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Abstract: The X-Ray Background (XRB) probes structure on scales intermediate be-
tween those explored by local galaxy redshift surveys and by the COBE Microwave Back-
ground measurements. We predict the large scale angular fluctuations in the XRB, ex-
pressed in terms of spherical harmonics for a range of assumed power-spectra and evolution
scenarios. The dipole is due to large scale structure as well as to the observer’s motion
(the Compton-Getting effect). For a typical observer the two effects turn out to be com-
parable in amplitude. The coupling of the two effects makes it difficult to use the XRB
for independent confirmation of the CMB dipole being due to the observer’s motion. The
large scale structure dipole (rms per component) relative to the monopole is in the range
a1m/a00 ∼ (0.5− 9.0)× 10−3. The spread is mainly due to the assumed redshift evolution
scenarios of the X-ray volume emissivity ρx(z). The dipole’s prediction is consistent with
a measured dipole in the HEAO1 XRB map. Typically, the harmonic spectrum drops with
l like alm ∼ l−0.4. This behaviour allows us to discriminate a true clustering signal against
the flux shot noise, which is constant with l, and may dominate the signal unless bright
resolved sources are removed from the XRB map. We also show that Sachs-Wolfe and
Doppler (due to the motion of the sources) effects in the XRB are negligible. Although
our analysis focuses on the XRB, the formalism is general and can be easily applied to
other cosmological backgrounds.

1. Introduction

Although discovered before the Cosmic Microwave Background (CMB), the origin of
the X-ray Background (XRB) is still unknown. But it seems likely that the XRB is due to
sources at high redshift (for reviews see Boldt 1987; Fabian & Barcons 1992). Here we shall
not attempt to speculate on the nature of the XRB sources. Instead, we utilise the XRB
as a probe of the density fluctuations at high redshift. The XRB sources are probably
located at redshift z < 5, making them convenient tracers of the mass distribution on
scales intermediate between those in the CMB as probed by COBE (∼ 1000 Mpc), and
those probed by optical and IRAS redshift surveys (∼ 100 Mpc). In terms of the level of
anisotropy, the XRB is also intermediate between the tiny CMB fluctuations (∼ 10−5 on
angular scales of degrees) and galaxy density fluctuations (of the order of unity on scale
of 8 h−1 Mpc).
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In recent years the XRB has been studied by means of analysing the total intensity,
the spectrum and the spatial fluctuations. In particular, the spatial fluctuations were
analysed by: (i) Source identifications of high-flux regions (e.g. Shanks et al. 1991); (ii)
Auto-correlation functions for which upper limits and marginal detections were reported
(e.g. de Zotti et al. 1990, Jahoda & Mushotsky 1991, Carrera et al. 1993, Chen et al. 1994,
So ltan & Hasinger 1994); (iii) Cross-correlation of the XRB with galaxies and clusters for
which the detections and interpretation are reasonably established (e.g. Lahav et al. 1993,
Miyaji et al. 1994, Carrera et al. 1995, Barcons et al. 1995, Roche et al. 1995, So ltan et
al. 1996, Treyer & Lahav 1996).

The preliminary measurements of the dipole anisotropy in the XRB (Shafer 1983;
Shafer & Fabian 1983, Boldt 1987) were discussed qualitatively by associating it with
local clusters such as Virgo and the Great Attractor and by other cosmographical argu-
ments (e.g. Rees 1979; Fabian & Warwick 1979; Warwick, Pye & Fabian 1980; Jahoda &
Mushotzky 1989; Goicoechea & Martin-Mirones 1990). In this paper we treat the problem
in a statistical rather than cosmographical way. We generalize the analysis for any spher-
ical harmonic of order l, corresponding to angular resolution θ ∼ π/l. The predicted rms
harmonics are derived in the framework of growth of structure by gravitational instability
from density fluctuations drawn from a Gaussian random field. The harmonics are then
expressed in terms of the power-spectrum of density fluctuations and for evolution scenar-
ios which are consistent with recent measurements of galaxy clustering and the Cosmic
Microwave Background. As there is quite a lot of freedom in the parameterization of the
XRB sources we shall restrict ourselves in this paper to an Einstein-de Sitter universe
(Ω = 1, λ = 0), although some of the expressions evaluated below are also valid for other
world models. The Hubble constant is given as H0 = 100h km/sec/Mpc. In principle, the
X-ray background(s) should be discussed in different frequency bands, e.g. in the hard
band (2-10 keV, e.g. HEAO1) and in the soft band (0.5-2.0 keV, e.g. ROSAT), which ex-
hibit different properties. However, the current uncertainty in measurements (e.g. Table 1
in Treyer & Lahav 1996) does not make it practical at present to distinguish between the
different bands. The formalism is kept general and can be used for specific cases in the
future. It can also be easily generalized to other cosmological backgrounds.

