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ABSTRACT

The parallax effect in ground-based microlensing (ML) observations consists

of a distortion to the standard ML light curve arising from the Earth’s orbital

motion. This can be used to partially remove the degeneracy among the system

parameters in the event timescale, t0. In most cases, the resolution in current

ML surveys is not accurate enough to observe this effect, but parallax could

conceivably be detected with frequent followup observations of ML events in

progress, providing the photometric errors are small enough. We calculate the

expected fraction of ML events where the shape distortions will be observable

by such followup observations, adopting Galactic models for the lens and

source distributions which are consistent with observed microlensing timescale

distributions. We study the dependence of the rates for parallax-shifted events

on the frequency of followup observations and on the precision of the photometry.

For example, we find that for hourly observations with typical photometric

errors of 0.01 mag, 6% of events where the lens is in the bulge, and 31% of

events where the lens is in the disk, (or ≈ 10% of events overall) will give rise to

a measurable parallax shift at the 95% confidence level. These fractions may be

increased by improved photometric accuracy and increased sampling frequency.

While long-duration events are favored, the surveys would be effective in picking

out such distortions in events with timescales as low as t0 ≈ 20 days. We study

the dependence of these fractions on the assumed disk mass function, and find
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that a higher parallax incidence is favored by mass functions with higher mean

masses. Parallax measurements yield the reduced transverse speed, ṽ, which

gives both the relative transverse speed and lens mass as a function of distance.

We give examples of the accuracies with which ṽ may be measured in typical

parallax events. Fitting ML light curves which may be shape-distorted (e.g.,

by parallax, blending, etc.) with only the 3 standard ML parameters can result

in inferred values for these quantities which are significantly in error. Using

our model, we study the effects of such systematic errors and find that, due

primarily to blending, the inferred timescales from such fits, for events with disk

lenses, tend to shift the event duration distribution by ≈ 10% towards shorter

t0. Events where the lens resides in the bulge are essentially unaffected. In both

cases, the impact-parameter distribution is depressed slightly at both the low

and high ends.

Subject headings: Galaxy: general – Galaxy: structure — gravitational lensing

1. INTRODUCTION

The recent observations by the MACHO (Alcock et al. 1995a, Alcock et al. 1996),

EROS (Aubourg et al. 1993), OGLE (Udalski et al. 1994a), and DUO (Alard et al. 1995)

collaborations of gravitational microlensing (ML) of stars in the LMC and Galactic bulge

have generated tremendous excitement in astrophysics. These surveys provide a new probe

of Galactic structure and low-mass stellar populations. ML observations of the LMC allow

measurements of the dark-matter content of the Galactic halo (Bennett et al. 1996), placing

important constraints on dark-matter theories. Also intriguing have been observations of

ML events towards the Galactic center, which probe the inner disk and bulge of our Galaxy.

The roughly 100 events observed to date imply an optical depth towards the bulge of

(3.3 ± 1.2) ×10−6, three times that predicted by theoretical estimates (Griest et al. 1991),

and reveal the need for a better understanding of Galactic structure.

One explanation for the observed excess of bulge events would be the presence of a

hitherto undiscovered population of compact, sub-stellar objects, implying the existence of

more mass in the disk than previously believed (Alcock et al. 1994; Gould, Miralda-Escude,

& Bahcall 1994). This would require an upturn in the stellar mass function (MF) below the

hydrogen-burning limit. Another possibility is that the lenses comprise an ordinary stellar

population, and the enhancement of ML events is due to non-axisymmetric structure, such

as a bar, in the Galactic bulge. The optical depth calculated from a self-consistent bar
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model, matching both kinematic observations of the bulge and the COBE image of the

Galaxy, is consistent with the MACHO and OGLE results (Kiraga & Paczyński 1994; Zhao,

Spergel, & Rich 1995; Zhou, Rich, & Spergel 1995). Furthermore, the best-fit models to the

observed ML duration distribution have a median lens mass of about 0.2 M⊙, above the

hydrogen-burning limit, and consistent with ordinary stellar populations.

Determining the nature and location of the lenses will enable us to learn whether the

enhancement of bulge events is due to lenses in the bar or disk, and probe a region of the

stellar MF about which little is known. However, while numerous cases of ML have been

observed, essential information such as the mass, distance, and velocity distributions of the

lensing population can only be disentangled in a statistical manner, due to the degeneracy

of microlensing light curves with respect to these parameters. For an ideal ML event, where

the source and lens are assumed to be point-like, the lens is assumed to be dark, and the

velocities of the observer, source, and lens are constant, the amplification is given by

A[u(t)] =
u2 + 2

u(u2 + 4)1/2
; u(t) =

[

(

t− tmax

t0

)2

+ u2

min

]1/2

, (1)

where u is the impact parameter from the observer-source line to the lens in units of the

Einstein radius, t0 = Re/v is the event timescale, v is the transverse speed of the lens

relative to the source-star line of sight, and tmax is the time at which peak amplification,

Amax = A(umin), occurs. The Einstein radius, Re, is determined by the geometry of the

event and the lens mass, and is given by

Re =

[

4GMlDol(Dos −Dol)

c2Dos

]1/2

, (2)

where Ml is the lens mass and Dol and Dos denote the observer-lens and observer-source

distances, respectively. We see from Eq. (1) that the ML light curve can be fit by the three

parameters t0, tmax, and umin. The latter two, however, only tell when the lens passed

nearest to the line of sight and how close it came, revealing little useful information about

the event. All the parameters of interest, namely Ml, v, Dol, and Dos, are folded into the

single parameter t0. (In practice, Dos may be obtained to reasonable accuracy.)

