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Abstract

We describe and compare two types of microwave sky simulations which

are good for small angular scales. The first type uses expansions in spherical

harmonics, and the second one is based on plane waves and the Fast Fourier

Transform. The angular power spectrum is extracted from maps correspond-

ing to both types of simulations, and the resulting spectra are appropriately

compared. In this way, the features and usefulness of Fourier simulations are

pointed out. For ℓ ≥ 100, all the simulations lead to similar accuracies; how-

ever, the CPU cost of Fourier simulations is ∼ 10 times smaller than that for

spherical harmonic simulations. For ℓ ≤ 100, the simulations based on spherical

harmonics seem to be preferable.

Subject headings: cosmic microwave background—cosmology: theory—large-scale

structure of the universe
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1 Introduction

There are important questions which could be addressed through simulated maps of

the microwave sky. How well can we recover the angular power spectrum of the cosmic

microwave background (CMB) and the cosmological parameters from maps of a given

experiment, which can have holes and regions with non-uniform sampling? How well

can we subtract foregrounds from a multifrequency map? An important issue for

small angular scale simulations is their great computational cost. It is important to

have fast and accurate methods to do simulations. This paper is concerned with the

comparison of two of these methods.

Large-scale simulations of the microwave sky are based on the expansion of the

temperature contrast in spherical harmonics,

δT

T
(θ, φ) =

lmax
∑

l=1

m=+l
∑

m=−l

almYlm(θ, φ). (1)

Typically lmax ≤ 40 in COBE-like maps, since the number of coefficients, alm, to

be calculated is (lmax + 1)2, and there are questions of numerical accuracy in high

order calculations. In order to make high resolution maps — resolutions ∼ 10′—

lmax must be of order 103 so that the number of coefficients to be calculated is of

order 106; moreover, the 106 spherical harmonics must be evaluated accurately in

roughly 106 locations in a full-sky map (104 locations in a 20◦ × 20◦ field). Thus,

for high angular resolution, the spherical harmonic expansion becomes difficult even

with modern computing power. Although simulations based on spherical harmonics

are feasible (Hinshaw, Bennett & Kogut 1995; Kogut, Hinshaw & Bennett 1995;
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Jungman et al. 1995), the Fast Fourier Transform (FFT) is shown to be useful in

order to make simulations efficiently on small angular scales. Hereafter, simulations

using spherical harmonics are called “SH simulations”, while those based on plane

waves are called “FFT simulations”. The main goal of this paper is the comparison

of the accuracies and the CPU costs corresponding to SH and FFT simulations. Both

approaches use the Cℓ ≡
∑m=ℓ

m=−ℓ |aℓm|
2/(2ℓ+1) quantities corresponding to the model

described in Sec. 2. The method used to extract the angular power spectra from

the simulated maps is described in Sec. 3. FFT simulations are described in Sec. 4,

while SH simulations are presented in Sec. 5. Comparisons between FFT and SH

simulations are given in Sec. 6 and, finally, Sec. 7 contains the main results and a

general discussion.

2 The model

All the simulations presented in this paper are based on a single cold dark matter

(CDM) model for large scale structure formation. In this simple CDM model, no

reionization modifies the CMB anisotropies, the background is flat (Ω0 = 1), the

cosmological constant vanishes, scalar fluctuations are Gaussian, their spectrum is

scale-invariant, and tensor fluctuations are absent. This model is hereafter called the

minimal CDM model. The free parameters of this model are: the amplitude of the

angular power spectrum of the CMB, the density parameter of the baryonic matter

Ω
B
and the reduced Hubble constant h. The parameters Ω

B
and h are involved in
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the transfer function; their values are assumed to be 0.03 and 1/2, respectively.

In the above model, the normalization of the angular power spectrum is fixed by

to rms quadrupole of the CMB anisotropy generated by scalar modes by using the

estimator Qrms−PS found by fitting the observed temperature fluctuations assuming

a scale-invariant primordial density power spectrum. In the absence of tensor modes,

experiments measuring at large angular scales, such as COBE (Smoot et al. 1992,

Bennett et al. 1992, Wright et al. 1992) and TENERIFE (Hancock et al. 1994),

provide estimations of Qrms−PS. The Cℓ coefficients have been taken from Sugiyama

(1995) and renormalized according to the four-year COBE data (Qrms−PS ≃ 18 µK,

Gorski et al. 1996). All the simulations performed in this paper are based on these

Cℓ coefficients.