The outline of the paper is as follows. Section 2 presents the harmonic formalism
and rms predictions. Our main result is given in equations 15 and 16 and the reader
who is not interested in the mathematical details can skip directly to these equations.
Numerical estimates based on these formulae are given in Section 3, and a comparison
to the observed HEAO1 XRB dipole is discussed in Section 4. We discuss the results in
Section 5. In Appendix A we show that the Sachs-Wolfe and Doppler effects for the XRB
are negligible compared with the source density fluctuations.

2. Spherical Harmonic Expansion of Background Sources

We consider a cosmological population of XRB sources that trace the matter distri-
bution and examine the angular fluctuations in the observed XRB surface brightness. For
convenient comparison with the Cosmic Microwave Background (CMB) (e.g. Padmanab-
han 1993) and with galaxy distributions at low redshift (e.g. Peebles 1973, Scharf et al.
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1992, Fisher, Scharf & Lahav 1994) we expand the surface brightness of the XRB over
the sky in spherical harmonics and we estimate the expected rms fluctuations of different
multipoles. For large scales (low multipoles) these fluctuations might be larger than the
Poisson noise, provided bright resolved sources are removed from the XRB map.

2.1 The Clustering Term

The XRB surface brightness Iν0
(r̂)dν0 is observed in a narrow frequency band (ν0, ν0+

dν0). Hereafter we omit the frequency label (whenever it is not essential) to make the
notation easier. We expand I(r̂) in spherical harmonics ⋆:

I(r̂) =
∑

lm

almYlm(r̂). (1)

The XRB most likely results from numerous discrete sources. In this case the harmonic
coefficients, alm, can be derived by summing over the sources, each with observed flux
fi(ν0).

alm =
∑

sources

fi(ν0) Y ∗

lm(r̂i). (2)

The flux observed in the frequency band (ν0, ν0+dν0) due to an individual source emitting
at frequency ν = ν0(1 + z) at redshift z and luminosity distance rL is :

f(ν0)dν0 =
Lν

4πr2L
dν =

Lν0(1+z)

4πr2L
(1 + z)dν0. (3)

Note the extra (1+z) factor which is due to the observation being per unit frequency. The
predicted harmonic coefficients are then:

alm =

∫ ∫

dVc dLν
Lν(1 + z)

4πr2L
[1 + bxδ(rc, r̂)] Φ(Lν , z) Y

∗

lm(r̂), (4)

where again ν = ν0(1 + z). Here δ is the mass density perturbation, and we have assumed
that the comoving luminosity function Φ(Lν , z) is independent of local overdensity. For
an Ω = 1 universe the volume element is dVc = r2cdr

2
cdω, where rc = 2c

H0

[1 − (1 + z)−1/2]
and the luminosity distance is rL = (1 + z)rc. We have also assumed that there is a linear
biasing between the X-ray sources and the mass fluctuations:

δx(rc, r̂) = bx δ(rc, r̂), (5)

for all redshifts. This is of course a naive assumption, reflecting our poor knowledge of the
way X-ray sources are formed with cosmic time relative to the mass fluctuations.

⋆ We consider here an ideal detector with zero beam width. If the detector has a beam
profile of size θB , then harmonics of order l ∼ π/θB are washed out. Since we are mostly
interested in lower harmonics this effect is negligible for our calculations.
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The observed comoving luminosity density (‘volume emissivity’) due to sources at
redshift z is:

ρx(z) =

∫

dLν Lν Φ(Lν , z)(1 + z), (6)

where again ν = ν0(1 + z). Herafter we assume a simple power-law evolution model for
the X-ray light density:

ρx(z) = ρx0(1 + z)q. (7)

For example if the spectral energy distribution of a source is Lν ∝ ν−α and the source
density evolves like (1 + z)p then q = p− α + 1.