Several techniques for breaking the degeneracy have been proposed, many of which

involve fitting for distortions to the generic ML light curve which may be detected in some

fraction of observed events (Nemiroff & Wickramasinghe 1994; Witt & Mao 1994; Maoz

& Gould 1994; Loeb & Sasselov 1995; Han & Gould 1995; Gaudi & Gould 1996). These

distortions arise from violations of the standard ML assumptions. For example, if the lenses

consist partly of ordinary, low-mass dwarfs in the Galactic disk and bulge, the contribution

of the lens light would distort the observed light curve differently in different wavebands,



– 4 –

violating the assumption of achromaticity, and distorting the shape, [c.f. Eq. (1)] of the

light curve (Kamionkowski 1995; Buchalter, Kamionkowski, & Rich 1995, hereafter BKR).

Ground-based observations of this color-shift effect in two or more wavebands can remove

entirely the degeneracy in t0. If the lenses are not completely dark, then color shifting

should, in principle, affect every event and the observed incidence of this effect is simply

a function of resolution of the data (namely sampling frequency and level of photometric

error). The MACHO collaboration has already observed another type of distortion, where

the time symmetry of the light curve is broken by the Earth’s orbital motion (Alcock et

al. 1995b). This parallax effect allows one to compare the projected Einstein ring with

the size of the Earth’s orbit and thereby obtain an additional constraint relating Ml, v,

and Dol, effectively removing one degree of degeneracy. Strictly speaking, this effect is

also present in every event, but is not expected to be frequently observed by any of the

existing ML surveys; the light curves are sampled too infrequently and the photometric

errors are too large. The single confirmed parallax event detected to date was fortuitous

in that it was both long enough (t0 ≈ 110 days) for the light curve to be heavily sampled,

and well-situated during the MACHO observing season so that the asymmetry could be

fit along the entire light curve. In addition, the effect is more dramatic for longer events,

during which the Earth can move through an appreciable fraction of its orbit. It is only

for these rarer long events that a parallax shift may be observed by the low-resolution ML

surveys. However, with the early-warning alert systems developed by both the MACHO

and OGLE groups (Stubbs et al. 1994; Udalski et al. 1994b), it is conceivable that a

program of followup observations with frequent and precise measurements could measure

the light curves with sufficient accuracy to detect the parallax effect in a larger fraction of

events. The PLANET (Albrow et al. 1995) and GMAN (Pratt et al. 1996) collaborations

are currently performing such observations, with the primary purpose of detecting planets

around lenses, and Tytler et al. (1996) are proposing another such search. Planetary masses

would give rise to smaller event timescales and thus produce narrow spikes on the lensing

light curve which likely go undetected in current surveys. These spikes could be resolved

with observations by dedicated telescopes performing rapid sampling of events in progress

with high photometric precision. Such ground-based surveys are well-suited to pick out the

parallax effect for shorter-term events, as well as distortions due to unlensed light from the

lens.

In this paper, we determine the fraction of ML events toward the Galactic bulge

which should show a measurable parallax shift in such followup programs. We calculate

the fractions which will arise if the lenses are all in the bulge and if the lenses are all in

the disk, using realistic models for the lens distributions which are consistent with the

currently observed ML timescale distribution. A Monte Carlo technique is used to simulate
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events and generate parallax-distorted light curves for each. It is then determined for each

event whether the distorted light curve can be distinguished at the 95% confidence level

from a standard ML light curve. The calculation is performed for several values of the

sampling frequency and for several values of photometric accuracies that may be attainable.

Our results indicate that, depending on the survey sensitivity, the expected fraction of

parallax-shifted events (FPSE) ranges from 0.06 to 0.31 for bulge self-lensing events, 0.31 to

0.77 for disk-lensing-bulge events, and 0.49 to 0.83 for (rare) disk self-lensing events, with

current-generation followup surveys favoring the lower values. Since the parallax effect is

particularly important for the case of disk lenses, we also examine the dependence of this

effect on the adopted mass function (MF) for the disk, and find higher incidences from MFs

with higher mean masses. We further calculate the dependence of FPSE on event timescale,

finding that the intensive followup programs should measure a substantial contribution to

FPSE from events with t0 as low as 20 days, and we also examine what may be learned from

a typical PSE. We emphasize that, like color-shift analysis, parallax analysis can be directly

applied to all events, so that information about the mass, velocity and spatial distributions

of the lenses becomes available on an event by event—rather than on a statistical—basis.

Although parallax and blending effects may be present to some degree in a large fraction

of events, they are expected to be small in most cases, so that a standard three-parameter fit

to a slightly distorted light curve may be deemed adequate. However, fitting the standard

ML amplification function to a light curve distorted by these effects can result in systematic

errors in the inferred fit parameters, most notably t0 and umin. These inaccuracies may lead

to a systematic miscalculation of the duration and amplification distributions, and of the

overall optical depth. Thus, we perform another simulation to generate shape-distorted

light curves including both parallax and color-shift effects (i.e., blending due to the lens).