3 Obtaining the angular power spectrum from sim-

ulated maps

In this section, we describe the method used in order to extract the angular power

spectrum from a given map. Let us give some useful definitions.

The autocorrelation function can be defined as C(θ) = Cσ=0(θ), where

Cσ(θ) =

〈(

δT

T

)

σ

(~n1)

(

δT

T

)

σ

(~n2)

〉

. (2)

The angle between the unit vectors ~n1 and ~n2 is θ. The angular brackets stand

for the mean over many full realizations of the CMB sky. The quantity ( δT
T
)σ(~n) is
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the temperature contrast in the direction ~n after smoothing with a Gaussian beam

described by σ = 0.425θ
FWHM

.

Function Cσ(θ) can be expanded in the following form:

Cσ(θ) =
1

4π

∞
∑

ℓ=2

(2ℓ+ 1)CℓPℓ(cos θ)e
(−ℓ+0.5)2σ2

. (3)

where the Cℓ quantities define the power spectrum of the CMB. These quantities have

been calculated in many theoretical models of structure formation.

From Eq. (3) one easily obtains the relation:

Cℓ(σ) = e(−ℓ+0.5)2σ2

Cℓ =
32π3

(2ℓ+ 1)2

∫ π

0
Cσ(θ)Pℓ(cos θ) sin θdθ . (4)

Given a simulated map, the function Cσ(θ) is obtained by using Eq. (2). For each

value of θ, many pairs of direction vectors (~n1, ~n2)—forming a fixed angle θ—are

randomly chosen. To be more precise, the direction vector ~n1 is chosen to point at a

random node of the map—where the temperature is known—while the direction ~n2 is

randomly placed on a cone centered on the node corresponding to ~n1. The half-width

of this cone is θ. The temperature corresponding to the direction ~n2 is obtained by

interpolating between neighboring nodes. As discussed below, mathematical interpo-

lation introduces only a small error in the resulting spectrum for values of θ lying in

the interval (θmin, θmax), where θmin is the angle separating two neighboring nodes

and θmax is an angle to be experimentally obtained. This angle must be: (a) smaller

than the size of the simulated region in order to allow us to place a great number of

pairs (~n1, ~n2) inside it, and (b) large enough to include as many scales as possible.
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Since we know the values of the function Cσ(θ) only interval (θmin, θmax), we

cannot compute Cℓ(σ). Instead, we have calculated the quantities

Dℓ(σ) =
32π3

(2ℓ+ 1)2

∫ θmax

θmin

Cσ(θ)Pℓ(cos θ) sin θdθ . (5)

These quantities are to be compared with the corresponding theoretical ones, which

can be obtained as follows: First, from Sugiyama’s Cℓ coefficients of the minimal

CDM model and from Eq. (3) (with the sum extended from ℓ = 2 to ℓ = 1100), the

autocorrelation function is estimated in the interval (θmin, θmax). This theoretical

autocorrelation function plus Eq. (5) then allows us to compute the theoretical values

of Dℓ(σ).

It is hereafter said that the quantities Dℓ(σ) define the modified power spectrum,

which is different from the true angular power spectrum given by the coefficients

Cℓ(σ).

In all the simulations we are considering in this paper, the following values have

been selected: θmin = 5′, θmax = 4.5◦ and θ
FWHM

= 10′. These values are similar to

those of modern projects for the detection of small angular scale anisotropies.

A very accurate estimation of the mean involved in Eq. (2) requires multiple

realizations of the microwave sky. In the case of a single full realization, a certain

error in this mean—producing an error in Cσ(θ)—is unavoidable. This error is usually

measured by the cosmic sample variance. The smaller the sky coverage, the greater

the errors in the resulting autocorrelation functions and spectra (Scott, Srednicki

& White, 1994). As shown below, the spectra resulting from a small 20◦ × 20◦
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coverage are rather different than the theoretical ones. Although coverages greater

than 20◦ × 20◦ cannot be achieved by using FFT simulations, we can use multiple

disconnected 20◦×20◦ regions in order to improve on the estimate of the mean involved

in Eq. (2), for values of θ smaller than θmax. In other words, FFT simulations become

useful as a result of the fact that various independent small coverages of the sky can

be used in order to obtain a good estimate of the autocorrelation function for small

angular scales; however, neither a 20◦ × 20◦ map nor an ensemble of them has good

information about angular correlations larger than θmax.