For the monopole (l = 0), with Y00 = (4π)−1/2, we recover the ’Olbers integral’ or
Lookback factor (cf. e.g. Weinberg 1972, Boldt 1987). In the case Ω = 1, Λ = 0, the mean
intensity out to redshift zmax is:

Ī =
a00√
4π

=

∫

dVc
ρx(z)

4πr2L
=
ρx0
4π

(
c

H0
)

∫ zmax

0

dz(1 + z)q−7/2 (8)

The fluctuations in the background are expressed by harmonics l > 0 :

alm =
1

4π
ρx0

c

H0

∫ ∫

dω dz(1 + z)q−7/2 bxδ(rc, r̂) Y ∗

lm(r̂) . (9)

It is convenient to expand the density contrast in Fourier modes (where k is in co-
moving coordinates) :

δ(rc) ≡ δρ

ρ
(rc) =

1

(2π)3

∫

d3k δk e
−ik·rc , (10)

and to use the Rayleigh expansion of a plane wave in spherical coordinates :

eik·rc = 4π
∑

lm

iljl(krc)Y
∗

lm(r̂c)Ylm(k̂) . (11)

With the orthogonality condition
∫

dωYlm(r̂)Y ∗

l′m′(r̂) = δmm′

ll′ , we get:

alm = (il)∗
1

2π2

1

4π
ρx0

c

H0

∫

d3k bxδk(z)Y ∗

lm(k̂)

∫

dz(1 + z)q−7/2jl(krc), (12)

where jl is the Bessel function of order l. It is convenient to parameterize the growth of
density perturbations by:

δk(z) = δk(0) (1 + z)−µ. (13)

E.g. in linear theory in an Einstein-de Sitter universe µ = 1, which is a reasonable
parameterization for the low-order harmonics (i.e. the large scales). The power-spectrum
is given in terms of the present day fluctuations δk as:

〈δk δ∗k′〉 = (2π)3P (k)δ(3)(k− k′) . (14)
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Taking the mean-square values and using Parseval’s theorem we obtain the prediction for
the rms fluctuations per harmonic component (there are 2l + 1 components per l and as
the model is isotropic they are all equal and independent of m):

〈|alm|2〉 =
1

(2π)3
ρ2x0b

2
x(

c

H0
)2

∫

dkk2P (k)|Ψl(k)|2 . (15)

Only fluctuations within the horizon grow. Hence unless the initial power spectrum is very
peculiar most of the contribution to the integral in Eq. (15) is from short wavelengths.
In this case assuming the specific evolution model of eqs. (7) and (13), we can write the
window function as:

Ψl(k) ≈
∫ zmax

zmin

dz(1 + z)q−µ−7/2jl(krc) , (16)

In principle, there could be a Sachs-Wolfe (1967) contribution to the XRB harmonics
due to the difference in potential between the sources and the observer (similar to the
effect in the CMB fluctuations on scales > 10o), and a Doppler contribution due to the
motions of the XRB sources and to our motion. However, as shown in Appendix A, the
Sachs-Wolfe and Doppler (due to the XRB sources motion) effects are less than ∼ 0.1% of
the clustering effect and can safely be ignored.

2.2 The Shot Noise Term

On the other hand, a significant signal may arise from shot noise, due to the discrete-
ness of the objects:

〈|alm|2〉sn =
1

4π

∑

sources

f2
i . (17)

A flux cutoff fm must be used to eliminate bright sources, to avoid divergence of eq. (17).
In terms of the differential number-flux relation in Euclidean space, N(f) = N0f

−2.5, the
shot noise is:

〈|alm|2〉sn =

∫ fm

0

f2N(f)df = 2N0f
0.5
m ∝ r−1

m , (18)

where rm =
√

L∗/4πfm is the effective cutoff distance for an L∗ galaxy. We give estimates
of the shot noise relative to the clustering signal at the end of the next section. The
shot-noise term is constant with l unlike the clustering term, which allows us, at least in
principle, to distinguish between the two.

3. Quantitative Predictions for the XRB

To visualize the scales probed by the XRB, we show in Figure 1 the product k3P (k) ∼
〈( δρ

ρ
)2〉 for the standard Cold Dark Matter (CDM) power-spectrum P (k) with Γ ≡ Ωh =

0.5 (Bardeen et al 1986) and for a low density CDM (LDCDM) power-spectrum with
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Γ = 0.2. We regard the LDCDM power-spectrum only as a phenomenological fit to the
clustering of local galaxies (e.g. Fisher et al. 1993), and we retain Ω = 1 in the rest of the
analysis. The window functions |Ψ2(k)|2 are shown for the quadrupole (l = 2) of: (i) the
IRAS 1.2Jy redshift survey, (ii) the XRB (eq. 16 with q−µ = 3, zmin = 0, zmax = 5) and
(iii) the CMB, where∗ |Ψ2(k)|2 = k−4j22(2ck/H0). We see that the XRB indeed probes
intermediate scales, filling in the ‘gap’ between local redshift surveys and COBE.

Figure 2 shows the prediction for the XRB rms harmonics (per {l,m} component) due
to source clustering (eq. 15). We normalize the rms alm by the monopole a00 =

√
4πĪ (eq.