A standard three-parameter fit to these light curves is then applied, and the inferred

parameters are used to compare the resulting amplification and event duration distributions

with their actual values. We find for the latter that the errors incurred by three-parameter

fits are negligible for bulge lenses, but may be quite large (≥ 10%) if the lenses are in the

disk, particularly if the disk MF declines at the low-mass end. We also find that errors

in the inferred minimum impact parameter lead to a non-uniform distribution in peak

amplification.

The plan of the paper is as follows: In Section 2, we review the characteristics of

parallax-distorted events. In Section 3, we summarize the models and techniques used in

the calculation and present the results of our calculations of expected fraction of PSEs. In

Section 4, we examine the impact of parameterizing shape-distorted light curves with the

standard ML fit on the inferred ML parameters, and in Section 5 we make some concluding

remarks.
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2. PARALLAX-SHIFTED MICROLENSING EVENTS

To parameterize the parallax effect, consider first a standard ML event as viewed at

the position of the Sun. In that case, we regain the constant-velocity condition, so that the

scaled distance from the lens to the line of sight, u(t), is properly described by Eq. (1),

where umin now represents the minimum distance from the lens to the Sun-source line of

sight. We can modify the expression for u(t) to incorporate the Earth’s orbital motion by

projecting to the position of the lens the motion of the observer (Earth) along the ecliptic.

Figure 1 depicts a simplified version of the geometry where we have assumed, for the sake

of illustration, that the ecliptic is perpendicular to the Sun-source line. In this case, we see

from Figure 1(a) that the projection of the Earth’s orbit traces out a circle with a radius

(scaled in units of Re) given by

α =
a

Re

=
R⊕

Re

(1− x), (3)

where R⊕ = 1 A.U. and x = Dol/Dos. Figure 1(b) shows a cross section of the parallax

cone in Figure 1(a), taken at the position of the lens. The projected motion of the Earth at

the lens position is given by r⊕(t) = {α cos[Ω(t− tc)], α sin[Ω(t− tc)]}. In actuality, we must

account for the true orientation of the ecliptic with respect to the Galactic plane. The true

projection of the Earth’s orbit is an ellipse whose eccentricity is determined by the ecliptic

latitude, β, of the source, so that

r⊕(t) = {α sin β cos [Ω(t− tc)], α cos β sin [Ω(t− tc)]} (4)

is the correct expression. For stars in Baade’s Window (ℓ = −1◦, b = 4◦), β ≈ 4◦, so

cos β ≈ 1. The parameter Ω is given by

Ω(t− tc) = Ω0(t− tc) + 2ǫ sin[Ω0(t− tp)], (5)

where tc is the time when the Earth is closest to the Sun-source line, Ω0 = 2π yr−1, tp is

the time of perihelion and ǫ = 0.017 is the eccentricity of Earth’s orbit. We include the

dependence on ǫ in our expression for Ω since it may contribute appreciably near t = tc,

though we omit it in the expression for α, where it is always negligible. The position of the

lens is given by Figure 1(b) as

rlens(t) = {−umin sin φ+ v(t− tmax) cosφ, umin cosφ+ v(t− tmax) sinφ}, (6)

where φ denotes the angle between v and ecliptic north. Using ω = t−1

0 , we thus have

u2(t) = (xlens − x⊕)
2 + (ylens − y⊕)

2
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Fig. 1.— (a) Simplified geometry of the parallax cone, assuming the ecliptic is perpendicular

to the Sun-source line. The Earth’s orbit, projected to the position of the lens, traces out

a circle of radius a. (b) Cross section of the parallax cone at the distance of the lens. The

lens velocity is denoted by v. Note that umin is no longer the minimum distance from the

lens to the observer-source line of sight, but rather to the Sun-source line of sight.
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= u2

min + ω2(t− tmax)
2

+α2 sin2 [Ω(t− tc)] + α2 sin2 β cos2 [Ω(t− tc)] (7)

−2α sin [Ω(t− tc)][ω(t− tmax) sinφ+ umin cos φ]

+2α sin β cos [Ω(t− tc)][umin sin φ− ω(t− tmax) cosφ]

so that a parallax-shifted light curve is parameterized by the 5 quantities tmax, t0, umin, α,

and φ. In our simulations, we include an additional parameter to account for the presence

of unlensed light (either due to the lens or a chance blended star) in the light curve.

Figure 2 illustrates an example of a ML light curve distorted by the parallax effect.

The solid curve is a simulated parallax-shifted event (PSE), arising from a bulge self-lensing

configuration with t0 = 100 days and α = 0.13. The dashed curve is a standard ML curve

with the same peak height (Amax), peak time (tmax), and FWHM, and has a timescale

of t0 = 97 days. It is important to note that since the two curves have different shapes,

as indicated by the residuals in the lower panel, a fit to a PSE which involves only the

parameters tmax, t0, and umin can generate inferred values of these quantities which are

significantly in error. This is further evidenced by the MACHO collaboration analysis

of their PSE, in which they find the best-fit standard curve to have t0 = 141 days and

umin = 0.101, and the best-fit parallax curve to have t0 = 111 days and umin = 0.159 (Alcock

et al. 1995b). Failing to account for distortions in observed ML light curves can lead to

errors in the inferred timescales and thus in the inferred optical depth as well.

