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The gas clouds of the interstellar medium have a fractal structure, the origin of which has
generally been thought to lie in turbulence [1]- [2]. The energy of turbulence could come
from galactic rotation at large-scale, then cascade down to be dissipated on small-scales
by viscosity [3,14]; it has been suggested that such turbulence helps to prevent massive
molecular clouds from collapsing in response to their own gravity [15,16]. Here we show
that, on the contrary, self-gravity itself may be the dominant factor in making clouds
fractal. We develop a field-theory approach to the structure of clouds, assuming them to
be isothermal, and with only gravitational interactions; we find that the observed fractal
dimension of the clouds arise naturally from this approach. Although this result does not
imply that turbulence is not important, it does demonstrate that the fractal structure can
be understood without it.

The interstellar medium (ISM) is an ensemble of gas clouds and dust, composed mainly of hydrogen
(either atomic HI, or molecular H2) and helium (25% by mass), with other elements present in trace
amounts (dust is only 1% in mass). The bulk of the ISM is distributed in cold clouds (T ∼ 5-50 K),
forming a very fragmented and clumpy structure, confined to the galactic plane of spiral galaxies.
For at least two decades, radioastronomy line observations (HI at 21cm wavelength, and CO at a

wavelength of 2.6mm for the major lines), have told us that the ISM is composed of a hierarchy of
structures, with masses from about 1 M⊙ to 106 M⊙. Structures have been observed in the ISM with
sizes from 10−4pc (20 AU or 3 1014cm) to 100pc. The largest of these structures are giant molecular
clouds or complexes, thought to be the largest self-gravitating structures in the Galaxy. Above 100pc,
larger structures would be destroyed by galactic shear. The accumulation of observations at many scales,
and with many tracers of the ISM (CO and its isotopes, HCN, CS, NH3, HI, dust as in Fig. 1) revealed
that the interstellar medium obeys power-law relationships between size (R), mass (M) and internal
velocity dispersion (∆v) (see for example [1,3]):

M(R) ∼ RdH , ∆v ∼ Rq , (1)

These apply across the entire observed range of structure sizes and masses, with Haussdorf dimension
(dH) and the power q

1.5 ≤ dH ≤ 2. , 0.3 ≤ q ≤ 0.5 . (2)

Structures appear virialised at any scale: the scaling laws obey the relationships ∆v2 ∝ GM/R, or
equivalently q = (dH − 1)/2.

Here we apply, for the first time, field theory and Wilson’s approach to critical phenomena [4], to the
problem of a gravitational gas in statistical equilibrium. We consider a gas of non-relativistic particles
in thermal equilibrium at temperature T interacting with each other through Newtonian gravity. We
work in the grand canonical ensemble, allowing for a variable number of particles N . The grand partition
function of the system of particles, of mass m and phase space coordinates p and q, can be written as

Z =

∞
∑

N=0

zN

N !

∫

. . .

∫ N
∏

l=1

d3pl d
3ql

(h)3
e−

HN
kT , with HN =

N
∑

l=1

p2l
2m

−Gm2
∑

1≤l<j≤N

1

|~ql − ~qj |
(3)

G, h and k are Newton, Planck and Boltzmann constants respectively and z is the fugacity z = e
µ̄
kT ; µ̄ is

the gravito-chemical potential. Transforming this expression through a functional integral [5,6], it can be
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shown that this system is exactly equivalent to the theory of a scalar field φ(~x) (the detailed derivation
will be found in de Vega, Sánchez & Combes, 1996, in prep.); the grand canonical partition function Z
can be expressed as a functional integral

Z =

∫ ∫

Dφ e−S[φ] , with S[φ] ≡ 1

Teff

∫

d3x

[

1

2
(∇φ)2 − µ2 eφ(~x)

]

,

Teff = 4π
G m2

kT
, µ2 =

π5/2

h3
z G (2m)7/2

√
kT , (4)

The parameter µ coincides with the inverse of the Jeans length µ =
√

12
π

1
dJ

. The stationary points of

the action S are given by the equation for the undimensioned field φ:

∆φ = −µ2eφ , (5)

which is exactly the equation satisfied by the gravitational field U = −kT
m φ of a perfect isothermal gas.