8), so that the ratio is dimensionless, and we do not have to specify ρx0. We also divide
by the unknown normalization bxσ8, the present-epoch rms fluctuation of X-ray sources in
8h−1 Mpc sphere, which is probably of the order unity. The mass density fluctuation σ8
can be specified e.g. from the COBE CMB measurements (for standard CDM σ8 = 1.35 ;
Sugiyama 1995). The normalization bxσ8 can also be fixed by comparing the measurement
of the XRB auto-correlation function (e.g. So ltan & Hasinger) with the prediction in terms
of the power-spectrum (e.g. Treyer & Lahav 1996), but this determination is beyond the
scope of this paper.

The normalized harmonics are shown in Figure 2 for both standard and low density
CDM models (both with density perturbation growth index µ = 1, zmin = 0, and zmax =
5), for a rather extreme evolution parameter q = 4. The harmonics decline monotonically
like al ∝ l−0.4. Values for the normalized dipole (a1m/a00) and quadrupole (a2m/a00) are
given in Table 1 for q = 4 and q = 0 (no evolution). We see that the predictions are very
sensitive to q, i.e. to the redshift evolution of ρx(z). They are relatively little dependent
on the assumed power-spectrum and on the maximal redshift zmax.

The observational test for the detection of a clustering signal can be obtained by
looking for a monotonically declining signal with l, compared with a constant shot-noise
term. For the hard-band (2-10 keV) we can estimate the shot noise (eq. 18) by adopting
N0 ≈ 2 × 10−15 (erg/sec cm−2)3/2 str−1 and fm = 3 × 10−11 erg/sec cm−2, above which
sources were identified (Piccinotti et al. 1982). With the observed mean intensity (Boldt
1987) Ī = a00/

√
4π = 5.2 × 10−8 ergs/sec/cm2/str we find that the shot-noise normalized

to the monopole is 〈|alm|2〉1/2sn /a00 ≈ 8.0×10−4. This shot-noise level is comparable to the
predicted dipole and quadrupole in q = 4 models but well below the expected LSS signal
for q = 0 model (see Table 1). Therefore the signal-to-noise ratio strongly depends on
the redshift evolution of ρx(z). It is important therefore to explore a range of models and
procedures for shot-noise suppression. In particular, there is some freedom to choose fm
such that the signal to noise is maximized.

We illustrate this point by applying a similar calculation to the soft-band using the
observed ROSAT source counts (Georgantopoulos et al. 1996 ) extrapolated to unresolved
fluxes. We find that for the rather extreme evolution model q = 4 the first 10 multipoles

∗The CMB harmonics due to the Sachs-Wolfe effect in Ω = 1 universe are (e.g. Padman-
abhan 1993):

< |alm|2 >SW =
(H0

2c

)4 2

π

∫

dkk−2P (k)[jl(2ck/H0)]2 .
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outreach the shot noise if sources brighter than fm ≈ 10−14erg cm−2s−1 are removed.
Note that for consistency they must also be removed from the alm’s, hence reducing the
clustering signal. Calculating the multipoles as a function of flux limit requires knowledge
of the X-ray luminosity as a function of redshift. For our purposes, we simply apply a
redshift (radius) cutoff to Eq. (16). We find that the low order multipoles still outreach
the shot noise (assuming the above flux cutoff) if sources nearer than few 100 h−1 Mpc
are removed from the X-ray map, although the harmonic spectrum flattens significantly.
Again, we emphasize that for other evolution models (e.g. the extreme no-evolution case
q = 0) the expected clustering signal is well above the shot-noise.

4. XRB Dipole

The dipole pattern in the XRB is due to two effects: (i) the flux emitted by the XRB
sources tracing the large scale structure (LSS), as we predicted above (eq. 15 for l = 1);
and (ii) the motion of the observer relative to the XRB. The second effect, first discussed
by Compton & Getting (1935) for the cosmic-ray background, gives a dipole pattern of
the form

∆I

Ī
= (3 + α)

Vobs
c

cos(θ), (19)

for an observer moving at velocity Vobs relative to an isotropic sea of radiation with spec-
trum Iν ∝ ν−α. This relation is most easily derived from Liouville’s theorem, which implies
that Iν/ν

3 is an invariant. This was accurately measured in the CMB (where α = −2),
most recently using the COBE 4-year data (Lineweaver et al 1996), giving a solar motion
of 368.9 ± 2.5 km/sec relative to the CMB in the direction (l = 264o; b = 48o). However,
based on this measurement alone, we cannot rule out an entropy gradient origin for the
CMB dipole (Pacýnski and Piran 1990; