
ar
X

iv
:a

st
ro

-p
h/

96
05

01
8v

1 
 3

 M
ay

 1
99

6

A MODEL FOR THE INTERNAL STRUCTURE OF MOLECULAR CLOUD

CORES

Dean E. McLaughlin and Ralph E. Pudritz

Department of Physics and Astronomy, McMaster University

Hamilton, Ontario L8S 4M1, Canada

dean@physics.mcmaster.ca, pudritz@physics.mcmaster.ca

ABSTRACT

We generalize the classic Bonnor-Ebert stability analysis of pressure-truncated,

self-gravitating gas spheres, to include clouds with arbitrary equations of state. A

virial-theorem analysis is also used to incorporate mean magnetic fields into such

structures. The results are applied to giant molecular clouds (GMCs), and to

individual dense cores, with an eye to accounting for recent observations of the internal

velocity-dispersion profiles of the cores in particular. We argue that GMCs and massive

cores are at or near their critical mass, and that in such a case the size-linewidth

and mass-radius relations between them are only weakly dependent on their internal

structures; any gas equation of state leads to essentially the same relations. We

briefly consider the possibility that molecular clouds can be described by polytropic

pressure-density relations (of either positive or negative index), but show that these

are inconsistent with the apparent gravitational virial equilibrium, 2 U + W ≈ 0,

of GMCs and of massive cores. This class of models would include clouds whose

nonthermal support comes entirely from Alfvén wave pressure. The simplest model

consistent with all the salient features of GMCs and cores is a “pure logotrope,” in

which P/Pc = 1 + A ln(ρ/ρc). Detailed comparisons with data are made to estimate

the value of A, and an excellent fit to the observed dependence of velocity dispersion

on radius in cores is obtained with A ≃ 0.2.

To appear in the Astrophysical Journal

1. Introduction

Giant molecular clouds (GMCs; M ∼ 105 − 106M⊙) in the Galaxy are highly inhomogeneous:

they are often filamentary in appearance, consisting of discrete clumps, or cores (M ∼< 103M⊙),

which contain most of the mass of a cloud (including any young stars) and are surrounded by a

more diffuse component of predominantly atomic gas (e.g., Williams, Blitz, & Stark 1995). Indeed,

GMCs are clumpy on all scales observed, and are possibly even fractal in nature (Falgarone,

Phillips, & Walker 1991). Remarkably enough, however, the gross properties of cloud complexes

are rather simply interrelated. Total masses, mean densities, and average velocity dispersions vary
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with sizes (effective radii) roughly as M ∝ R2, ρave ∝ R−1, and σave ∝ R1/2 (Larson 1981; Sanders,

Scoville, & Solomon 1985; Solomon et al. 1987), with uncertainties in the exponents typically of

order ±0.1. The seeming universality of these results demands a physical explanation.

The relationship between size and linewidth (which term we use interchangeably with velocity

dispersion) is further interesting because σ is observed to decrease towards smaller radii inside

GMCs, and within individual dense cores (Larson 1981; Miesch & Bally 1994; Fuller & Myers

1992; Caselli & Myers 1995). Since the total linewidths of GMCs are mostly nonthermal (the

clouds are stable against gravitational collapse on the largest scales, but have masses several

orders of magnitude above the thermal Jeans value, so that their support must come largely from

nonmagnetic or, very likely, MHD turbulence), this decrease reflects a move towards domination

by thermal motions on the smallest scales. We should therefore expect the linewidths of low-mass

cores to have a smaller turbulent component than those of high-mass cores. This is indeed the

case; in fact, the velocities nearest the centers of small cores are almost (to within a few percent)

wholly thermal. However, it also happens (Caselli & Myers 1995) that the nonthermal velocity

dispersion shows a stronger dependence on radius in low-mass cores (where σNT ∝ r0.5) than in

massive ones (σNT ∝ r0.2). Because star formation is localized in the cores of GMCs, their overall

structure — and this aspect specifically — bears strongly on our understanding of this most

fundamental process.

The goal of this paper is to find a model for the internal structure of molecular cores (low- and

high-mass both) which quantitatively matches their observed, internal velocity-dispersion profiles,

and is also consistent with global properties (such as the observed mass-radius-linewidth relations)

of large, self-gravitating clumps and even whole GMCs. Our approach is to reduce this problem to

the specification of a (total) pressure-density relation — an equation of state — that, when used

to solve the equation of hydrostatic equilibrium, results in a gas cloud with the required features.

It is significant that the linewidth profiles of cores are insensitive to the presence or absence of

young stars, and thus may be viewed as one of the prerequisites for star formation (Fuller & Myers

1992; Caselli & Myers 1995). This justifies our focus on the structure of purely gaseous clouds.

To proceed, we shall resort to a virial-theorem treatment of molecular clouds which idealizes

them as spheres of gas in hydrostatic equilibrium and satisfying Poisson’s equation. This is

appropriate enough for dense cores, which in many cases are roughly spheroidal (probably prolate:

Myers et al. 1991), or even near spherical (e.g., Williams et al. 1995), overall. (Although their

internal density distributions may not be especially smooth on very small scales, we concern

ourselves here with a description of their bulk structure.) In addition, observations of very massive

cores imply that they are self-gravitating and in approximate “gravitational virial equilibrium,”

2 U +W ≈ 0. This is not the case for low-mass cores, but these still appear to satisfy the full

virial theorem if surface-pressure terms are included (Bertoldi & McKee 1992). Finally, even

the total masses, radii, and linewidths of entire GMC complexes are generally consistent with

virial-equilibrium models of spheres (e.g., Solomon et al. 1987; Elmegreen 1989); and it has been

repeatedly confirmed that whole clouds tend to comply with 2 U +W ≈ 0 (Larson 1981; Solomon
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et al. 1987; Myers & Goodman 1988b).

It should be noted that the correct, average mass-radius and size-linewidth relations can be

recovered in a purely scale-free description of GMCs (e.g., Henriksen 1991). But the distinctly

different scalings of velocity dispersion with radius inside low- and high-mass clumps is one

indication that molecular clouds are in fact not entirely featureless. Other current models for

these objects (such as isothermal spheres or negative-index polytropes) face similar difficulties in

accounting simultaneously for their global properties and their internal structures.

Magnetic fields are an important presence in regions of star formation (e.g., Heiles et al. 1993),

so we begin in §2 by writing down the virial-theorem (or Bonnor-Ebert) relations between the

masses and total linewidths — including turbulent velocities — of magnetized spheres, truncated

at radii such that the internal pressure just balances that of a diffuse surrounding medium. We

then develop a stability criterion for such clouds which depends only on the assumption that

their thermal linewidths (i.e., kinetic temperatures) are invariant. When combined with the

circumstantial evidence for equipartition between the kinetic and mean-field magnetic energies in

GMCs and massive cores (Myers & Goodman 1988a, b; Bertoldi & McKee 1992), this stability

criterion leads to mass-radius-linewidth relations between critical-mass objects that agree with

the observed scalings (both the exponents and the coefficients) among GMCs. Our analysis is

therefore similar to those of, e.g., Chièze (1987), Fleck (1988), and especially Elmegreen (1989),

but ours holds for clouds with an arbitrary equation of state. In addition, we find that critically

stable clouds in magnetic equipartition should all satisfy 2 U +W ≈ 0. We therefore conclude that

GMCs and massive cores are approximately at their critical masses and magnetically supercritical,

with Mcrit ≃ 2 MΦ (see also McKee 1989; Bertoldi & McKee 1992). The generality of these results

allows for the investigation of essentially any pressure-density relation as a potential description of

the interiors of molecular cores, just so long as critically stable configurations are at all possible.

In §3, we discuss polytropic equations of state: P ∝ ργ , with γ any positive number.

Clearly, if γ ≥ 1, then the total velocity dispersion (σ2 = P/ρ) stays constant or decreases with

decreasing density (increasing radius) inside a cloud. If instead γ is allowed to be less than 1

(e.g., Maloney 1988), then σ2 increases with radius, as required. However, in our analysis, any

such “negative-index” polytrope would be unconditionally stable against gravitational collapse; or

equivalently (but independently of any stability criterion), it could not self-consistently satisfy the

relation 2 U +W ≈ 0. While this is not a problem for low-mass cores, it is inconsistent with what

we know of very large clumps, and GMCs overall. Thus, we argue that polytropic pressure-density

relations give an incomplete picture of interstellar clouds. A corollary to this is that weakly

damped Alfvén waves, for which P ∝ ρ1/2 (McKee & Zweibel 1995), cannot be invoked as the sole

explanation of nonthermal linewidths in GMCs.