Indeed, the equation of state combined with the hydrostatic equilibrium equation yields ρ = ρ0 e−
m
kT

U .
The application of the Poisson equation leads then to (5), provided that ρ0 = z(2πmkTh−2)3/2. This
leads to the well-known solution of the isothermal sphere, and small fluctuations around the stationary
point have been studied in [7]. In terms of the scalar field φ, the particle density can be expressed as

< ρ(~r) >= − 1
Teff

< ∆φ(~r) >= µ2

Teff
< eφ(~r) > where < . . . > means functional average over φ with

statistical weight e−S[φ].
The term −µ2eφ which makes S unbounded from below reflects the short-distance gravitational at-

traction. We limit the newtonian forces at short distances since there the interparticle interaction is no
more purely gravitational. The ISM in isothermal conditions (i.e. the ISM in contact with the heat bath
represented by the cosmic background radiation), is unstable through Jeans instability at any scale [8];
fragmentation occurs down to the scale where the coupling with the thermal bath breaks down, at which
the regime becomes adiabatic instead of isothermal. This scale is that of the smallest possible fragments.
Our isothermal gravitational gas model has therefore a natural cutoff here.
Now that we have derived the scalar field representing the problem of N -body in gravitational interac-

tion, we work in two directions. We study first the perturbative method, then the renormalization group
approach.

First we can note that S[φ] has no constant stationary points, except φ0 = −∞. In order to compute
perturbations around φ0, we add a small constant term δ in the density, so that φ0 = log δ is finite for non
zero values of the constant δ (de Vega, Sánchez & Combes, 1996, in prep). The perturbative development
in terms of the dimensionless coupling constant g =

√

µTeff reveals that the the field φ is massless; the

two-points density correlation function decreases as r−2 for large distances.
Therefore, the theory remains critical, for a large range of values of the physical parameters. Since

we consider the gas inside a large sphere of radius R (R ≤ 100 pc, since other forces are involved above
such scale) no divergences appear at large radii. More information is gained when the perturbative
development is made around the spherically symmetric solution is φc = log 2

µ2r2 , which is invariant under

scale transformations.

The next step to analyze this theory is to use the renormalization group. This non-perturbative
approach is the most powerful framework to derive scaling behaviours in field theory (e.g. [4,9,11]). As is
well known, the correlation length ξ for infinite volume systems becomes infinite at criticality, as ξ ∼ Λ−ν

when Λ → 0; Λ = µ2

Teff
is the distance to the critical point (Λ = T − Tc in condensed matter and spin

systems) and varies according to the renormalization group transformations. Since here our system is

critical on a finite size R, it is not singular and we have ξ ∼ R, i.e. Λ ∼ R− 1
ν . The mass density mρ ∼ eφ

is identified with the energy density of the renormalization group (also called thermal operator). The
partition function can be written as

Z(Λ) =

∫ ∫

Dφ e−S∗+Λ
∫

d3x eφ(~x)

, (6)

where S∗ stands for the action at the critical point. Since the φ-theory has a scaling behaviour (is critical)
as seen in the perturbative approach, we can write logZ as a power-law in Λ, plus an analytical function
F(Λ), such that
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1

V
logZ(Λ) =

K

(2 − α)(1− α)
Λ2−α + F (Λ) (7)

where V ∼ R3 stands for the volume, K is a constant and alpha is the thermal critical exponent
Calculating the second derivative of logZ(Λ) with respect to Λ (at constant V ) from eqs.(6) and (7)

and equating the results, yields

∂2

∂Λ2
logZ(Λ) ∼ KV Λ−α ∼ R

2
ν =

∫

d3x d3y [< ρ(~x)ρ(~y) > − < ρ(~x) >< ρ(~y) >] (8)

where we used that Λ ∼ R−1/ν and the scaling relation α = 2 − 3ν [9]. The r.h.s. of eq.(8) precisely
yields the mass fluctuations squared (∆M(R))2 ≡ < M2 > − < M >2. Hence,

∆M(R) ∼ RdH .

Therefore, the scaling exponent ν can be identified with the inverse Haussdorf (fractal) dimension dH of
the system

dH =
1

ν
.

