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ABSTRACT

Microlensing events are now regularly being detected by monitoring the flux of a large number of

potential sources and measuring the combined magnification of the images. This phenomenon could

also be detected directly from the gravitational deflection, by means of high precision astrometry

using interferometry. Relative astrometry at the level of 10µas may become possible in the near

future. The gravitational deflection can be measured by astrometric monitoring of a bright star

having a background star within a small angular separation. This type of monitoring program will

be carried out for the independent reasons of discovering planets from the angular motion they induce

on the nearby star around which they are orbiting, and for measuring parallaxes, proper motions and

orbits of binary stars. We discuss three applications of the measurement of gravitational deflections

by astrometric monitoring: measuring the mass of the bright stars that are monitored, measuring

the mass of brown dwarfs or giant planets around the bright stars, and detecting microlensing events

by unrelated objects near the line of sight to the two stars. We discuss the number of stars whose

mass could be measured by this procedure. We also give expressions for the number of expected

microlensing events by unrelated objects, which could be stars, brown dwarfs, or other compact

objects accounting for dark matter in the halo or in the disk.

Subject headings: gravitational lensing - astrometry - techniques: interferometric - stars: masses -

stars: brown dwarfs - planetary systems
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1. INTRODUCTION

The search for gravitational microlensing in stars of the Large Magellanic Cloud was suggested

by Paczyński (1986) as a technique to discover compact objects that might account for part of the

dark matter. Microlensing in the galactic bulge can be similarly used to study the distribution

and mass function of stars (or dark matter) in our Galaxy (Paczyński 1991; Griest 1991; Kiraga

& Paczyński 1994; Zhao, Spergel, & Rich 1995; Han & Gould 1996. See also Paczyński 1996 for a

review). About 100 microlensing events have been detected so far over three years, mostly towards

the bulge (Udalski et al. 1994a,b,c; Alcock et al. 1995, 1996a,b; Alard 1996). In principle, all the

stars in our Galaxy can be microlensed by other stars in the foreground, although the optical depth

is generally much lower than towards the bulge.

An alternative technique to monitoring the flux of a large number of potential sources to detect

microlensing events is to search for candidate lenses, and then check if there are any sources along

the path of the lens once the proper motion is known. This only works for lenses with high proper

motion, in which case the positions of candidate sources can be measured and used to predict the

event a reasonable time before it takes place. Paczyński (1995) has proposed to search for such high

proper motion stars in the bulge fields, or elsewhere in the galactic plane; in many cases, these stars

will be faint M dwarfs which, even if they are nearby, will still not be much brighter than many field

stars at the distance of the bulge, and microlensing could be observed from the usual magnification

lightcurve.

Microlensing can also be detected directly from the gravitational deflection, if the positions

of the images can be monitored with very high accuracy using interferometry (Hog, Novikov, &

Polnarev 1995; Miyamoto & Yoshii 1995; Gould 1996). Whereas the maximum magnification in a

microlensing event goes as θ−4 when the impact parameter θ is high, the deflection decreases only

as θ−1. Thus, with good astrometric accuracy the effect can be observed for very large impact

parameters, increasing enormously the probability of detecting an event.

The very high astrometric accuracy required for microlensing can be achieved using

interferometry in the near infrared to measure the relative position of a bright guide star (used

to correct for the phase shift caused by seeing), and a reference star located within the isoplanatic

angle of the guide star, which has a radius of ∼ 30′′, using the technique of closure phase (??? Shao

& Colavita 1992a). The astrometric accuracy of ground-based interferometers is at present ∼ 50µas

in the Palomar Testbed Interferometer, with guide stars of magnitude K
∼
< 6 and reference stars

with K
∼
< 14. However, using the two Keck telescopes or the VLT, this may be improved to 10 µas

and down to guide and reference stars 2 to 4 magnitudes fainter (Shao & Colavita 1992a,b; Shao