3. EXPECTED FRACTIONS OF PARALLAX-SHIFTED EVENTS

To calculate the expected fraction of ML events towards Baade’s window which will

give rise to a measurable parallax shift, we employ the method used by BKR in a similar

calculation of expected rates for color-shifted events. The Galactic model consists of a

rapidly-rotating bar extending out to 3 kpc (Zhao 1996) and a double exponential disk,

extending from 3 kpc out to the solar circle, with a rotational velocity of 220 km s−1 coupled

with position-dependent velocity dispersions of order 30 km s−1. Both components are

populated by stars following a logarithmic MF in the range 0.1M⊙ ≤ Ml ≤ 1.2M⊙. These

distributions produce an event duration distribution which is consistent with observed ML

timescales (see BKR, Figure 3), though other evidence points towards a disk MF which

exhibits some flattening below 1 M⊙ (Scalo 1986; Larson 1986; Gould, Bahcall, & Flynn

1995).

Using this model, we wish to predict the incidence of PSEs that would be observed by

the followup programs described above. We parameterize various observing strategies by
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Fig. 2.— The upper panel shows a parallax-shifted light curve (solid line) for an event arising

from a 0.3-M⊙ object at 6 kpc (i.e., the near end of the bulge) lensing a source at 8 kpc.

This curves has the values α = 0.13 and t0 = 100 days. A standard ML light curve (dashed

line), with identical Amax, tmax, and FWHM, has a value of tmax = 97 days. The residuals in

the lower panel illustrate the time asymmetry of the parallax effect in this event.
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the time interval between successive measurements and by the level of photometric error.

Since a constant error in magnitude translates to a constant percent error in amplification,

we assume that any given value of A has a gaussian distribution centered at the true

value with variance σi ≈ fA(ti) which is some fraction f of the true amplification, as

determined by the assumed magnitude error. To determine whether a shape distortion in a

given event will be observable, we first simulate the expected observed amplification with

light-curve measurements for a given sampling frequency and fractional error, and then ask

whether the 6-parameter fit can recover a value of α that is different from zero at the 95%

(2σ) confidence level. If α differs from zero with this statistical significance, then a shape

distortion from the parallax effect has been observed. All events were weighted by the

frequency corresponding to their timescale, t0, (see BKR, Section 4) and summed to give

an overall normalization. The fraction of parallax-shifted events, FPSE, is defined as the

ratio of the weighted sum of all PSEs to the overall normalization. In our calculations, we

adopt the OGLE detection efficiency, given by ǫ(t0) = 0.3 exp[−(t0/11 days)−0.7] (Udalski et

al. 1994a). The MACHO efficiencies are typically higher for a given event duration (Alcock

et al. 1996), but do not significantly alter our results for parallax shifting.

In determining FPSE, we consider separately the case of bulge self-lensing (BB),

disk objects lensing bulge sources (DB), and disk self-lensing (DD). Although the disk

lensing events contribute less to the overall optical depth (particularly in the case of disk

self-lensing), the lower transverse speed of the disk lenses will give rise to longer-duration

events whose light curves will be heavily sampled and thus more likely to yield a parallax

shift. Our light-curve analysis for each event included data from the time, ts, at which the

amplification rose above threshold (i.e., A(ts) = AT = 1.34) until 3t0 after the amplification

dropped below threshold. Our results indicate that additional data out to 3t0 gives rise

to a considerable increase in FPSE compared to data taken only while A ≥ AT , since the

effects of parallax distortion may be significant away from the peak; extending the data out

to 7t0, however, does not appreciably increase FPSE beyond the 3t0 value. Our simulations

included only those events in which the event timescale t0 satisfied t0 ≤ 1 year. For each

event, a umin was chosen randomly in the range 0 < umin < 1. If, however, the experimental

efficiency for detecting low-amplification events is small, so that the effective range of umin

is, say from 0 to 0.7 (Alcock et al. 1996; Gaudi & Gould 1996), then the fraction of

parallax-shifted events would increase since the effect becomes more pronounced at higher

amplifications.

Figure 3 displays the results of our calculation, showing FPSE as a function of sampling

interval, for the various lens/source configurations. The solid, short-dashed, and long-dashed

curves represent photometric errors of 0.05, 0.01, and 0.001 mag, respectively. The results

indicate that current surveys, which sample roughly daily with typical errors of order 0.05
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mag, are not expected to yield many PSEs. For these observational parameters, about 1%

of all events should exhibit a detectable parallax shift, consistent with the one PSE observed

by the MACHO collaboration out of a total of about 100 bulge events to date. However, the

Figure shows significant increases in FPSE for decreased sampling intervals, and lower levels

of photometric error. For the most likely case of bulge self-lensing (BB), hourly sampling

with 0.01-mag errors, typical of the PLANET experiment, gives FPSE = 0.06, increasing to

0.10 for 15-minute sampling. In the case of DB lensing, these numbers increase to 0.31 and

0. 42, respectively. Together, these imply an overall expected parallax-shifting rate of 10%

for hourly sampling and 15% for 15-minute sampling (assuming τDB ≈ 1

5
τBB and neglecting

τDD). Depending on their capabilities, current planetary surveys are thus expected to

detect parallax effects in roughly 10% to 15% of all events. It is, however, conceivable

that future experiments with high-precision relative photometry from additional dedicated

telescopes can produce errors in the millimagnitude range (Gilliland et al. 1993; Ciardullo

& Bond 1996). Differencing techniques have already been used to achieve extraordinary

precision in pixel lensing experiments (Tomaney & Crotts 1996). To illustrate what may

be learned by such experiments, we also consider the results from millimagnitude errors.

Together with a rapid sampling rate, this improvement could bring the expected FPSE as

high as 0.31 for BB events and 0.77 for DB events, for a maximum overall rate of 39%. In

general, events arising from disk self-lensing (DD) are expected to be rare, since τDD is only

about 5 × 10−3τBB . Owing to their low relative transverse speeds however, any DD events

observed will have a high likelihood of exhibiting the parallax effect. Indeed, for 0.01-mag

errors, FPSE = 0.49 for hourly sampling, increasing to 0.59 for 15-minute sampling. It

should be noted that if the unlensed-light parameter is neglected in the fitting procedure,

the above values for FPSE in the different scenarios increase substantially, doubling in some

cases. The unlensed-light parameter in each waveband introduces another degree of freedom

in the fit, which drives down FPSE. Since we have no a priori knowledge of the extent to

which a given observed ML light curve is distorted by these different effects, it is important

to include the possible contribution of blended light in the fit.

In Figure 4 we plot FPSE as a function of t0 for the three lens/source configurations,

assuming 0.5-hourly sampling with 0.005-mag errors (thin lines), and daily sampling

with 0.05-mag errors (thick lines). It is clear from the Figure that the intensive followup

programs will provide a vast improvement over the existing large surveys in detecting

parallax distortions not only for the longest duration events, but for all events with

timsescales t0 ≥ 10 days. Moreover, the Figure shows that the parallax effect is more

pronounced for events in which the lens resides in the Galactic disk (i.e., DB and DD).

This is due to two factors: the lower transverse speeds arising from our co-rotation with

disk lenses give rise to longer-duration events which can be heavily sampled along a larger
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Fig. 3.— Expected fraction of PSEs as a function of sampling interval. The solid, short-

dashed, and long-dashed curves correspond to photometric errors of 0.05, 0.01, and 0.001

mag, respectively. The various configurations are denoted by BB for bulge self-lensing, DB

for disk-lensing-bulge events, and DD for disk self-lensing.
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fraction of the Earth’s orbit (affecting DB and DD), and the typical separations between

disk stars (lenses) and bulge stars (sources) give rise to a more favorable parallax geometry

(affecting DB only) (see Figure 1). For 0.5-hourly sampling with 0.005-mag errors, FPSE

for BB events becomes appreciable for timescales of t0 ≥ 20 days, reaching 0.5 near t0 = 35

days, while for DB events FPSE becomes appreciable for t0 ≥ 15 days, reaching 0.5 at t0 = 26

days. Note that while the overall FPSE is greater for DD events, as in Figure 3, the fraction

as a function of t0 is lower, especially for smaller t0, because the duration distribution for

DD events is shifted towards higher t0 owing to their lower relative transverse speeds.

In the above calculations we assumed a logarithmic MF down to 0.1 M⊙ for disk

lenses, which is consistent with current ML observations. However, other evidence

points to a disk MF which turns over at masses near 0.4 M⊙ (Scalo 1986; Larson 1986;

Gould, Bahcall, & Flynn 1995). Thus, given the sensitivity of FPSE to disk lenses,

we also consider the HST MF, logφ = 1.35 − 1.34 log(M/M⊙) − 1.85 [log(M/M⊙)]
2

in the range from 0.1 M⊙ ≤ Ml ≤ 5.0 M⊙, as well as a composite power-law

MF with dN/dM = 0 for 0.1 M⊙ ≤ Ml ≤ 0.4 M⊙, dN/dM ∝ M−1.25 for

0.4 M⊙ ≤ Ml ≤ 1.0 M⊙, dN/dM ∝ M−2.3 for 1.0 M⊙ ≤ Ml ≤ 3.0 M⊙ and

dN/dM ∝ M−3.2 for 3.0 M⊙ ≤ Ml ≤ 5.0 M⊙ (Mihalas & Binney 1982). The HST MF has

a higher mean mass than the logarithmic MF, and the composite power-law MF favors still

higher masses. The results for these MFs are compared with our previous results in Figure

5. Parallax effects are seen to be quite sensitive to the disk MF, becoming more dramatic

with higher mean masses, and like color shifts, may be used as a means to discriminate

between different forms for the stellar MF.