On one side, the perturbative calculation yields the mean field value for ν [11]. That is,

ν =
1

2
, dH = 2 and q =

1

2
. (9)

On the other side, the renormalization group transformation amounts to replace the parameter µ2 in
S[φ] by the effective one at the scale in question. This approach indicates that the long distance critical
behaviour is governed by the (non-perturbative) Ising fixed point [4,9]. Very probably, there are no
further fixed points [10]. The scaling exponents associated to the Ising fixed point are

ν = 0.631 , dH = 1.585 and q = 0.293 . (10)

From the renormalization group analysis, the two-points density correlation function behaves as r
2
ν
−6 or

r−2.830 for large distances (r−2 for mean field). This should be compared with observations. Previous
attempts to derive correlation functions from observations were not entirely conclusive, because of lack
of dynamical range [12], but much more extended maps of the ISM could be available soon to test our
theory. In addition, we predict an independent exponent for the gravitational potential correlations
(∼ r−1−η , where ηIsing = 0.037 or ηmeanfield = 0 [9]), which could be checked through gravitational
lenses observations in front of quasars.
The mean field exponents describe the situation where non-linear field fluctuations are negligible. When

non-linear fluctuations are strong, the renormalization group exactly accounts for their contributions,
giving the Ising fixed point exponents.
If we consider the mass of the particles to be the neutral hydrogen atom, at T ∼ 3K, and we estimate

the fugacity z using the ideal gas value z = ρ0(
h2

2πmkT )
3/2, we find the length µ−1 ∼ 30 AU (4.5 1014 cm),

and the dimensionless coupling g2 ∼ 5 10−53, for a density ρ0 ∼ 1010 atom/cm3 ( [8]). This extremely
small g supports the perturbative method at these scales implying the mean field values for the exponents
(9). However, the effective coupling constant g grows with the scale, according to the renormalization
group flow (towards the Ising fixed point); µ−1 indicates the order of the smallest distance where the
scaling regime applies, and corresponds to the observed smallest gravitational scale. Both numerical
values for the critical exponents (9) and (10) are compatible with the values observed in the present
interstellar medium eq.(2). Further theoretical work in the φ-theory will determine whether the scaling
behaviour is given by the mean field or by the Ising fixed point.

We have considered for the ISM the simplified view of an isothermal self-gravitating gas. This idealized
view corresponds exactly to the outer parts of galaxies, far from any star formation and heating sources.
There, the molecular cloud ensemble must be in isothermal equilibrium with the cosmic background
radiation at T∼ 3K (e.g. [13,8]). Well inside the galaxy, the physics of the ISM is much more complex,
especially when the violent perturbations due to star formation are taken into account. Locally, the ISM
around star formation regions can effectively lose its fractal structure, at least partially (it becomes diffuse
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and much less fragmented, more or less ionized). But radiative cooling is very efficient, and shock waves
are highly dissipative, so that globally on large-scale, the interstellar medium can still be considered as
isothermal. The bulk of the ISM is only slightly perturbed, and we have shown that the scaling laws
are stable under perturbations, so that we believe that our theory applies to most of the ISM (and in
particular to the low star-forming Taurus region of figure 1).
Turbulence is probably relevant in the dynamics of the ISM [3], but this could be a consequence of the

fractal structure built up by gravitational instabilities. It has been recognized for a long time that the
size line-width relation in the ISM is similar to the Kolmogorov law ∆v ∝ R1/3 derived for incompressible
subsonic turbulence (this assumes that the energy flow per unit mass (ǫ ∝ ∆v3/R) is constant all over the
hierarchy, and is finally dissipated on the smallest scales through viscous processes). The energy would
be powered at large scale by the galactic rotation [14]. Gravitationally driven compressible turbulence
[15] as well as gravitational clouds in quasistatic virial equilibrium [16] yield mean field exponents (9).
The important point demonstrated here is that self-gravity alone can account for the fractal structure

of the ISM, and quantitatively predicts its fractal dimension and related critical exponents. A new and
unexpected connection between the ISM and critical phenomena uncovers. It is interesting to note that
the gravitational gas has been found at critical conditions, with correlations at all scales, and scale-
independent power-law relations for a continuous range of physical parameters (temperature, coupling
constant), while the spin models with which we have found an analogy, are critical only at a single value
of the temperature. This feature is connected with the scale invariant character of the Newtonian force
and its infinite range, i.e. r−2.
A further step in the study of the ISM will be to include the dynamical (time dependent) description

within the field theory approach presented in this paper.

FIG. 1. Image of the interstellar medium near the Taurus region at 100µ wavelength, obtained with the
IRAS satellite (the continuum emission comes from dust heated by the interstellar radiation field, in this low
star-forming region). The linear size of the box is 30 degrees, and the pixel is 6 arcmin. A zoom by a factor 3
in scale is made of the central region: the overall fragmented structure of the medium remains unchanged. This
self-similar structure has been confirmed by the compilation of many other observations at widely different scales,
revealing the fractal structure of the ISM.
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