1996, priv. communication). In this paper, the terms guide and reference star shall refer to any

pair of stars that can be used for relative astrometry with this technique. It turns out that the

observations required to find background stars and search for gravitational deflection are exactly

the same as what is needed to discover planets or brown dwarfs around nearby stars. Any program

to discover planets by direct imaging near stars bright enough to be used as guide stars will also

identify any background stars adequate as references. Monitoring the relative position of the guide
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and reference stars may be done for the main purpose of discovering planets from the angular motion

they induce on the star around which they orbit (or for measuring parallax, proper motion, or the

orbit of a binary system in either the guide or the reference star), but will also reveal the presence

of gravitational deflection.

This paper will describe three possible applications of an astrometric monitoring program related

to microlensing: measuring the mass of the guide star, measuring the mass of a planet or brown

dwarf near the guide star, and detecting microlensing events by other objects along the line of sight.

2. MICROLENSING WITH ASTROMETRY

We first consider the probability to observe a microlensing event when monitoring the position

of a background star near another bright star. Astrometric monitoring of such a pair of stars would

usually be done for the primary purpose of searching for planets, so the guide star will be chosen

to be nearby to maximize the angular motion caused by a planet, and the fainter reference star will

typically be more distant.

The microlensing optical depth towards the reference star, assumed to be at a distance Ds, is

the fraction of the sky filled by the Einstein radii of all the lenses along the line of sight, which we

assume to have a constant density n =
∫

n(M) dM , where M is the mass of the lens. The Einstein

radius is

θE =

(

4GM

c2 D

Ds −D

Ds

)1/2

, (1)

where D is the distance to the lens, and the optical depth due to lenses of mass M is

τ(M) dM =

∫ Ds

0

dDD2 n(M)πθ2E dM =
2πGD2

sρ(M)

3c2
dM , (2)

where ρ(M) = Mn(M) is the density of lenses of mass M . This optical depth is the probability

that the reference star is within an Einstein ring at any given time, where the total magnification is

larger than (9/5)1/2 (Paczyński 1986).

When we are searching for microlensing with astrometric measurements, where an event is

detected if the maximum deflection is larger than θmin, the maximum impact parameter that allows

a detection is θ = θ2E/θmin. The relevant quantity is then the fraction of the sky where the deflection

is larger than θmin, which we call the “deflection optical depth”, τd:

τd(M) ≡

∫ Ds

0

dDD2 n(M)πθ2 = 5(θEs/θmin)
2 τ(M) , (3)

where θ2Es ≡ 4GM/(c2Ds).

As an example, we consider compact objects accounting for the dark matter in the halo, with a

local density ρh0 = 0.01M⊙ pc−3. The usual optical depth is τ = 2.5× 10−8(Ds/5 kpc)
2, and from

deflection the optical depth is τd = 2.3× 10−4(M/M⊙) (Ds/5 kpc) (30µas/θmin)
2. For known stars
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and dark matter in the disk, with local density ρd0 = 0.05M⊙ pc−3 (see Gould, Flynn, & Bahcall

1996), an optical depth 5 times larger is inferred as long as the source star is in the plane, so that the

assumption of a constant density of lenses is approximately valid. Because these observations would

be made in the infrared, adequate sources could probably be found to considerably larger distances

in the galactic plane than in the visual bands. Towards the bulge, the optical depth is known to be

τ ∼ 3× 10−6, but the Einstein radii are smaller (∼ 0.3mas, consistent with the observed durations

and the velocity dispersion that the lenses and sources should have), so the deflection optical depth

for the same events is τd ∼ 3× 10−4(30µas/θ2min). The durations of these events would be θE/θmin

times longer than the magnification events, or 1 to 10 years.