Section 4 describes what is, in our view, a more suitable alternative. There we consider the

possibility that pressure varies only logarithmically with density: P/Pc = 1+A ln(ρ/ρc). We refer

to the resulting gas cloud as a “pure” logotrope. This term was introduced by Lizano & Shu (1989;
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see also McKee 1989), who actually added a logarithmic term to an otherwise isothermal equation

of state in an attempt to account for turbulent linewidths. Such models have also been studied

in detail by Gehman et al. (1996). Here, however, we dispense with the explicitly isothermal

component, for two reasons: (1) Assuming P = ρσ2T + κ ln(ρ/ρref), with σT the thermal velocity

dispersion and ρref some reference density (Lizano & Shu 1989), the observational inference that

linewidths should be essentially purely thermal at the centers of cores requires that ρref = ρc. But

then the internal σ2 = P/ρ decreases with increasing radius. (2) If now P/Pc = ρ/ρc + κ ln(ρ/ρc),

then for large values of κ such as those suggested by Gehman et al. (1996), P vanishes for ρ/ρc
rather near unity. Thus, real clouds would have to be almost uniform-density, which again is not

observed.

These difficulties do not extend to the specific equation of state which we examine. Instead,

an outwards-increasing velocity-dispersion profile obtains for an equilibrium pure logotrope. Such

a model can moreover account for the observed mass-radius and size-linewidth relations between

GMCs. We also demonstrate that the linewidth measurements in both low- and high-mass cores,

from a variety of molecular clouds, are quantitatively reproduced if A ≃ 0.2. The argument makes

explicit use of the fact that small cores are not at their critical masses (while large ones generally

are), but that they are still in approximate virial equilibrium when the effects of surface pressures

are considered.

Although the logarithmic P − ρ relation we advocate is phenomenological, its overall viability,

along with the failings of other models, ultimately makes for a useful description of molecular

clouds and their cores.

2. Generalized Bonnor-Ebert Relations

Interstellar clouds can be viewed as essentially “pressure-truncated” bodies of gas. (This

term is meant to imply the existence, not of some radius where a gas cloud suddenly ends,

but of one where it “blends in” with an ambient medium.) Thus, the boundary of a GMC

is set by pressure balance with the surrounding, hot ISM. Note that even if there is no such

balance initially, it will eventually obtain after an overall expansion or contraction of the cloud

complex. The extent of a core within a GMC is similarly limited by the pressure of a tenuous

interclump medium, as has been argued by Bertoldi & McKee (1992). The equilibrium structure of

pressure-truncated isothermal spheres was first described by Ebert (1955) and Bonnor (1956) (see

also McCrea 1957). Their expressions connecting the masses, radii, and linewidths of the spheres

follow from the assumption of hydrostatic equilibrium and Poisson’s equation, and therefore are

written in terms of an internal pressure profile and gravitational potential. In Appendix A, we

re-derive these Bonnor-Ebert relations, but for clouds satisfying an arbitrary gas equation of state

(eqs. [A4]–[A7]). We also provide a connection (eqs. [A8]–[A10]) with the more transparent and

observationally convenient virial-theorem formulation given by equations (2.8) below. As various

authors have noted (Chièze 1987; Fleck 1988; Maloney 1988; Elmegreen 1989), these relations in
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either guise provide a framework for an understanding of the standard “Larson’s laws” for GMCs

(M ∝ R2 and σ ∝ R1/2; Larson 1981).

The development of Appendix A refers specifically to “nonmagnetic” clouds, meaning only

that no ordered (mean) magnetic field is considered to be present. We work on the assumption

that the effects of disordered fields (MHD turbulence) can be separately dealt with, in an

equivalent hydrostatic problem that makes use of an effective equation of state to describe all of

the contributions to gas pressure as a function of density. Still, the effects of mean fields must also

be considered in any applications to real interstellar clouds.

2.1. Magnetic Equilibria

In the absence of any analytic models for magnetohydrostatic clouds, we proceed by assuming

spherical symmetry and turning to the scalar virial theorem:

2 U(1− Ps/Pave) +M+W = 0 . (2.1)

Here the mass-averaged, total one-dimensional velocity dispersion of a cloud with radius R is

related to its mean pressure and density by

σ2ave =

∫ R
0 4πr2ρσ2 dr
∫R
0 4πr2ρ dr

=
Pave

ρave
, (2.2)

so that the kinetic (or internal), mean-field magnetic, and gravitational energies are given by the

usual

U =
3

2
Mσ2ave , (2.3)

M =
1

8π

∫
B2 dV +

1

4π

∮
(r ·B)B · dS− 1

8π

∮
B2r · dS , (2.4)

and

W = −G
∫ R

0

m dm

r
≡ −3

5
a
GM2

R
. (2.5)

The parameter a is essentially a measure of the non-uniformity of a gas sphere, and as such

depends on the equation of state and the truncation radius (in terms of a fixed scale r0; eq. [A8]).

However, it is generally of order unity: for a power-law density profile ρ ∝ r−p, equation (2.5)

gives a = (1 − p/3)/(1 − 2p/5). We expect 1 ∼< p ∼< 2 in a realistic GMC or core, and thus

10/9 ∼< a ∼< 5/3.

It is often more useful to work in terms of the virial parameter of Bertoldi & McKee (1992):

αmag ≡ 5σ2aveR

GM
. (2.6)
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This observable quantity can also be written (cf. McKee & Zweibel 1992) as

αmag = 2a
U
|W| =

a

1− Ps/Pave

(
1− M

|W|

)
.

Although this form of the virial theorem is appropriate for clouds of any shape, the corrective

factors for spheroidal clouds are rather near unity (Bertoldi & McKee 1992), and we still allow only

for spherical symmetry here. It is further convenient to distinguish between the virial parameters

which would obtain for a cloud with and without a mean magnetic field; these are related by

αmag = αnon

(
1− M

|W|

)
. (2.7)

Again, αmag refers specifically to the combination (2.6) of observables. On the other hand, αnon

applies to the M = 0 (no mean field) counterpart of a given cloud; it is directly observable only in

this special case (since then αmag = αnon), but may always be calculated for a given gas equation

of state, as outlined in Appendix A. Once this is known, αmag follows with the specification of a

mean-field configuration (see §2.3).

The connection (2.7) between αmag and αnon is valid insofar as the ratio Ps/Pave does not

change drastically upon the “addition” of a mean magnetic field to a cloud which is already

in hydrostatic equilibrium. This must hold along field lines anyway (force balance is required

in that direction), and thus everywhere on the surface of a roughly spherical cloud. Defining

aeff ≡ a(1 − M/|W|), such reasoning implies that (αmag − aeff)/αmag = (αnon − a)/αnon, so

manipulation of the virial theorem gives the following:

M = 25

√
3

20π

(
αnon − a

αnon

)1/2 1

α
3/2
mag

σ4ave
(G3Ps)1/2

, (2.8a)

R = 5

√
3

20π

(
αnon − a

αnon

)1/2 1

α
1/2
mag

σ2ave
(GPs)1/2

, (2.8b)

Σ =

√
20

3π

(
αnon

αnon − a

)1/2 1

α
1/2
mag

(
Ps
G

)1/2

, (2.8c)

and

ρave =
αnon

αnon − a

Ps
σ2ave

. (2.8d)

These relations, of which only two are independent (they are contained, for example, in eqs. [9]

and [10] of Elmegreen 1989), are also given by Harris & Pudritz (1994) for the specific case of

critically stable isothermal spheres (as defined in §2.2; αnon = 2.054 and a = 1.221 at a cloud

radius Rcrit/r0 = 2.150). As written here, they apply to any generic gas cloud, stable or unstable,

isothermal or not.

Any cloud in hydrostatic equilibrium and satisfying Poisson’s equation has a central region

where the potential, density, and velocity dispersion are very nearly constant with radius.
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Equations (A8) and (A9) show that spheres truncated in or just outside this central region (i.e.,

at radii small enough that Ps ≈ Pc) have αnon ≫ a, and thus αmag ∝ M−2/3 ∝ R−2 by equations

(2.8a, b). Roughly this scaling has been observed for the virial parameters of low-mass, high-α

cores in several GMCs, leading Bertoldi & McKee (1992) to argue that such clumps can be viewed

as truncated spheroids which are essentially in pressure equilibrium with an intracloud medium.

2.2. Stability: Critical Clouds

Given equations (2.8) for the equilibrium structure of pressure-truncated gas spheres, we are

in a position to question their stability: Under what conditions will they be able to withstand the

combined effects of self-gravity and surface pressure, and when will they be unstable to wholesale

gravitational collapse? The answer to this depends, of course, on any boundary conditions

attached to a perturbation of the cloud. Obviously, the total mass should be unchanged by a

contraction or expansion of the entire structure. In addition, following Maloney (1988), we suppose

that the central velocity dispersion remains constant as the cloud radius, or the surface pressure, is

varied. This stipulation is meant to reflect the fact that the turbulent linewidth decreases steadily

towards smaller scales in cores and in entire GMCs. We therefore identify the central velocity

dispersion with the thermal part of the total linewidth: σ2c = kT/µmH . Insisting that this be

invariant amounts to recognizing the rough uniformity of kinetic temperatures T ∼ 10K (which to

first order can be understood as a consequence of the competition between cosmic-ray heating and

CO cooling) over a large range of scales in interstellar clouds. The stability criterion that follows

ultimately leads to a set of results which self-consistently explain some important observational

features of GMCs and massive cores.