4 Simulations based on the FFT

Our FFT simulations are based on the use of the standard Cℓ coefficients, which have

already been calculated for many cases. As pointed out by Bond and Efstathiou

(1987), a FFT simulation is only possible in the case of anisotropies corresponding

to large ℓ-values and small regions of the sky. A quantitative study of the validity

and usefulness of this type of simulation has not previously been presented. In order

to do this study, we compare results from FFT simulations with results from SH

simulations.

The temperature contrast in the simulated region can be obtained from the fol-

lowing formula:

δT

T
(θ, φ) =

N
∑

s1,s2=−N

D(ℓ1, ℓ2)e
−i(θℓ1+φℓ2) (6)

where ℓ1 = 2πs1/Λ and ℓ2 = 2πs2/Λ, Λ being the angular size of the elemental square.
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The distribution of the quantities D(ℓ1, ℓ2) is assumed to be Gaussian, with zero mean

and with variance Cℓ/Λ
2, where ℓ = (ℓ21 + ℓ22)

1/2. The quantities D(ℓ1, ℓ2) satisfy the

relation D(−ℓ1,−ℓ2) = D∗(ℓ1, ℓ2).

The use of plane waves requires negligible spatial curvature in the simulated re-

gions. This restricts our simulations to small parts of the microwave sky. In this

paper, it is verified that a region of 20◦ × 20◦ (∼ 1% of the total sky) can be success-

fully mapped by using the FFT. The value θmax = 4.5◦ is marginally compatible with

the size of this region (many pairs (~n1, ~n2) forming an angle of 4.5◦ can be located

inside it). An angular scale of 4.5◦ corresponds to ℓ = 40 and, consequently, the

spectra obtained from 20◦ × 20◦ FFT simulations is only estimated for ℓ > 40. In

practice, the accuracy in the estimation of the power spectrum from these simulations

seems to be good for ℓ > 100 (see Sec. 6).

In a 20◦×20◦ region, the assumption of flatness produces a deformation of the true

maps, but this deformation is not expected to hide their main features. We remind

the reader that only correlations at scales smaller than 4.5◦ are being estimated and,

on these scales, the curvature is clearly negligible.

Since the FT involves periodic boundary conditions, our simulations are not phys-

ically significant at all points of the elemental square. Only the simulation of the

central region is physically admissible. On account of this fact, Fourier transforms

are performed in a large ∼ 40◦ × 40◦ square (Λ = 40◦) and the resulting simulation

is truncated to the central ∼ 20◦ × 20◦ region. The curvature could be important
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if we wanted to get a physically significant mapping of the large square; however,

the large square is only an auxiliary element without any physical significance. The

number of points on each edge of the large square is taken to be 2N=512. This choice

corresponds to θmin ∼ 5′. Simulations using an ∼ 80◦ × 80◦ square with 1024 points

per edge yield similar results; hence, the use of more than 512 points per edge is not

necessary.

On an IBM 30-9021 VF, the CPU cost of our FORTRAN code is ∼ 5.5 minutes

per simulation.

Figure (1) shows a FFT simulation of a ∼ 20◦ × 20◦ region. No unusual features

are apparent near the edges. The numbers appearing in this Figure are the minimum

and maximum values of the temperature contrast in our simulation. Only a few points

of the simulation approach these values.

5 Simulations based on spherical harmonics

Our SH simulations are based on Eq. (1) with ℓmax = 1100 and ℓmin = 40. The aℓm

coefficients have been generated as statistically independent random numbers with

variance 〈|aℓm|
2〉 = Cℓe

(−ℓ+0.5)2σ2

and zero mean. The spherical harmonics have been

carefully calculated. These simulations include scales smaller than those considered

in previous simulations (see Hinshaw, Bennett & Kogut 1995; Kogut, Hinshaw &

Bennett 1995; Jungman et al. 1995). The small values of θmin and σ considered in

our simulations require the use of large values of ℓ giving information about small
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angular scales.