The deflection angle observed during a microlensing event when the impact parameter is much

larger than the Einstein radius is

α =
θ2E

θ2
0
+ (µt)2

(θ0 + µt) , (4)

where θ0 is the impact parameter and µ is the proper motion. If only this deflection is measured, only

the parameters θ2E/θ0 and µ/θ0 are obtained. To measure the Einstein radius, an independent source

of information is needed to obtain the impact parameter. When the impact parameter is small, the

magnification is also measured and this gives the impact parameter (and the deflection angle in (4)

is then also not exact, breaking the degeneracy), but in most cases the impact parameter will be too

large. The maximum impact parameter where the magnification is measurable should be θ0 ≃ 3θE ,

corresponding to Amax = 1.008. Thus, when the lens is unknown the only quantity independent of

the impact parameter that is measured is θ2E/µ, a similar situation to the microlensing events where

only the magnification is observed, and the event duration tE = θE/µ is the measured quantity.

However, the gravitational deflection also allows us to determine the direction of the relative proper

motion between the lens and the source. The deflection trajectory predicted by equation (4) must be

observed with some minimum degree of sampling and accuracy to be confident that a microlensing

event has been detected, since an apparent relative angular acceleration of the two stars could be

due to several other causes. For example, the reference star might be a binary system (notice that

this would be more difficult to distinguish from a planet orbiting the guide star).

In order to detect several microlensing events from the gravitational deflection, many thousands

of stars would have to be monitored astrometrically over several years, with a frequency of a few

observations per year. The total number of stars brighter than K = 5, to be used as guide stars,

is ∼ 40000 (similar to stars with V < 8), and the probability to find a reference star brighter than

K = 14 in a field 30′′ in radius is ∼ 15% (see Fig. 5 of Shao & Colavita 1992b). Therefore, only a

few thousand pairs would be available for these magnitude limits (although the fact that both the

potential guide stars and reference stars are concentrated to the galactic plane would increase the

number of pairs available), and probably only a fraction of these can be observed given realistic

observing times. Thus, it seems that detecting many events can only be done with more powerful

interferometers than the present ones, and a large technological breakthrough would be required.

Probably, the positions of many background stars would have to be measured simultaneously in

crowded fields. Nevertheless, given that these observations will be done in any case in order to
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discover planets, one should keep in mind that the possibility to detect microlensing events is not

negligible.

The optical depth is of course increased with higher astrometric accuracy. For a fixed mass of

the lens, events of smaller deflections would also imply longer event timescales. However, if brown

dwarfs with M ∼ 10−2M⊙ account for dark matter in the disk with ρd0 = 0.05M⊙ pc−3, then

events with maximum deflection of 1µas would still have timescales of ∼ 3 years, and optical depth

τd ∼ 10−2.

Finally, we point out that the search for microlensing events using the deflection can detect

extended objects of lower surface density than using the magnification, down to Σcrit (θmin/θE)
2.

For objects of M = 1M⊙ at distances of a few kpc, and θmin/θE ∼ 10−2, this corresponds to

densities of ∼ 1010GeV cm−3.

3. MEASUREMENTS OF GUIDE STAR MASSES

The position of the reference star (assumed to be much more distant than the guide star) will

also be deflected by the guide star by an angle α = θ2E/θ. Measurement of this deflection angle yields

the mass of the guide star, since the parallax difference of the two stars (equal to (Ds −D)/(DDs))

is the only other quantity that θE depends on, and is accurately measured by the astrometric

monitoring (and in this case, the impact parameter is obviously known).

In order to measure the mass of the star, observations have to be done over a period t ≃ θ0/µ,

where µ is the proper motion 1. In addition, the impact parameter must be smaller than θ2E/θmin,

where θmin is the minimum deflection angle that is measurable. The ratio

θ2E
θmin µt

= 2.6
M

M⊙

50 km s−1

v

10 yr

t

30µas

θmin

Ds −D

Ds
, (5)

where v is the transverse velocity of the guide star, will most often be greater than unity (except for

high velocity, low-mass stars, which will rarely be bright enough for being used as guide stars). This

implies that if a microlensing event with a timescale
∼
< 10 yr is predicted from the known positions

and proper motions of two stars adequate for relative interferometry, then the deflection will in most

cases be measurable with present interferometry techniques.