A gas cloud will be stable against radial perturbations if the derivative ∂Ps/∂R (taken with

σc and M held fixed) is ≤ 0: a slight decrease in the cloud radius then leads to an increase in the

pressure just inside its boundary, which in turn leads to reexpansion. Appendix B shows that, for

any equation of state, this condition is just

(
∂Ps
∂R

)

M,σc

= −6
Ps
R

[
1− (5/6)(αnon − a)−1

3− ρave/ρs

]
≤ 0 , (2.9)

where ρs is the internal density at the edge of the cloud. Although this stability criterion has been

derived without explicitly considering the effects of mean magnetic fields, we expect that it should

not be greatly altered by their inclusion. (This is again implied by our assumption of approximate

spherical symmetry, since eq. [2.9] must at least be satisfied along field lines at the boundary of a

magnetized cloud.)

Depending on the equation of state, there may exist a radius for which a pressure-truncated

cloud is marginally stable (the expression [2.9] is just 0), and beyond which it is unstable. It is
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these critical equilibria, which must have

αnon − a =
5

6
, (2.10)

that are of particular interest here. Once αnon and a are known as functions of radius (as in

Appendix A), the satisfaction, if possible, of equation (2.10) sets the boundary Rcrit/r0 of the

cloud. This in turn allows for evaluation of the coefficients in equations (2.8). Quite generally,

Mcrit =
25√
8π

1

α
1/2
nonα

3/2
mag

σ4ave
(G3Ps)1/2

, (2.11a)

Rcrit =
5√
8π

1

α
1/2
nonα

1/2
mag

σ2ave
(GPs)1/2

, (2.11b)

Σcrit =

√
8

π

(
αnon

αmag

)1/2 (
Ps
G

)1/2

, (2.11c)

and

ρave,crit =
6αnon

5

Ps
σ2ave

. (2.11d)

Equation (2.11c) shows that a nonmagnetic cloud (αmag = αnon) on the verge of gravitational

collapse has a mean column density which is fixed by the pressure of the surrounding medium,

independently of any gas equation of state.

In general, the virial parameter of a given cloud is sensitive to its internal structure (through

the equation of state) and its total radius. However, for a critically stable cloud we always have

αnon = a+5/6. Since a is typically of order (but slightly greater than) unity, this implies αnon ≈ 2

and 1− Ps/Pave = a/αnon ≈ 1/2. The virial theorem (2.1) then becomes

U +M+W ≈ 0 . (2.12)

If there is equipartition M ≈ U between the magnetic and kinematic energies in such a cloud,

then 2 U +W ≈ 0 as well; thus, M/|W| ≈ 1/2, and the critical αmag is expected to be of order

unity (cf. eq. [2.7]; see also Elmegreen 1989 and McKee & Zweibel 1992).

Observations of molecular clouds show that 2 U + W ≈ 0 (or equivalently, αmag ≈ 1),

and are consistent with M ≈ U (Myers & Goodman 1988a, b), although actual magnetic-field

measurements are few and uncertain. The most massive cores in GMCs similarly tend to show

2 U +W ≈ 0 and αmag near 1 (this is not the case for low-mass cores, however: e.g., Williams,

de Geus, & Blitz 1994; Williams et al. 1995; see also §4.1 below). Observations of them are also

indicative of magnetic equipartition (Bertoldi & McKee 1992), though again the evidence is rather

indirect, and not necessarily conclusive. Having said this, it does seem that GMCs and massive

cores both satisfy equation (2.12), which would imply that they are at or near their critical masses.

Thus arrived at, this conclusion depends on the criterion one adopts for cloud stability, i.e.,

it follows from the assumption that the thermal linewidth σc is held fixed during any radial
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perturbation (and from the additional proviso that M ≈ U). Nevertheless, our analysis — which

specifies no equation of state — provides a natural explanation for the fact that so many GMCs

and large cores appear to be in simple “gravitational virial equilibrium” (i.e., 2 U +W ≈ 0), even

though they are threaded by appreciably strong mean magnetic fields.

There is also separate evidence for the criticality of massive molecular cores. For instance,

Bertoldi & McKee (1992), in their study of the cores in four GMCs, argue that the most massive

are at least magnetically supercritical, a necessary condition for gravitational instability. More

fundamentally, star-forming regions clearly must be susceptible to gravitational collapse; but in

the Rosette GMC at least, those cores which are most obviously associated with IRAS sources are

also among the heaviest (Williams et al. 1995). As mentioned above, the largest cores in several

GMCs also have the smallest virial parameters (as low as 1), so that this would seem to be a

feature of clouds which are close to instability. The observation of a mean αmag ≈ 1 for GMCs

then implies that they, too, are near some critical mass, and certainly in excess of the nonmagnetic

Jeans or Bonnor-Ebert value (for which M = 0 implies U +W ≈ 0 and αmag = αnon ≈ 2). McKee

(1989) has further argued that GMCs on the whole are magnetically supercritical, and of course

they must be strongly self-gravitating in order to be molecular at all (e.g., Elmegreen 1985).

On a related note, McKee (1989) points out that GMCs must generally be near criticality

because they show a Pave which is typically an order of magnitude larger than the total (thermal

plus turbulent) pressure in the hot ISM. Given our stability criterion, equation (2.11d) shows that

self-gravity can supply a maximal pressure enhancement Pave/Ps ≈ 2.5 of a spherical cloud over

its surrounding medium, and this only for a critical-mass body. Even putting the nonsphericity of

GMCs aside, however, it is important to note that the analysis here speaks only to the molecular,

self-gravitating parts of GMCs, and not to their diffuse, low-AV H I components. Elmegreen

(1989) has shown that the weight of these atomic “envelopes” can easily increase the pressure at

the boundaries of the molecular parts of a cloud complex by a factor of 5 or more above the value

in the ISM at large; overall, then, Pave/PISM > 10.

If GMCs and their most massive cores are indeed critical-mass objects, then they must all

have the same dimensionless radii (although the physical scale r0 will generally vary), and the

same virial parameters. Aside from possible variations in Ps, which are discussed in detail by

Elmegreen (1989), this causes the coefficients in equations (2.11) or (2.8) to be roughly constant,

and allows for well defined mass-radius-linewidth relations between clouds. Moreover, we have

argued that αnon ≃ 2 and, in the event of magnetic equipartition, αmag ≃ 1 for critical clouds,

regardless of the underlying equation of state. The coefficients in the M − R − σave scalings are

then independent of this detail, and the average properties of GMCs can shed no light on their

internal structure. This both explains why critical, magnetized isothermal-sphere models are

successful in quantitatively accounting for the observed scalings (with αnon = 2.054 and αmag ≃ 1:

Elmegreen 1989; Harris & Pudritz 1994), and implies that the same agreement with the data

comes with any model which provides for the existence of a critical mass (see eqs. [4.12] below).
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Finally, equations (2.11) as written would suggest that all GMCs must be under similar

surface pressures Ps if, for example, Σ is to be roughly the same among them. Other authors

(e.g., McKee 1989; Mouschovias 1987; Myers & Goodman 1988b) have argued instead that either

Σ itself (and hence Pave), or the mean field strength Bave, is the more fundamentally invariant

attribute of GMCs. If so, then Ps could be eliminated from the critical Bonnor-Ebert relations in

favor of any of these quantities, and our approach does not preclude the others.

2.3. Magnetic Field Model

Consider a cloud of radius R, threaded by a mean magnetic field approximated as uniform

and of magnitude Bave. Outside the cloud, let B fall off as r−2 to a radius R0, where it matches

onto an ambient, uniform field of strength B0 (Nakano 1984). Conservation of flux (or continuity

of the normal component of B across the boundary of the cloud) demands BaveR
2 = B0R

2
0, and

evaluating equation (2.4) at the surface r = R0 gives

M =
B2

aveR
3

3

(
1− R

R0

)
.

Defining β = 8πPave/B
2
ave and Φ = πBaveR

2, we have

M
|W| =

5

9aπ2
Φ2

GM2

(
1− R

R0

)
=

2αmag

3aβ

(
1− R

R0

)
, (2.13)

so that equation (2.7) gives
1

αmag
=

1

αnon
+

2

3aβ

(
1− R

R0

)
. (2.14)

With B0 ≃ 3 µG and Bave ≃ 30− 40 µG for GMCs (Myers & Goodman 1988b), flux conservation

gives R/R0 ≃ 0.3; and U ≃ M implies β ≃ 1. Thus, αmag ≈ 1 when αnon ≈ 2, as expected.