In this paper, SH simulations are performed only for comparison with FFT simu-

lations; for this reason, some features of our numerical SH simulations are identical to

those of the FFT simulations of Sec. 4. In particular, our SH simulations are extended

to 20◦ × 20◦ regions of the sky. These regions are assumed to be uniformly covered

and the number of points per edge is 256 (θmin ∼ 5′). A smoothing corresponding to

θ
FWHM

= 10′ has been performed, and the angle θmax = 4.5◦ has been assumed.

Simulations of the two kinds defined up to now have been obtained for the minimal

CDM model. The Cℓ coefficients have been obtained and normalized as detailed in

Sec. 2.

On an IBM 30-9021 VF, the CPU cost of our FORTRAN code is ∼ 53 minutes

per simulation. This cost is about ten times greater than that of the FFT simulations

described in Sec. 4.

SH simulations of ∼ 20◦ × 20◦ regions look like the FFT simulation of Fig. 1.

Differences between SH and FFT simulations can be noticed only by comparing the

spectra obtained from them. These comparisons are discussed in the next section.

6 Results

Let us now compare the theoretical Dℓ(σ) quantities with those obtained from FFT

and SH simulations.

In all the panels of Fig. (2), the solid lines correspond to the modified theoretical
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spectrum and the dashed lines show the modified spectrum obtained from simulations.

The left (right) panels of this figure show the modified spectra extracted from FFT

(SH) simulations. The top, intermediate, and bottom panels exhibit the modified

spectra obtained from 1, 13, and 52 small simulations of 20◦×20◦ regions, respectively.

The total area covered by the 1, 13, and 52 small simulations is 400, 5400, and 21600

( ∼ 1
2
of the full sky area) squared degrees, respectively. Hereafter, Ns stands for the

number of 20◦ × 20◦ simulations.

In order to measure the deviations between the theoretical and simulated spectra

in each case, the following quantities have been calculated and presented in Table 1 :

The mean, M1, of the quantities 0.69ℓ(ℓ+1)Dℓ(σ)×1010 (column 3); the mean, M2,

of the differences between the theoretical and simulated values of these quantities

(column 4); the typical deviation, Σ, of the same (column 5); and the mean, MA, of

the absolute value of these differences (column 6). These quantities are estimated in

appropriate ℓ intervals (column 7).

As can be seen from the top panel of Fig. 2 and from Entries 1 and 2 of Table 1

(see MA and Σ), a single 20◦ × 20◦ map leads to a poor estimation of the angular

spectrum in both FFT and SH simulations. A greater sky coverage is necessary. The

intermediate panels of Fig. 2 and Entries 3 and 4 of Table 1 prove that the use of

thirteen 20◦ × 20◦ maps strongly improves on the resulting spectra (see MA and Σ).

The quantities MA and Σ decrease as Ns increases. The total decrease undergone

by MA and Σ as Ns goes from 1 to 13 (see the top and intermediate panels of Fig.
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2 and Entries 1–4 of Table 1) is larger than that appearing as Ns increases from 13

to 52 (see the intermediate and bottom panels of Fig. 2 and Entries 3–6 of Table 1).

The quantity M2 is of order 10−2 whatever the value of Ns may be. The absolute

value of M2 is always much smaller than that of MA; this means that the deviations

between the theoretical and the simulated spectra are essentially oscillatory. This

fact strongly supports the idea that moderate coverages could give good spectra after

removing oscillations. The above results can be independently obtained from both

SH and FFT simulations.

For Ns = 52 and the ℓ-interval (40, 100), the quantities |M2|, MA, and Σ cor-

responding to FFT simulations are greater than those of SH simulations (compare

Entries 7 and 8 of Table 1). This means that, for ℓ < 100, SH simulations are

preferable (in spite of their large CPU cost).

The above results have been verified in other realizations of FFT and SH simula-

tions corresponding to the Ns values 1, 13 and 52; however, only one set of realizations

is presented (Fig. 2) for the sake of brevity.