The difficult challenge is to find the potential guide-reference star pairs that are sufficiently

close to produce an event on a timescale less than some specified value t. To estimate the number

of events that can be predicted by searching near all possible guide stars, we define N(µ, F ) dµ

as the number of stars in the sky having proper motion µ, with flux brighter than F . If an area

(µt)2 around each star is searched for potential reference stars, with average number density nref ,

1 For a smaller observing time, only a small fraction of the deflection trajectory is observed, and

the difference from a linear trajectory (which is the only information on the deflection) is of order

(θEµt)
2/θ3

0
; moreover, accelerations due to orbiting companions cannot easily be distinguished
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then the expected number of pairs (each of which will be a predicted event that can yield a mass

measurement) is Npair =
∫

dµN(µ, F )(µt)2 nref .

We have used the Hipparcos Input Catalogue (Turon et al. 1992) to estimate this number of

events. We use V magnitudes, since K magnitudes are unfortunately not available for all bright stars.

This catalogue is complete down to V = 7.3. Figure 1 shows the sum of µ2 over all stars brighter than

the indicated magnitudes. When multiplied by t2nref , this yields the number of expected pairs. We

see that most of the area available for predicting events is in stars with µ
∼
> 0.5′′/ yr, and it increases

only slowly with magnitude. This can be simply understood as follows: Stars with µ
∼
> 0.1arcsec/ yr

(corresponding to 50 km s−1 at D = 100 pc) should be nearby disk stars, or spheroid and thick disk

stars at distances larger by no more than a factor ∼ 5. Thus, their density and velocity distribution

can be approximated as constant, which implies that N(µ, F )dµ = G(F/µ2) (dµ/µ4), where G is a

convolution of the cumulative luminosity function with the distribution of transverse velocities. The

expected number of events goes as
∫

(dµ/µ2)G(F/µ2), which will converge at low µ when G decreases

faster than µ−1 with decreasing µ, or equivalently when the cumulative luminosity function is steeper

than φ(L) ∼ L−1/2. This slope is achieved for luminosities L ∼ 0.1− 1L⊙ in the V band (and lower

luminosities in the K band), which for a limiting magnitude V = 8 would be at D = 20 pc, with

typical proper motion 0.5′′/ yr.

For an observing time t = 10 yr, the number of events that can be predicted is ∼ Nref/10
7,

where Nref is the total number of stars above the magnitude limit for reference stars (notice that

high proper motion stars are isotropically distributed in the sky, so only the total number of reference

stars available is relevant here). The total number of stars is 1.8×108 down to V = 17, and 6.5×108

down to V = 20 (see Table 4.2 in Mihalas & Binney 1981); the numbers are probably similar above

K = 14 and K = 17, respectively (see also Figure 5 in Shao & Colavita 1992b). Thus, even with the

limit K = 14, we would expect to predict ∼ 20 events leading to mass measurements. Most of the

events will be caused by nearby stars, which would be likely candidates for astrometric monitoring

in a planetary search program in any case.

4. MEASUREMENT OF PLANET AND BROWN DWARF MASSES

The major reason to conduct astrometric monitoring programs will be to discover planets from

the angular motion induced on the guide star. This angular motion is proportional to the mass of

the planet, so the most massive planets are likely to be discovered. Giant planets and brown dwarfs

may also be discovered by direct imaging. Mass measurements of these objects are important for

testing theories of their structure and evolution (e.g., Marley et al. 1996). If the angular motion of

the star is observed for a sufficiently long time to determine the orbit the mass of the planet can be

derived, but the orbital period may be very long. So far, several giant planets have been discovered

from radial velocity measurements (Mayor & Queloz 1995; Marcy & Butler 1996; Butler & Marcy