Some indication of the reliability of equations (2.11) and (2.13), and of the approximations

leading to them, can be had by comparing the critical masses they predict for magnetized,

isothermal spheres (a = 1.221) with those obtained from self-consistent, axisymmetric numerical

calculations. In particular, the mass MΦ which separates magnetically sub- and supercritical

clouds, and for which M = |W|, is given by equation (2.13) as 0.18 Φ/G1/2, only a 50%

overestimate of the exact result MΦ ≃ 0.12 Φ/G1/2 (Mouschovias & Spitzer 1976; Tomisaka,

Ikeuchi, & Nakamura 1988). Further, for M ∼> 0.24 Φ/G1/2, the critical masses we obtain by

using equation (2.7) in (2.11a) lie within a factor 2 of those found by Tomisaka et al. (1988;

see their eq. [4.7]). (In fact, our formula is more accurate in the weak-field limit because it

approaches the correct Mcrit = 1.182 σ4/(G3Ps)
1/2 for the nonmagnetic, Φ = 0 isothermal sphere.)

And for the equipartition β = 1 seen in GMCs, setting αmag ≈ 1 in equation (2.13) implies

Mcrit ≈ (5/6π2)1/2Φ/G1/2. This is roughly 1.6 times our (approximate) MΦ, and 2.4 times the

exact value, which level of agreement is quite acceptable. In any case, we are led to expect that

critical-mass GMCs and cores are strongly magnetically supercritical, with Mcrit ≈ 2 MΦ — a

result which has also been argued by McKee (1989) and Bertoldi & McKee (1992).
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3. Polytropic Equations of State

The outwards increase of linewidth both within giant molecular clouds as a whole (Larson

1981; Miesch & Bally 1994) and within individual dense cores (Fuller & Myers 1992; Caselli

& Myers 1995), immediately suggests the class of negative-index polytropes as possible models

for these structures. That is, if P ∝ ρ1+1/N , then for a polytropic index N < −1 we have P/ρ

increasing for decreasing ρ, as required. Such models have been studied by, e.g., Viala & Horedt

(1974) and Maloney (1988), and we derive the generalized Bonnor-Ebert relations for them in

Appendix C. Although there are various physical arguments to support their use (e.g., Shu et

al. 1972; de Jong, Dalgarno, & Boland 1980; McKee & Zweibel 1995), these polytropes turn out

to be unlikely descriptions of real GMCs (and of course, a positive polytropic index is undesirable

because it is inconsistent with a velocity dispersion that increases with radius).

Here we define n = N/(N +1), so that P ∝ ρ1/n and n > 1 for N < −1. From Appendix C, a

nonmagnetic, negative-index polytrope which is truncated anywhere outside of its constant-density

central region (inside which, a ≃ 1 and αnon increases without bound towards r = 0) will then

satisfy

αnon − a =
5

6
(4n − 3) .

Thus, an n > 1 polytrope has (5/6)(αnon − a)−1 < 1; and since its density profile is ρ ∝ r−p, with

p < 2 everywhere for any n (Appendix C), we also find ρave/ρs < 3. According to equation (2.9),

then, a truncated, negative-index polytrope will always be stable, and never critically so (as was

also noted by Maloney 1988). Ultimately, the same steady increase of linewidth with radius which

would recommend the polytropic equation of state in the first place also proves to be its undoing:

the internal pressure gradient which results is so shallow as to stabilize a cloud under any external

pressure. The concept of a critical mass is then irrelevant for these models, which casts doubt on

their utility in describing real GMCs or high-mass cores. Any additional support from a mean

magnetic field in the cloud obviously serves only to exacerbate this problem.

Again, this result follows to some extent from the constraint that the thermal linewidth σc be

fixed during a perturbation of the cloud. By contrast, both Viala & Horedt (1974) and Chièze

(1987) consider the possibility that the constant of proportionality in the relation P ∝ ρ1/n is

invariant, and find that polytropes can become unstable for certain truncation radii. Still, our

approach is closely related to a point which is independent of any rule for cloud stability:

The minimum value of the nonmagnetic virial parameter for a truncated polytrope is (eq. [C7])

αnon ≥ 5

2

(4n − 3)(2n − 1)

6n − 5
.

As usual, this is a lower limit because αnon can be very large indeed if the polytrope is truncated

at a very small radius. In the event of equipartition U = M between kinematic and magnetic

energies, equation (2.7) and the identity αmag = 2a U/|W| lead to

αmag =
αnon

1 + αnon/(2a)
=

αnon

1 + (1/2)(1 − Ps/Pave)−1
,
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in which case equation (C11) and n > 1 finally imply that

αmag ≥ 10
(4n − 3)(2n − 1)

(6n − 5)(6n + 1)
>

10

7
.

Thus, regardless of whether there exist any unstable modes for truncated polytropes, the virial

parameters of such clouds are significantly larger than the αmag ≃ 1 (2 U +W ≈ 0) seen in GMCs

(Myers & Goodman 1988b) and in the most massive molecular cores (Bertoldi & McKee 1992;

Williams et al. 1994, 1995), even if dynamically significant mean magnetic fields are allowed to

be present. It is a property of our specific stability criterion that this fact implies the absence of

critically stable equilibria.

The virial parameters of magnetized polytropes could be reduced to αmag ≃ 1, for any n, if

the mean field were such that M ≃ 2 U . In this case, however, using equation (C11) for Ps/Pave

in the virial theorem (2.1) leads to 0.8 <M/|W| < 1 for n ≥ 2, which is difficult to reconcile with

the rather higher degree of magnetic supercriticality that is observationally inferred for GMCs and

massive cores (M/|W| ∼< 0.5, and M ≃ 2MΦ; see §§2.2, 2.3).

One consequence of all of this is that the nonthermal linewidths in GMCs,

σ2NT = σ2ave − kT/µmH , cannot be attributed entirely to the pressure of weakly damped

Alfvén waves, for which P ∝ ρ1/2 (n = 2, or N = −2; McKee & Zweibel 1995), and thus

αmag ∼> 1.65 under magnetic equipartition. It seems almost certain that Alfvén waves do play a

significant role in the support of GMCs and cores (e.g., Arons & Max 1975; Pudritz 1990); but,

as McKee & Zweibel (1995) also note, they cannot be uniquely responsible for their large-scale

stability. In this context, we note that the size-linewidth relation between clouds can be expressed

in terms of a mean magnetic field strength, as in, e.g., Myers & Goodman (1988a). Specifically,

equation (2.11d) can be used to write (2.11b) in terms of Pave rather than Ps, and the definition

of β (§2.3) relates Pave to Bave. Then, with a mean mass per particle µ = 2.33 and a kinetic

temperature T = 10 K, we have

σNT ≃ 0.60 km s−1 (αmagβ)
1/4
(
Bave

30 µG

)1/2 ( R

1 pc

)1/2

.

The equality is not quite exact here, because the scalings with Bave and R strictly apply to

the total σave. Still, this relation is accurate in the typical case, σ2NT ≫ kT/µmH ; and for

αmag = β = 1, it is consistent with available data (see Myers & Goodman 1988a). Thus, although

Mouschovias & Psaltis (1995) argue for an interpretation of this result in terms of Alfvén waves,

we see here that it is independent of any assumptions on the physical origin of the nonthermal

motions in GMCs (in principle, they need not even derive from magnetic fields).

Finally, it is clear that any simple “mixing” of two polytropes with different indices will still

preclude the existence of a critical (or low-αmag) cloud; even the superposition of an isothermal

part, i.e., P = C1ρ + C2ρ
1/n, only admits one if it is essentially isothermal anyway (C1 ≫ C2).

Thus, we now turn to a different equation of state, in which the gas pressure varies only

logarithmically with density.
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4. The Logotrope

Many theoretical models of star-forming clouds employ the singular isothermal sphere, in

which ρ ∝ r−2. However, there is some evidence that H II regions are concentrated towards the

CO centroids of their parent GMCs such that their three-dimensional number density is most

consistent with an r−1 fall-off (Waller et al. 1987; Scoville et al. 1987). This suggests the possibility

that, in a heavily smoothed, average sense, the internal density structure of molecular clouds is

essentially ρ ∝ r−1 (see also Solomon et al. 1987). Further, extinction measurements indicate

ρ ∝ r−1 or so in the outer parts of cores as well (Cernicharo, Bachiller, & Duvert 1985; Stüwe

1990).

Lizano & Shu (1989; see also Gehman et al. 1996) introduced the so-called logotropic equation

of state for GMCs, P = Piso + Pturb, with Piso ∝ ρ and Pturb ∝ ln(ρ/ρref). If the central linewidth

of a cloud is to be entirely thermal in origin, the reference density in Pturb must be ρref = ρc.

However, P/ρ then decreases with radius, which is incompatible with the observations. We suggest

that a more complete description of GMCs and cores is given instead by a “pure” logotrope:

P = ρcσ
2
c

[
1 +A ln

(
ρ

ρc

)]
, (4.1)

with A > 0 a parameter to be adjusted. The assumption here is that any nonthermal motions,

which presumably arise from MHD turbulence, add to the thermal pressure such that both are

fully accounted for by the equation of state (4.1). This relation is shown schematically in Fig. 1,

along with an isothermal-sphere combination and the polytropic P ∝ ρ1/2 for Alfvén waves. In the

rest of our discussion, equation (4.1) is referred to simply as a logotrope, with the understanding

that no further consideration is given to any mixed-isothermal version.

Given equation (4.1), the equation of hydrostatic equilibrium (A1) integrates to

ρ

ρc
=

1

1 + ψ/A
, (4.2)

where ψ = (φ − φc)/σ
2
c is a dimensionless gravitational potential. Substitution of this expression

into Poisson’s equation (A2) shows the existence of a singular solution,

ρ

ρc
=

√
2A

9

(
r

r0

)−1

, (4.3)

which describes the density profile of the bounded (finite ρc) solution at large radii. (The scale

radius r0 = 3σc/[4πGρc]
1/2.) In spite of such a slowly decreasing internal density, a logotrope has

only a finite extent, since for any positive A the pressure will eventually vanish. Assuming that A

is small enough for the singular density profile to apply at the edge of the cloud, we have

ξmax =
Rmax

r0
=

√
2A

9
e1/A . (4.4)
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The velocity dispersion, σ2 = P/ρ, increases with radius inside the cloud until it reaches a

maximum of

σ2max/σ
2
c = Ae1/A−1 (4.5)

at ξ = r/r0 = e−1ξmax, beyond which it falls again (to 0, at ξmax).

A logotrope truncated by the pressure Ps of an external medium has precisely one critical

mode for any given value of A. As discussed in Appendix B, if a cloud is truncated at a very small

radius ξ, it will always be stable. But in the power-law part of the logotrope, equations (4.2) and

(4.3) show that dψ/dξ = (9A/2)1/2, so once ξ is so large that Ps/Pc < A/4, the cloud is unstable

(cf. eq. [B6]). Thus,

ξcrit =
Rcrit

r0
=

√
2A

9
exp

(
1

A
− 1

4

)
= e−1/4ξmax , (4.6)

where we have again assumed that A is relatively small and the singular solution (4.3) holds at

ξcrit. (This expression shows that σ achieves its maximum inside ξcrit, and the surface of the

critical logotrope is cooler than its interior. McKee [1989] has suggested that such behavior might

arise from the radiation of Alfvén waves into the ambient medium.) Now, evaluating the pressure

(4.1) and density (4.3) at the radius (4.6) yields, for any critically stable logotrope,

(
ρs
ρc

)

crit

= exp

(
1

4
− 1

A

) (
σ2s
σ2c

)

crit

=
A

4
exp

(
1

A
− 1

4

) (
Ps
Pc

)

crit
=
A

4
. (4.7)

Evidently, self-consistency in the use of equation (4.3) here requires A ≪ 4. Equations (A7) and

(2.2) can then be used to find

(
ρave
ρs

)

crit

=
3

2

(
σ2ave
σ2s

)

crit

=
14

9

(
Pave

Ps

)

crit
=

7

3
, (4.8)

independently of A.

A numerical solution for our logotrope with A = 0.18 (which we justify shortly) yields the

internal density, pressure, and velocity-dispersion profiles shown in Fig. 2. Equations (4.4) and

(4.6) are valid here, as an r−1 density profile is realized well before the cloud ends (the vertical

line in all four panels of the Figure marks the radius ξcrit). It is the steep pressure gradient near

ξmax which sets the logotrope apart from the negative-index polytropes and allows for a critical

cloud with a small virial parameter.

The total velocity dispersion σ2 in Fig. 2 is roughly constant near the center of the cloud; and

its rise with radius further on is consistent with σ2 ∝ r2/3, which is essentially the scaling originally

found for GMCs by Larson (1981). Identifying the central dispersion σc with the thermal part

of the linewidth (so that thermal motions dominate on the smallest scales, as is observed), the

nonthermal contribution to cloud support is σ2NT = σ2 − σ2c , which is also shown in Fig. 2. At

small to moderate radii, σNT naturally rises more steeply than the total σ, while at larger ξ the

two are more comparable in magnitude. Roughly, then, our model has σ2NT ∝ r over some range
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in radius before it flattens to σ2NT ∝ r1/2 and eventually turns over (the maximum σ2NT/σ
2
c is just

σ2max/σ
2
c − 1, and occurs at ξ = e−3/4ξcrit). It is found that σNT ∝ r0.5 within GMCs (e.g., Myers

& Goodman 1988b), and low-mass molecular cores show the same general trend; high-mass cores

are more suggestive of σNT ∝ r0.25 (Fuller & Myers 1992; Caselli & Myers 1995). A logotropic

equation of state both for individual cores and for entire cloud complexes is consistent with these

observations, provided that low-mass cores can be viewed as spheres which are pressure-truncated

at radii ξ < ξcrit. We discuss this point further in §4.1 below. As always, though, no matter how σ

varies with r internally, the average relation σave ∝ R1/2P
1/4
s still holds for critical-mass clouds,

i.e., for GMCs.

A handle on an appropriate value of the parameter A for GMCs as a whole, can be gotten by

reinventing them as smoothed-out spheres with a number of distinct overdense regions (the cores)

sprinkled throughout. The observed contrasts in mean density and velocity dispersion between

GMCs and cores can then be related to the A of a model logotrope. Harris & Pudritz (1994; see

their Table 2) list each of ρave, σave, and Σ for a GMC of mass MGMC = 3.3 × 105 M⊙ and a

core with M core = 5.4 × 102 M⊙. (Such values are “typical” in the sense that, by mass, half of all

GMCs [cores] are larger than MGMC [M core].) Defining ρ̃, σ̃, and Σ̃ as the core-to-GMC ratios of

mean volume densities, linewidths, and column densities, these data show that

ρ̃ ≃ 240 σ̃ ≃ 0.29 Σ̃ ≃ 4.64 . (4.9)

Cores with M = M core are among the most massive observed, and are likely near critical. If they

are also logotropes, then their ρave/ρs, etc., should be roughly given by equation (4.8), regardless

of whether AGMC = Acore. Such large cores might further be expected to lie in very dense, cold,

highly pressured regions of their parent clouds. Then the pressure Ps at the surface of a core

is comparable to the GMC’s Pc, and similarly for the density and velocity dispersion. These

assumptions, together with the relation Σ ∝ P
1/2
s (eq. [2.11c]), result in

ρ̃ ≃
(
ρc
ρs

)

GMC

σ̃ ≃
(
σc
σs

)

GMC
Σ̃ ≃

(
Pc
Ps

)1/2

GMC
. (4.10)

Comparison of equations (4.9) and (4.7) then shows that the observed ρ̃, σ̃, and Σ̃ (only two of

which are actually independent) are realized in a logotropic GMC with

AGMC ≃ 0.175 . (4.11)

Although this procedure is highly idealized, it is perhaps telling that an A exists at all

which gives at once the correct ρ̃ and σ̃. The logotrope appears to be the simplest barotropic

equation of state which can account for these ratios and the small virial parameters (or the critical

equilibrium) of GMCs and massive cores. For example, if GMCs and large cores were both n = 2

polytropes truncated at ξ = r/r0 ≃ 21.4, then equation (4.9) could be roughly satisfied, but they

would also have a large αnon = 5.37, and hence αmag ≃ 1.75 for magnetic equipartition (again,

M ≃ 2 U is required to reduce αmag to unity for a negative-index polytrope, but this is not wholly
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satisfactory for other reasons; see §3). Alternatively, adding an explicit ρ1/2 term to equation (4.1)

destroys the simultaneous correspondence between ρ̃ and σ̃ for critical clouds.

To this point, we have not accounted for any mean magnetic fields in GMCs and cores.

However, these should have no effect on our estimate of AGMC insofar as very massive clumps

have the same αmag ≈ 1 as their parent clouds. More important is the assumption that the cores

here lie at the rare, highest-pressure peaks of cloud complexes; if instead they are found in less

extreme regions, then equation (4.11) is an upper limit to AGMC. Even so, more direct estimates

of AGMC are in fairly good agreement with the representative value quoted above. For example,

equations (4.7) and (4.8) can be combined to obtain an expression for σ2ave/σ
2
c ; comparison with

observed values of the total σave and the thermal σc in GMCs then suggests 0.12 ∼< AGMC ∼< 0.16.

On a final note, since ρ ∝ r−1 at the edges of such logotropes, we have

a = (1− 1/3)/(1 − 2/5) = 10/9. With the ratio of mean kinematic and magnetic pressures β ≃ 1,

equations (2.10) and (2.14) then give for the critical virial parameters,

αnon = 35/18 and αmag ≃ 1.07.

These are near 2 and 1, as expected from general arguments, and not far from the values 2.054

and 1.15 for a Bonnor-Ebert isothermal sphere. As alluded to earlier (§2.2), the mass-radius and

size-linewidth relations among real GMCs can therefore be understood in terms of this model:

equations (2.11b, c) become

M

R2
= 147 M⊙ pc−2

(
Ps
PISM

)1/2 ( PISM

104 k cm−3 K

)1/2

(4.12a)

and
σave
R1/2

= 0.37 km s−1 pc−1/2
(

Ps
PISM

)1/4 ( PISM

104 k cm−3 K

)1/4

, (4.12b)

which agree well with observations (cf. Elmegreen 1989). Here Ps is the surface pressure on

the molecular part of the GMC, while PISM is the total pressure of the hot, intercloud medium.

