of nuclei by multiplying the
Fourier image of the scattering potential, |U(q)|2 (Sect.
3.1), by a squared nuclear formfactor (e.g., Itoh et al.
1984). However, this effect can be shown to be not very
strong. For instance, in the absence of the magnetic field,
it reduces the effective electron collision frequencies typi-
cally by about 20 %, in the inner crusts of neutron stars.
Accordingly, the present theoretical framework is expected
to be sufficiently accurate in the inner crusts as well.

The results of this work are required for studying var-
ious processes in neutron star crusts (e.g., Yakovlev &
Kaminker 1994). First of all, we mention thermal evolution
(cooling) of neutron stars. The outer crust produces ther-
mal isolation of the stellar interior. The electron thermal
conductivity is most important for calculating the rela-
tionship between the surface and interior temperatures of
the star and for evaluating the distribution of the temper-
ature over the neutron star surface. The latter distribution
can be strongly anisotropic owing to anisotropic character
of the thermal conductivity. The anisotropy of the surface
temperature leads to modulation of the surface thermal
radiation due to stellar rotation. The modulation has been
observed with ROSAT in soft X-ray radiation of several
neutron stars, in particular, PSR 0656+14 (Finley et al.
1992, Anderson et al. 1993) and Geminga (Halpern & Holt
1992, Halpern & Ruderman 1993). Correct interpretation
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of observations requires the knowledge of the distribution
of the effective temperature over the neutron star surface
combined with the solution of the radiative transfer prob-
lem in the neutron star atmosphere (e.g., Pavlov et al.
1995). Much work has already been done by Hernquist
(1984), Van Riper (1988, 1991) and Schaaf (1988, 1990) in
calculating the temperature profiles in neutron star crusts
with quantizing magnetic fields, and in analysing the cool-
ing of magnetized neutron stars. Many important and re-
liable results concerning the temperature profiles have al-
ready been obtained (particularly, by Van Riper 1988) in
the approximation of uniform plane-parallel layer with the
magnetic field normal to the surface. However the overall
problem of the surface temperature distribution is com-
plicated and requires further study (as discussed, e.g., by
Yakovlev & Kaminker 1994). The solution of this prob-
lem can be based, to some extent, on the above results.
Secondly, the electric conductivity and thermopower are
important for understanding the evolution of neutron star
magnetic fields (e.g., Urpin et al. 1986, 1994). We plan to
construct the models of outer crusts of neutron stars with
strong magnetic fields in our subsequent works.

The Fortran computer code for evaluating the trans-
port properties based on the above results is distributed
freely by electronic mail upon request.
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