In the preceeding discussion, we have not focused on the results from a particular

survey, but rather have considered a broad spectrum of observational capabilities, some of

which are outside the range of current surveys. For example, 15-minute sampling with 1%

V -band photometry of a V = 21 star in Baade’s Window during full moon with 1” seeing

would require a 3-meter telescope for the followup surveys. Photometric errors will generally

depend on the source brightness, and the details of any given experiment are ultimately

governed by systematics, such as seeing variations, varying aberrations, and telescope

alignment errors, that will require more detailed modelling. Our results for the fraction of

observably distorted events arise from the parameterization of an idealized survey, and are

intended as a template for comparison with various observational assumptions. For example,

if the above systematic errors give rise to night-to-night variations in the photometry which

are of order 0.01 mag (larger than the assumed statistical errors), a lower limit to FPSE

could be attained by assuming a degraded photometric error of 0.01 mag (the magnitude of

the nightly errors) and a degraded sampling frequency of one per day. In this case Figure 3

predicts fractions of 2% and 11% for BB and DB lensing, respectively, for an overall rate
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Fig. 4.— FPSE as a function of t0 for the BB, DD, and DD configurations. The thin lines are

the results from simulated data with 0.5-hour sampling and 0.005-mag errors, illustrating

what may be achieved by intensive followup programs. The thick lines show the results from

data taken daily with 0.05-mag errors, typical of the MACHO and OGLE experiments.
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Fig. 5.— Variations in FPSE arising from different disk MFs. The solid, short-dashed,

and long-dashed curves correspond to the logarithmic, HST, and composite power-law MFs,

respectively. The left panels depict the expected fraction of PSEs as a function of sampling

interval, assuming 0.01-mag errors. The panels on the right show FPSE as a function of t0,

where the thin lines correspond to 0.5-hour sampling with 0.005-mag errors, and the thick

lines correspond to daily sampling with 0.05-mag errors. Note that while the overall fractions

increase with higher mean lens masses, the fraction as a function of t0 are lower because the

higher masses give rise to longer event timescales.
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of about 4%. It should be noted, however, that dedicated ground-based instrumentation

taking continuous and redundant measurements from multiple sites, together with possible

space-based observations, should help control such effects. Moreover, since it is the

source amplification, and not absolute brightness, which is essential, calibration against

non-variable sources in the survey may also help reduce the effects of long-term drifts. As

mentioned above, techniques involving relative photometry are capable of yielding high

precision measurements, particularly if coupled with space-based observations to provide a

stable reference frame.

Depending on the particular capabilities of the microlensing followup surveys, 10% or

more of all events observed toward the bulge are expected to have a detectable parallax

shift at the 95% confidence level. Such events can yield valuable information about the

properties of the lens (Alcock et al. 1995b). In particular, since

α =
R⊕

Re
(1− x) =

ωR⊕

v
(1− x), (8)

measurements of α and ω allow the determination of the reduced transverse speed

ṽ = v/(1 − x) = ωR⊕/α, giving v as a function of x (or Dol, if Dos is known). In our

simulation, analysis of the covariance matrix of the 6-parameter fit (see BKR) yields the

standard errors in t0 = ω−1 and α for a given event, thus determining the error in ṽ. As a

simple illustration of the accuracies which may be attained, we simulated the light curves

of events with typical BB and DB configurations, i.e., a 0.3-M⊙ lens at 6 kpc (the near

end of the bulge) and 4 kpc, respectively, lensing a source at 8 kpc, with umin = 0.2,

φ = 1 rad, and tmax at June 1. The resulting 1σ limits on ṽ, for various timescales and

observational parameters, are shown in Table 1. While the best results are obtained for

the longest-duration events, useful constraints can be obtained for shorter duration events

(t0 ≈ 1 month) as well.

Gaudi & Gould (1996) have performed a similar calculation for PSEs observed

simultaneously from the Earth and by a satellite in heliocentric orbit and find that for

photometric precisions of 1% to 2%, such observations could measure ṽ to an accuracy

of ≤ 10%, at the 1σ level, for over 70% of disk lenses and over 60% of bulge lenses.

Adopting their umin distribution, we find that for hourly sampling and 1% photometric

precision (typical of the PLANET data), ground-based observations of the parallax effect

will measure ṽ to this accuracy in only 2% of all BB events and 14% of all DB events,

indicating that satellite measurements would provide considerable improvement.

Parallax-shift analysis provides a constraint between v and x which removes one degree

of degeneracy from t0; knowledge of ṽ also allows one to express Ml in terms of x. In
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particular,

t0 =
Re

v
=

√

4GMlx(1− x)Dos/c2

ṽ(1− x)
=⇒ Ml(x) =

ṽ2t0
2c2

16GDos

1− x

x
. (9)

Moreover, knowledge of φ provides additional information about the direction of the relative

transverse velocity which can be useful in distinguishing between lenses belonging to bulge

and disk populations. Such constraints can be used in conjunction with those obtained

from other independent analyses, such as deviations from the point-source approximation,

or analysis of blending effects.