The ratio of these two is typically around 5 − 10, due to the weight placed on a GMC by its

UV-shielding atomic layer (Elmegreen 1989; also §2.2 above).

4.1. Comparison With Data: Molecular Cloud Cores

As a class, dense molecular cores seem somewhat more heterogeneous than their parent

GMCs. First, many studies (Carr 1987; Loren 1989; Stutzki & Güsten 1990; Lada, Bally, & Stark

1991) show that the size-linewidth relation between cores can be significantly weaker than the

virial, σave ∝ R1/2 scaling among GMCs, and in some cases is difficult to discern at all. Second,

in the L1630 GMC at least, the size-linewidth relation is considerably better defined for clumps

which stand out more strongly against the interclump medium (see the comparison in Fig. 13 of

Lada et al. between their “5σ” and “3σ” cores). And third, the virial parameters αmag of GMC
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cores are not restricted to values near 1, but rather can range as high as ≈100 (Bertoldi & McKee

1992; Williams et al. 1994, 1995).

This last point is particularly significant because the virial parameters of cores in a number

of different clouds are seen to correlate with their size: low mass goes along with rather large

αmag, and high mass with more moderate αmag ≈ 1. Thus, as Bertoldi & McKee (1992) argue, the

smallest clumps in GMCs are far removed from gravitational instability (surface pressure is more

important than self-gravity in their confinement), while the largest are actually near criticality

(strongly self-gravitating; see also §2.2 above). Equivalently, a range in the masses of cores can

be viewed, at least roughly, as a range in the dimensionless radii ξ — small for low mass, and

near ξcrit for high mass — at which they are truncated by the ambient pressure in a GMC (virial

parameters generally decrease with ξ for any equation of state; Appendix A). This notion could

account for the rather confused size-linewidth relation between cores (if ξ does not have a fixed

value, then neither do αnon and αmag in eq. [2.8b]), and ultimately must also have consequences

for the interpretation of data on the radial variation of velocity dispersion inside cores.

If indeed very low-mass cores differ from very high-mass ones mainly in being truncated at

ξlow ≪ ξhigh ≃ ξcrit, then the former must be less centrally condensed, have ratios Ps/Pc nearer

unity, and be generally less distinguishable from the intercore (GMC) gas than the latter. This

results in the scale radius r0 = 3σc/(4πGρc)
1/2 ∝ σ2c/P

1/2
c being larger for less massive clumps. To

see this, compare the r0 of a low-mass core, truncated at ξ small enough that Ps ≈ Pc, with the

r0 of a near-critical, high-mass core. On average, any two cores should be under similar surface

pressures Ps (this essentially being set by the internal Pave of a parent GMC), so that

r0(high)

r0(low)
≃
(
Ps
Pc

)1/2

high

[
σ2c (high)

σ2c (low)

]
≃
√
A

4

[
σ2c (high)

σ2c (low)

]
, (4.13)

where the second step follows from equation (4.7) if a logotropic equation of state applies.

Thus, for σc not too widely different between the two cores, and for A small enough, the ratio

(4.13) will be < 1. The same physical radius r in high- and low-mass cores then corresponds

to respectively larger and smaller ξ = r/r0. This result, which just reflects the fact that more

strongly self-gravitating structures are more centrally concentrated, must be considered when

attempting to match any model to any observations.

Returning now to the issue of internal velocity-dispersion profiles, Fuller & Myers (1992;

hereafter FM) and Caselli & Myers (1995; hereafter CM) have compiled linewidth measurements

in at least three different molecular lines for each of 14 low-mass and 24 massive cores. The

resulting σ vs. r profiles indicate that, over similar ranges r ∼ 0.1 − 1 pc in all the clumps, and

independently of whether or not stars are present within them, the velocity dispersion rises more

steeply with radius in low-mass cores than in high-mass ones. In particular, nonthermal linewidths

in the former are consistent with σNT ∝ r0.53; in the latter, σNT ∝ r0.21 (CM). In our view, this

situation is a direct result of the effect summarized by equation (4.13). That is, we consider the

low-mass cores of FM to be eminently stable logotropes truncated at small ξ, while the high-mass
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clumps of CM are near critical stability and hence have smaller r0. The two surveys target similar

r within each type of core, so the massive-core data apply to larger dimensionless ξ, and must

sample the shallower parts of velocity-dispersion profiles like those in Fig. 2.

To actually confront the predictions of our logotropic equation of state with the observations

of FM and CM, we again identify the (model) central velocity dispersion with the (observed)

thermal linewidth: σ2c = σ2T = kT/µmH , where T is taken from CM, and µ = 2.33. CM assume

T = 10 K for all the low-mass cores, and we further assume them all to have Ps ≈ Pc; they

should therefore have a common r0, which may be easily estimated. Five of the FM cores

are observed at radii rTNT such that σNT = σT; among these, 〈rTNT〉 ≃ 0.12 pc (see Table 3

of CM). The related quantity ξTNT = rTNT/r0 in a model logotrope is just that point where

σ2/σ2c = (σ2NT + σ2T)/σ
2
T = 2. If, for example, A = 0.2 in equation (4.1), we find ξTNT = 0.51, and

thus

r0(low) ≈ 0.25 pc .

This result is then used in equation (4.13), along with σ2c ∝ T and A = 0.2, to give

r0(high) ≈ 0.056 pc

(
Thigh
10 K

)
,

where 12 K ≤ T ≤ 33 K for the massive cores (CM). The data may now be appropriately scaled

and compared to theoretical σ − r and σNT − r curves.

Figure 3 is the result of such a comparison with three logotropes of different A. The good

overall agreement between the models and data suggests that GMC cores are well described by

Acore = 0.20± 0.02 ,

which is encouragingly close to AGMC as given in equation (4.11) above. In Table 1 we list the

radii and other properties (as calculated from eqs. [4.4] to [4.7] above) of critical logotropes with

A near 0.2.

Some of the scatter in Fig. 3 could arise if A does not have a common value for all cores,

and any embedded stars could further complicate the situation. (Notably, FM and CM both find

that starless cores alone show a tighter — but not different — linewidth-radius relation than do

cores with stars, suggesting that the basic form seen here is one of the initial conditions for star

formation.) However, some of the scatter is surely due to the fact that the cores in this sample

do not reside in a single GMC, but come from diverse environments. (For instance, the low-mass

cores here tend to be found in dark clouds of mass ∼ 104 − 105M⊙, and the high-mass ones in

somehat larger GMCs.) Thus, there is no guarantee that every low-mass core observes Ps ≈ Pc,

or that every high-mass core is at its critical mass. It is the large number of cores available here

which allows the mean trend in Fig. 3, and the implied structural dichotomy between small and

large clumps, to emerge.

As with our earlier consideration of core-to-GMC density and linewidth ratios, a fit of similar

quality to the data in Fig. 3 can be obtained with the model velocity-dispersion profile of an n = 2
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polytrope which has a scale r0 about a factor of two smaller than that used here. As we have

stressed, however, there are other difficulties with the application of polytropic equations of state

to GMCs and cores.

In summary, the approach we have taken self-consistently allows for purely thermal motions to

dominate on the smallest scales in cores (and in GMCs); for an internal density structure (ρ ∝ r−1

in the outer parts of cores, and much shallower near their centers) which is consistent with at

least some observations1 (Cernicharo et al. 1985; Stüwe 1990; André, Ward-Thompson, & Barsony

1993); and for a unified treatment of low- and high-mass cores. This is in contrast to the models

of FM and CM (also Myers & Fuller 1992), which assume two distinct components of isothermal

and nonthermal gas in cores and predict a ρ ∝ r−2 singularity at their centers. It should also be

noted that the assumption Ps ≈ Pc in low-mass cores still allows for these noncritical clumps to

show a fair degree of central concentration. For example, an A = 0.2 logotrope which is truncated

at ξ ≃ 0.1 ξcrit has ρs/ρc < 0.09, but Ps/Pc ≃ 0.5; thanks to the relatively weak dependence of P

on ρ, we do not require, nor even expect, that all low-mass cores be uniform-density spheres. Our

model is therefore consistent with the significantly non-uniform density profiles of low-mass cores

(αmag ∼> 3) in the Rosette GMC (Williams et al. 1995).

5. Summary

We have generalized the classic Bonnor-Ebert relations for isothermal spheres, to give

expressions for the masses, radii, and total velocity dispersions of magnetized, pressure-truncated

gas clouds with any internal pressure-density relation. The analysis combines an exact approach,

based on solving the equation of hydrostatic equilibrium, with a virial-theorem treatment to

incorporate mean magnetic fields into the clouds. A stability criterion has been developed that

relies only on the assumption of an invariant central velocity dispersion σc, and is independent

of the gas equation of state. Clouds which are just critically stable under this condition have

mass-radius and size-linewidth relations which are effectively oblivious to their internal structure,

i.e., to their equation of state.