Although this paper is devoted primarily to the comparison of FFT and SH simu-

lations in the absence of noise, the effect of uncorrelated noise at the level of 27.3 µK

in a 20◦ × 20◦ region has been estimated. In order to do this, a 20◦ × 20◦ sim-

ulation involving only uncorrelated noise has been made. The spectrum has been

obtained from the resulting map following the prescriptions of Sec. 3. The quanti-

ties 0.69ℓ(ℓ + 1)Dℓ(σ) × 1010 appear to be smaller than 10−2 for all ℓ. These values
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are negligible compared to those corresponding to the fluctuations of the microwave

background (see Fig. (2); 0.69ℓ(ℓ+1)Dℓ(σ)×1010 ∼ 1). This proves that the effect of

uncorrelated noise in our 20◦×20◦ maps can be neglected. This fact has been verified

by superimposing the above white noise map upon a SH map. The spectra obtained

from the resulting map is practically the same as in the absence of noise.

7 Conclusions and discussion

Small scale simulations of the microwave background are expected to be very useful

in order to analyze observational data from both current and future experiments. For

scales smaller (greater) than ∼ 1.8◦ (ℓ ∼ 100), the accuracy of the FFT simulations

appears to be comparable to (worse than) that of the SH simulations. The CPU cost

of the SH simulations is about ten times greater than that of the FFT simulations.

These conclusions strongly support the use of FFT simulations as a fast and accurate

tool leading to very good spectra in the case of small angular scales (ℓ > 100).

There are various sources of the deviations between the theoretical spectrum and

the spectrum extracted from FFT simulations. Significant contributions to these

deviations are expected from partial coverage, boundary conditions in FFT maps, and

the use of mathematical interpolation in order to assign a temperature contrast to the

direction ~n2 (see Sec. 3). Such interpolation introduces non-physical information even

for the most sophisticated interpolation methods. An error in the resulting spectrum

associated with this fact seems to be unavoidable. Fortunately, this error appears
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to be small from θmin to θmax. Boundary effects associated with the FFT have been

minimized by simulating the core of an auxiliary 40◦ × 40◦ region.

Uncorrelated noise does not appear to be relevant for the coverages considered in

this paper.

Since we are only considering angular scales smaller that 4.5◦, curvature effects

are expected to be negligible.

The main conclusions of this paper are independent of admissible renormalizations

of the Cℓ coefficients.
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Figure Captions

Fig. 1. FFT simulation of a 20◦ × 20◦ region of the microwave sky. Numbers

correspond to the minimum and maximum values of the temperature contrast.

Fig. 2. Each panel shows the quantity 0.69ℓ(ℓ + 1)Dℓ(σ) × 1010 as a function of

log(ℓ) in various cases. In all the panels, the solid line shows the theoretical modified

power spectrum and the dashed line shows the modified spectrum extracted from

simulations. All the modified spectra have been obtained for σ = 10′, θmin = 5′, and

θmax = 4.5◦. Top, intermediate, and bottom panels correspond to the Ns values 1, 13,

and 52, respectively. Left (right) panels show modified spectra obtained from FFT

(SH) simulations.
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TABLE 1

COMPARING THEORETICAL AND SIMULATED SPECTRA

Type of

simulations Ns M1 M2 Σ MA ℓ-interval

FFT 1 1.07 −1.01× 10−2 7.13× 10−3 1.58× 10−1 40− 1000

SH 1 1.07 −1.33× 10−2 6.96× 10−3 1.76× 10−1 40− 1000

FFT 13 1.07 −1.13× 10−2 2.58× 10−3 5.90× 10−2 40− 1000

SH 13 1.07 −1.85× 10−2 3.08× 10−3 8.00× 10−2 40− 1000

FFT 52 1.07 −2.04× 10−2 2.25× 10−3 5.21× 10−2 40− 1000

SH 52 1.07 −2.56× 10−2 2.30× 10−3 6.06× 10−2 40− 1000

FFT 52 1.24 −5.29× 10−2 2.46× 10−2 1.61× 10−1 40− 100

SH 52 1.24 −1.54× 10−2 1.05× 10−2 6.54× 10−2 40− 100
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