4. CORRECTIONS TO MICROLENSING DISTRIBUTIONS

We have already seen that if a shape distorted event is fit with the standard 3-parameter

curve, the inferred values of umin, tmax, and t0 can be appreciably in error (Alcock et

al. 1995b; BKR). While the first two are essentially random variables and do not affect

our understanding of the lens distributions, the event timescale, t0, is critical, and any

discrepancy in this value will propagate into the assumed values for the lens distributions

and the overall optical depth. In principle, every ML event is parallax shifted and (if the

lenses are not assumed to be totally dark) color shifted; even if the lens is dark, the observed

light curve may be distorted by blended light from an optical companion (Di Stefano & Esin

1995). While such effects are important in that they allow us to derive more information

from an event than is otherwise possible, and both effects may, in some fraction of events,

be highly pronounced, in practice we find that their magnitude is usually small. In the case

of blending, this is simply because one is usually searching for the small contribution of a

faint star (possibly the lens) to the amplified light of a brighter star. For the parallax effect,

the typical mass range of the lenses, together with the microlensing geometry toward the

bulge, conspire to make α typically small. The degree to which these effects are observed

is primarily a function of the resolution of the data, and many of the current surveys are

not capable of detecting them. Thus, we wish to examine whether any systematic errors

are incurred by routinely applying standard 3-parameter fits to ML light curves which are

allowed to suffer both parallax and blending distortions. To do this, we once again employ

a Monte Carlo simulation of lensing events, using the Galactic model described in BKR.

The shape distortion in a given event (parameterized by α and the luminosity offset ratio

r) is determined by the masses and distances of the source and lens; the parallax effect

is modelled as described above, and for simplicity, blending is assumed due to unlensed

light from the lens, following the model of BKR. This assumption reflects an upper limit to

the impact of blending, since the lens is located nearer to us than an optical companion is
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likely to be, thus appearing brighter, and it assumes blending occurs in every event. Each

such light curve is generated and then fit for only the three standard parameters to yield

tinf
0
, tinf

max
, and uinf

min
, where the superscripts distinguish these inferred values from the actual

values (no superscript) used to generate the events. Due to the presence of α and r, the

inferred values will generally differ from the actual ones so that the inferred distributions

of impact parameters (i.e., peak amplifications) and timescales, will be different than their

actual values. The model we employ is intended simply to give an estimate of the expected

magnitude of such deviations.

Before turning to the calculations, it is instructive to make some brief qualitative

observations about the expected differences between the inferred and actual quantities.

The parallax effect is essentially a low-amplitude, sinusoidal-type variation superimposed

on u(t). On average, it should not push either the peak amplification (given by umin) or the

event timescale, t0, in any particular direction, since the correction to u(t) in Eq. (8) can be

positive or negative. Blending distortions (arising from the lens or otherwise), however, do

operate preferentially. Suppose the light from an unresolved star (possibly the lens) with

apparent brightness ℓ∗ is blended with that of a source with a baseline brightness ℓs. If the

amplification of the background star is A, then the observed brightness is ℓobs = ℓ∗ + Aℓs;

the baseline brightnesses are obtained by setting A = 1. Due to the contribution of the

unlensed light, the observed amplification, which we denote by A, is different from the

microlensing amplification A. The observed amplification in a given waveband will be

A(t) =
ℓ∗ + A(t)ℓs
ℓ∗ + ℓs

= (1− r) + A(t)r, (10)

where r = ℓs/(ℓs + ℓ∗) is the luminosity offset ratio. The presence of r distorts the shape

of the observed light curve, even if the two stars have the same color. In the case of

no blending, r = 1, and we recover the standard ML scenario. If there is any blended

light, however, r decreases. It can easily be shown that the observed amplification A is a

monotonically decreasing function of r, so that all blended events exhibit an amplification

which is everywhere less than that which would have been observed in the absence of

blending. It follows that uinf

min > umin for all blended events. Since an event is only registered

when the observed amplification exceeds threshold, the reduction in amplification translates

to a shorter event duration, and thus a smaller timescale, t0. In particular, an event will

only be registered while A > 1.34 =⇒ A ≥ Athresh = [1.34 − (1 − r)]/r, or only when the

dimensionless lens–line-of-sight distance is u ≤ uthresh = u(Athresh), where uthresh < 1. The

observed event duration, te = 2t0[u
2
thresh − u2

min]
1/2, is thus shorter than the no-blending

case (where uthresh = 1) leading to a decrease in the inferred t0. Thus, from blending

effects, we expect to see the inferred duration distribution shifted toward shorter timescales.

Moreover, since the blended stars are presumably low-mass dwarfs which emit most of their
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light at redder wavelengths, r will decrease with increasing wavelength so the reduction in

amplification and in event timescale should, in principle, be more pronounced for longer

wavelengths.

In Figure 6, we plot the smoothed, non-normalized duration distribution, dΓ/dt0,

for BB and DB events, where we have again adopted the OGLE efficiency, ǫ(t0). The

solid curves are the actual values and the dashed curves are the results from the inferred

timescales from simulated distorted events with main-sequence (MS) source stars observed

in V , allowed to suffer both parallax and blending effects. All curves assume a logarithmic

disk MF. For BB events, there is no appreciable difference between the inferred and actual

distributions. This is essentially due to the shape of the bulge MF, which favors very

low-mass lenses, and the V = 21 magnitude cutoff for resolved sources. As a result, only

the brightest MS bulge stars (near our upper mass cutoff) are lensed in our model, and the

distortions from the distant, low-mass blended stars are too small to systematically alter the

timescales. The same result would obviously hold true in the case of giant sources. For DB

events, however, the lenses are closer to the solar circle, and their light contributions can

become significant. Thus, for the DB curve, we find that for t0 > 14 days, the distribution

is shifted by roughly 10% along the entire curve towards shorter t0. Our calculations also

show that for the flatter disk MFs, which favor slightly higher masses, the change becomes

more dramatic (≈20% for the HST MF, and ≈40% for the composite power-law MF),

affecting even events with giant sources. DD events (not shown) show a similar behavior,

though to a lesser degree than DB events, since the sources are so much nearer as well.

We also ran a simulation in which events were distorted only by parallax, and found no

significant difference between the observed and actual distributions, confirming that the

shift seen in the Figure is due to blending.

In addition to altering the duration distribution, the errors in t0 also propagate into

the optical depth, τ , tending to reduce the inferred value of τ as well. However, an exact

determination of both dΓ/dt0 and τ requires an additional correction to account for the

discrepancy between the assumed and actual values of the source number density. Since a

given blended source may actually be two or more unresolved sources, the inferred optical

depth will as a result be enhanced relative to the actual value, and dΓ/dt0 may be affected

as well, though it is unlikely that events would be made longer. A precise calculation

of blending effects requires a detailed model employing the frequency and separation

distributions of optical binaries along the line of sight, and is beyond our present scope.

The above results are meant only to illustrate the impact of some of these effects.

Since umin, the impact parameter in units of Re, is a random variable, the distribution

of umin from an ensemble of events (expected to be uniform from 0 to 1) is used as a
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Fig. 6.— Non-normalized microlensing event duration distributions for the bulge and disk

models used. The solid lines are the results obtained using the actual event timescales t0,

while the dashed lines show the results obtained using tinf
0

from a standard fit to a blended

event. The BB distribution (which matches the peak of the combined MACHO and OGLE

data) is unaffected, but the DB distribution is shifted by about 10% towards smaller t0.



– 21 –

statistical check on microlensing. Due to blending effects, however, the distribution of

uinf

min
will not be uniform. First, since blending always causes a reduction in the observed

amplification, the inferred impact parameter will be greater than its actual value in

every blended event, resulting in fewer uinf

min
at low values. However, there will also be a

decrease at high values, because blended events where umin > uthresh (recall uthresh < 1 in

blended events) will never register. These effects are seen in Figure 7, which shows the

non-normalized inferred and actual umin number distributions for both BB and DB events.

We again assume observations in V and a logarithmic disk MF. Detection efficiencies have

not been included, though it is expected that experimental efficiencies efficiencies should

drop off at high umin. While the predicted behavior of umin is demonstrated by the Figure,

resolving this effect in practice would require many more events than currently observed.

5. CONCLUSION

While many prospects for learning more about ML events involve intensive followup

observations aimed at resolving distortions to the standard ML light curve, few detailed

calculations of rates and features of such distortions exist for realistic Galactic models. We

have employed a detailed model to calculate the fraction of ML events which will exhibit

a significant parallax distortion, as seen by the followup monitoring programs. We find

that with frequent and precise observations of events in progress, from 10% up to 39% of

all events arising from various lens-source pairings are expected to exhibit a parallax shift,

including some events with t0 ∼< 2 months. Such events can be used to place an additional

constraint among the parameters of interest (namely Ml, Dol, and v) with reasonable

precision, allowing one to express Ml as a function of Dol and thus better determine the

characteristics of the lensing population. Failing to account for ML distortions, particularly

blending, can lead to errors in the inferred parameters (most notably t0) which propagate

into the inferred duration distribution and impact-parameter distribution and impact the

assumed overall optical depth.

The most important application of analyzing such distortions is in discerning whether

observed bulge events are due to structure in the bulge, or excess mass in the form of

sub-stellar objects in the disk. However, the significance of such work extends to many

areas. Determining the origin of the excess events will lead to a better understanding of

Galactic structure and stellar populations, particularly the MF of low-mass stars in the

disk and bulge. The latter relates directly to our understanding of the process of star

formation. Moreover, if the bulge of our Galaxy is representative of relaxed stellar systems

such as elliptical galaxies, then knowledge of the bulge luminosity function and dynamical
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Fig. 7.— Non-normalized number histogram of the impact parameter distribution for BB

events (upper panel) and DB events (lower panel) observed in V . The solid lines show the

(approximately uniform) distributions of the actual values (umin), while the dashed lines show

the distributions of the inferred values (uinf

min
). The latter are non-uniform due to blending

effects.
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structure will have implications for galaxy formation and evolution. Precise knowledge of

the mass of the disk and bulge also constrains the halo mass and places strong limits on the

dark-matter content. If it can be determined that there is more mass in the bulge and/or

disk, this implies less halo dark matter and has important consequences for the predicted

event rates in direct and indirect searches for exotic dark matter (Jungman et al. 1996).
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∆ṽ/ṽ (1σ limits)

1 hr., 0.01 mag 0.5 hr., 0.005 mag

15 2.25 0.79

BB t0 (days) 30 0.29 0.10

60 0.04 0.01

15 1.33 0.47

DB t0 (days) 30 0.17 0.06

60 0.03 0.01

100 0.01 0.004

Table 1: Estimated 1σ accuracies for measurements of ṽ from the simulated BB and DB

events described above, for various event timescales, t0. Shown are the results from simulated

data taken with hourly sampling and 0.01-mag errors, and from 0.5-hourly sampling and

0.005-mag errors. Note that useful accuracies are achieved even for events with t0 ≈ 30

days.