These results have been applied to molecular cloud complexes and dense cores, leading to

three main conclusions:

1Williams et al. (1995) fit the projected density profiles of many clumps in the Rosette GMC, with a function of

the form (1 + rp/a)
−n — a being the projected half-power radius. They find n ≈ 1 outside of unresolved central

regions, and suggest that this implies an intrinsic density profile of ρ ∝ r−2. However, because molecular cores have

a finite extent, their density profiles in projection are not so simply related to their space densities. (For example,

the surface density of a core with any ρ profile must decline steeply in the outermost regions, as less and less of the

core material is intercepted by the line of sight.) Even a truncated logotrope, for which we might naively expect a

flat surface-density profile, actually gives rise to something consistent with n ≈ −0.8 to −1.0 over most radii in the

fitting function of Williams et al.; and the projected half-power radius is only a = 2.92r0 ∼ 0.2 pc for a critical,

A = 0.2 core (Rcrit = 24.37r0).
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(1) In spite of their nonspherical geometry, the gross features of GMCs are consistent with

those of critical-mass clouds in our analysis. (In the context of GMCs and cores, we identify the

central velocity dispersion with the thermal part of the total [thermal plus turbulent] linewidth.)

Independently of the exact equation of state, if equipartition between magnetic and kinetic energies

obtains in a critically stable cloud, then it will appear to be in simple gravitational equilibrium,

2 U +W ≈ 0 (equivalently, it will have a virial parameter αmag ≃ 1). These are observed features

of real GMCs and their most massive cores. In addition, any of our critical-mass spheres obey the

same mass-radius and size-linewidth relations which hold among real GMCs. All of this implies

that GMCs, and large clumps, are near criticality.

(2) No polytropic (power-law) pressure-density relation can fully characterize GMCs or cores.

A positive polytropic index leads to a velocity dispersion which decreases outwards within a cloud,

opposite to what is seen both in individual cores and in entire cloud complexes. Alternatively,

a negative index (i.e., P ∝ ργ with γ < 1) gives a linewidth which increases with radius, as

required. However, such clouds do not show virial parameters near unity unless their mean fields

are so strong that their magnetic and gravitational energies are comparable in magnitude, and

this is again in conflict with observations of GMCs and large cores. Given our stability criterion,

an equivalent statement is that pressure-truncated polytropes are unconditionally stable against

gravitational collapse. Since weakly damped Alfvén waves satisfy P ∝ ρ1/2 (McKee & Zweibel

1995), this shows explicitly that they cannot fully explain the observed nonthermal support in

molecular clouds.

(3) The most successful model for the internal structure of molecular cores, and one which is

also consistent with global properties of GMCs, is a “pure logotrope:” P/Pc = 1 + A ln(ρ/ρc).

This relation is meant to account for all contributions to the total gas pressure, including the

effects of disordered magnetic fields (MHD turbulence). Once it is recognized that low-mass

cores are far below their critical masses (though still in virial equilibrium; they are essentially

pressure-confined), and that high-mass cores are near criticality, the internal velocity-dispersion

profiles of clumps from a variety of environments are seen to be consistent with a logotropic

model with A ≃ 0.2. A similar value of A can also explain characteristic core-to-GMC ratios of

mean densities and linewidths, and any A is consistent with the observed size-linewidth relation

between GMCs because the logotropic equation of state allows for critical equilibria. Finally, the

equilibrium density profile of a logotrope has ρ ∝ r−1, outside of a constant-density central region.

There is some observational support to be found for this prediction, in GMCs and cores both.

We would like to thank Phil Myers for his comments on an earlier version of this paper, and

Charles Curry for valuable discussions. R.E.P. also acknowledges conversations with Paola Caselli

and Gary Fuller. This work was supported in part by the Natural Sciences and Engineering

Research Council of Canada.
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A. PRESSURE-TRUNUCATED EQUILIBRIA

For a spherical cloud in hydrostatic equilibrium, with kinematic (thermal plus turbulent)

pressure P = ρσ2 (so that σ is the one-dimensional velocity dispersion) and a self-gravitational

potential φ, we define

ψ =
φ− φc
σ2c

, r20 =
9σ2c

4πGρc
, and ξ = r/r0,

where a subscript c denotes evaluation of a quantity at the cloud center. The characteristic scale

of a cloud is set by r0; the factor of 9 in its definition identifies it with the projected half-power

radius of an isothermal sphere (e.g., Binney & Tremaine 1987). The equation of hydrostatic

equilibrium then reads
d

dξ

(
P

Pc

)
= − ρ

ρc

dψ

dξ
, (A1)

and Poisson’s equation becomes
1

ξ2
d

dξ

(
ξ2
dψ

dξ

)
= 9

ρ

ρc
. (A2)

(Note that ψ = dψ/dξ = 0 at ξ = 0, and ψ > 0 for ξ > 0.) The mass enclosed within radius ξ is

given by

M ≡M(ξ) = 4πρcr
3
0

∫ ξ

0
ξ′

2 ρ

ρc
dξ′ ,

so that, with the help of equation (A2),

M =
4π

9
ρcr

3
0

(
ξ2
dψ

dξ

)
=
σ2c r0
G

(
ξ2
dψ

dξ

)
. (A3)

Following Ebert (1955) and Bonnor (1956), the surface of the cloud is defined by that radius

ξ at which the internal pressure P (ξ) just equals a confining pressure Ps due to a surrounding

medium of negligible gravity. Equation (A3), the definition of r0, and the identity Pc = ρcσ
2
c then

yield, for any equation of state relating P and ρ,

M =

√
9

4π

(
ξ2
dψ

dξ

)(
Ps
Pc

)1/2 σ4c
(G3Ps)1/2

. (A4)

The physical radius of the cloud is R = ξr0:

R =

√
9

4π
ξ

(
Ps
Pc

)1/2 σ2c
(GPs)1/2

. (A5)

These relations combine to give

Σ ≡ M

πR2
=

√
4

9π

dψ

dξ

(
Ps
Pc

)−1/2 (Ps
G

)1/2

(A6)
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and

ρave ≡
3M

4πR3
=

1

3

(
1

ξ

dψ

dξ

)(
Ps
Pc

)−1 Ps
σ2c

. (A7)

Given an equation of state, the integration of equations (A1) and (A2) determines dψ/dξ and

Ps/Pc at any truncation radius ξ. This fixes the coefficients in equations (A4)–(A7) and affords

mass-radius and size-linewidth relations for pressure-truncated clouds. (Note that the scalings in

these relations — M ∝ σ4/P
1/2
s , R ∝ σ2/P

1/2
s , etc. — are global ones, and do not necessarily

reflect the radial dependence of any quantity inside a cloud.)

The definition of the non-uniformity parameter a (eq. [2.5]) allows it to be found as a function

of radius:

a =
15

ξ3

(
dψ

dξ

)−2 ∫ ξ

0
ξ′

3 dψ

dξ′
ρ

ρc
dξ′ ; (A8)

and equation (A3) implies that the virial parameter 5σ2aveR/GM for nonmagnetic clouds (i.e.,

αmag = αnon) is just

αnon = 5
σ2ave
σ2c

(
ξ
dψ

dξ

)−1

, (A9)

which tends to be a nonincreasing function of ξ. Alternatively, equations (A7) and (2.8d) give

αnon − a = 15

(
dψ

dξ

)−2 (Ps
Pc

)
. (A10)

These results can be used to rewrite equations (A4)–(A7) in terms of αnon, a, and σave; equations

(2.8) (with αmag = αnon) are then obtained. Also, once αnon is known as a function of radius in

any cloud, the observable αmag for a given magnetic field configuration may be calculated (e.g.,

§2.3).

B. STABILITY CRITERION

We begin by recalling the definition of the scale radius r0 from equation (A3):

r0 =
GM

σ2c

(
ξ2
dψ

dξ

)−1

; (B1)

and rearranging equation (A4):

Ps =
9

4π

(
ξ2
dψ

dξ

)2 (Ps
Pc

)
σ8c

G3M2
. (B2)

The stability of a cloud truncated at radius R by the external pressure Ps is determined by the

sign of the derivative (∂Ps/∂R): this is negative for a stable equilibrium, 0 for the “critical” cloud,

and positive for instability.
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We now apply a perturbation R → R + dR, while keeping the mass M and central (i.e.,

thermal) velocity dispersion σc of the cloud fixed, so that

(
∂Ps
∂R

)

M,σc

=

(
∂Ps
∂ξ

)

M,σc

(
∂ξ

∂R

)

M,σc

. (B3)

Then R = ξr0 and equation (B1) give us

(
∂ξ

∂R

)

M,σc

=
1

r0

[
1 +

ξ

r0

(
∂r0
∂ξ

)

M,σc

]−1

=
1

r0

[
1− ξ

(
ξ2
dψ

dξ

)−1 d

dξ

(
ξ2
dψ

dξ

)]−1

=
1

r0

[
1− 9ξ

(
dψ

dξ

)−1 ρs
ρc

]−1

, (B4)

where ρs is the density just inside the cloud edge and we have used Poisson’s equation (A2). We

also have, from equation (B2),

(
∂Ps
∂ξ

)

M,σc

= Ps

(
dψ

dξ

)−1 (Pc
Ps

)[(
2
d2ψ

dξ2
+
4

ξ

dψ

dξ

)(
Ps
Pc

)
+

(
dψ

dξ

)2 d

dψ

(
Ps
Pc

)]

= Ps

(
dψ

dξ

)−1 (ρs
ρc

)[
18−

(
dψ

dξ

)2 (Ps
Pc

)−1
]
, (B5)

where both equations (A1) and (A2) have been used.