1996) and a brown dwarf by imaging (Nakajima et al. 1995, Oppenheimer et al. 1995). The brown

dwarf (Gl 229B) should have an orbital period of several hundred years.
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The mass of a companion of a guide star could also be measured from its gravitational deflection

of the light of the reference star. The best case is for brown dwarfs. Assuming a massMbd = 0.03M⊙

at a distance of 10 pc, the brown dwarf Einstein radius is 5mas, and at a separation of 1” the

deflection angle is 25µas. The luminosity of this brown dwarf would be as low as 5 × 10−7L⊙ (or

K = 17 at 10 pc) unless it is younger than a few billion years (e.g., Marley et al. 1996), so it should

generally be detectable. Assuming the brown dwarf is detected prior to the microlensing event, the

time and the maximum deflection of the event could be predicted.

For the low masses of brown dwarfs and giant planets, the maximum impact parameter of

an event is probably limited by the astrometric accuracy, rather than the proper motion and the

observing time. Therefore, the area where a background star would produce an observable deflection

is 2µt θmax, or 20 arcsec2 for typical brown dwarf parameters, giving an average probability of 1%

for an event for a magnitude limit K = 18. The brown dwarf GL229B has µ = 0.74′′/ yr, D = 7pc,

and for a mass M = 0.03M⊙ and θmin = 10µas an area of 40 arcsec2 is swept by every ten years.

Since the galactic latitude is 15◦, the chance to find an adequate reference star in this area is not

very small.

Discovering a previously unknown planet from the gravitational deflection is much more difficult,

because many stars would have to be frequently monitored to search for rare and short events if

they are not predicted in advance. However, the discovery of planets with microlensing over a

wide mass range (down to much lower masses than those under discussion here) in distant systems

using the traditional technique of measuring magnification lightcurves is very promising, as has been

thoroughly discussed (Mao & Paczyński 1991; Gould & Loeb 1992; Bennett & Rhie 1996).

5. CONCLUSIONS

Accurate astrometric monitoring of pairs of guide and reference stars with interferometry will

determine proper motions and parallaxes of high precision, and reveal extrasolar planets. Exactly

the same observations should reveal gravitational deflection of the reference star (which is normally

much more distant than the guide star) by the guide star, by any orbiting companions of the guide

star, and by other objects near the line of sight to the reference star.

Initially, most of the stars that will be monitored will be nearby, because the angular motion

caused by planets is larger for nearby stars. These are also the more likely stars to have adequate

reference stars allowing for a mass measurement, given their high proper motions. They are also the

best candidates for measuring the mass of a companion brown dwarf, for the same reason (notice also

that the deflection angle at a fixed angular impact parameter scales as the inverse of the distance). To

detect microlensing by other objects, the most important consideration is to find a distant reference

star, which increases the optical depth. Any guide star is equally good (in fact, distant ones are

best because events involving the guide star could also be detected). Although distant guide stars

would not be chosen for discovering planets, their astrometric monitoring is also interesting for high

precision measurement of parallaxes and proper motions.
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At present, the detection of gravitational deflection is still difficult, and probably only a handful

of stellar masses may be determined in the next ∼ 10 years. Of course, the number of events that

can be detected increases enormously with the astrometric accuracy and the total length of time

of observation. Many binary star orbits are only known to us today because of the observations

done over periods of 100 years or longer. Over the long term, the use of gravitational deflection to

measure masses is likely to become of fundamental importance in astronomy.

Acknowledgements I thank Andy Gould for many comments that resulted in a much

improved paper, and John Bahcall, Shri Kulkarni, Bohdan Paczyński and Michael Shao for useful
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Figure 1: The vertical axis shows the sum of the square of the proper motions
over all stars in the Hipparcos Input Catalog brighter than V=(8,7.5,7,6.5,6), and
with proper motion higher than µ. When multiplied by the square of the observing
time in years, and by the average density of reference stars in arcsec−2, this yields
the expected number of stars whose mass can be measured from the gravitational
deflection of the reference star light.