Thus, equations (B3), (B4), and (B5) show that

(
∂Ps
∂R

)

M,σc

= 18
Ps
R

[
1− (1/18)(dψ/dξ)2(Ps/Pc)

−1

(1/ξ)(dψ/dξ)(ρc/ρs)− 9

]
. (B6)

Now, from equations (A10) and (A7), we have

1

18

(
dψ

dξ

)2 (Ps
Pc

)−1

=
5

6

1

αnon − a
and

1

ξ

(
dψ

dξ

)
= 3

ρave
ρc

,

so that finally, (
∂Ps
∂R

)

M,σc

= −6
Ps
R

[
1− (5/6)(αnon − a)−1

3− ρave/ρs

]
. (B7)

Alternatively, for a nonmagnetic cloud, we can make use of equation (2.8c), with αmag = αnon, to

write (
∂Ps
∂R

)

M,σc

= −6
Ps
R

[
1− (πGΣ2)/(8Ps)

3− ρave/ρs

]
. (B8)

This treatment is valid for any gas equation of state, so long as the cloud radius is perturbed in

such a way that M and σc are unaffected. The result (B8) was also obtained by Ebert (1955) and
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Bonnor (1956), who specifically considered the stability of truncated isothermal spheres, and by

Maloney (1988) in his study of negative-index polytropes.

Any virialized cloud truncated at small ξ (i.e., where ρ and σ2 are approximately constant)

will be stable. This is because, regardless of the equation of state, the potential ψ at small radii

can always be expanded in a power series of the form: ψ = (3/2)ξ2 −O(ξ4) (see Appendix C for an

example). Thus, referring to equation (B6) with ρs ≈ ρc, we have (∂Ps/∂R)M,σc ≈ −3Ps/R < 0.

Depending on the equation of state, there may or may not be a truncation at larger ξ which

results in (∂Ps/∂R)M,σc > 0 and an unstable equilibrium.

C. POLYTROPES OF NEGATIVE INDEX

Consider the (nonmagnetic) equation of state

P ∝ ρ1+1/N ,

where the polytropic index N < −1. Then we define n = N/(N + 1) and write

P = ρcσ
2
c

(
ρ

ρc

)1/n

, n ≥ 1, (C1)

with n = 1 corresponding to isothermality. In order to evaluate the coefficients in equations

(A4)–(A7) (or [2.8], with αmag = αnon), we first use the relation (C1) to integrate the equation of

hydrostatic equilibrium (A1) and find

ρ

ρc
= [1 + (n− 1)ψ]n/(1−n), (C2)

so that Poisson’s equation (A2) becomes

1

ξ2
d

dξ

(
ξ2
dψ

dξ

)
= 9[1 + (n− 1)ψ]n/(1−n). (C3)

(Note that in the limit n→ 1, the right-hand side of eq. [C3] becomes 9e−ψ, just what is required

for the isothermal sphere.) At the cloud center, ψ = dψ/dξ = 0, so for small ξ the potential ψ can

be expanded in a power series,

ψ −→ 3

2
ξ2 − 3n

40
ξ4 +O(ξ6), (C4)

allowing for an integration of equation (C3). The result of this is a core-halo structure to the

cloud: at very small radii, the solution is indistinguishable from that for an isothermal sphere, and

the density and velocity dispersion are essentially constant with ξ, independently of n. Once ξ ∼>
a few, however, a power-law density profile obtains; for each n, there exists a singular solution to

which the equilibrium cloud tends at large radii.

These singular solutions are readily found by substituting the prescription

ρ

ρc
= Kξ−p
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into equation (C2) and solving (C3) for K and p. This gives

p =
2n

2n− 1
and K =

[
2

9
(p − 1)(3− p)

]p/2
, (C5)

so that with n ≥ 1 we have 1 < p ≤ 2, and these clouds are diffuse enough that they have no

“natural” edge. That is, the density never vanishes, and any boundary to the cloud must be

defined by the point at which the internal pressure matches that of an external medium. (It is

again worth noting the exact correspondence to the singular isothermal sphere when n = 1 in

eq. [C5]; cf. Chandrasekhar 1967.)

Consider now a polytrope of negative index, which is truncated at radius ξ large enough

that the structure of the cloud is given by the singular solution. Then dψ/dξ and Ps/Pc can be

calculated analytically, and equation (A10) yields

αnon − a =
5

6
(4n − 3) . (C6)

We also know that a = (1 − p/3)/(1 − 2p/5), so

αnon =
5

2

(4n − 3)(2n − 1)

6n− 5
(C7)

and we have the following:

M =

√
2

π(4n − 3)3

(
6n − 5

2n − 1

)2 σ4ave
(G3Ps)1/2

, (C8)

R =

√
1

2π(4n − 3)

6n− 5

2n− 1

σ2ave
(GPs)1/2

, (C9)

Σ =

√
8

π(4n − 3)

(
Ps
G

)1/2

, (C10)

and

ρave =
6n− 3

6n− 5

Ps
σ2ave

. (C11)

Thus, regardless of where they are truncated by the surface pressure Ps, these model clouds can

only ever represent modest enhancements over the intercloud medium. In particular, Pave/Ps has

a maximum of 3 (for isothermality, n = 1), but even for n = 2 (which gives the ρ dependence of

Alfvén wave pressure; McKee & Zweibel 1995) is reduced to just 9/7.

As discussed in §3, any truncation of a negative-index polytrope results in a stable cloud.

This is because, with ρ ∝ r−p, we have that ρave/ρs = 3/(3 − p), and the stability criterion (B7)

becomes (with the help of [C6]) (∂Ps/∂R)M,σc = −4Ps/R < 0. In particular, this holds in the limit

n → 1, when the numerator and denominator of (B7) both vanish. What allows for the existence

of critical and unstable equilibria for the bounded isothermal sphere, then, is the fact that its
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density profile actually oscillates about the singular solution ρ ∝ r−2 at large radii (Chandrasekhar

1967). This does not occur for those polytropes with n > 1; instead, the bounded spheres follow

the singular solutions exactly at large ξ.

Finally, it is worth noting that these results do not contradict the well known instability (e.g.,

Shu 1977) of truly singular spheres, for which ρ ∝ r−p all the way to the center and ρc → ∞. In

such cases, perturbation of the truncated cloud radius is performed with M , σc, and ρc all held

fixed. Stability then depends only on the sign of (∂Ps/∂ξ)M,σc (eq. [B5]), which is always positive

for these polytropes.
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Table 1. Properties of Critical Logotropes.

A ξmax ξcrit ρs/ρc σ2s/σ
2
c σ2NT,s/σ

2
c Ps/Pc

0.18 51.73 40.29 4.96 × 10−3 9.07 8.07 0.045

0.20 31.29 24.37 8.65 × 10−3 5.78 4.78 0.050

0.22 20.83 16.22 1.36 × 10−2 4.04 3.04 0.055
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Fig. 1.— Comparison of the logotropic equation of state [P/Pc = 1 + 0.18 ln(ρ/ρc)] with those

for Alfvén wave pressure [P/Pc = (ρ/ρc)
1/2] and a logotrope-plus-isothermal sphere combination

[P/Pc = ρ/ρc + 0.1 ln(ρ/ρc)].

Fig. 2.— Structure of a logotropic gas sphere with A = 0.18. The vertical line in all four panels is

at the truncation radius which makes for a critically stable cloud: ξcrit = 40.29. The long-dashed

line in the plot of ρ vs. r is the singular density profile of eq. (4.3); that in the plot of total linewidth

(bottom left) represents σ2 ∝ r2/3; and those in the plot of nonthermal linewidth (bottom right)

trace σ2NT ∝ r and σ2NT ∝ r1/2. Recall that r20 ≡ 9σ2c/4πGρc.

Fig. 3.— Comparison of observed internal velocity-dispersion profiles (total σ, thermal and

nonthermal components σT and σNT) with logotropic models, for 38 GMC cores. Open squares

correspond to low-mass cores (Fuller & Myers 1992), and filled symbols to high-mass cores (Caselli &

Myers 1995; we omit four HCO+ measurements). Cores both with and without stars are represented

here, and each has been observed in three or more different molecular lines. The model curves are

for A = 0.20 (best case; solid line), and A = 0.18, A = 0.22 (dashed lines); a larger A results

in smaller maximum and critical radii r/r0. The vertical line is at ξcrit = 24.37 for an A = 0.2

logotrope.
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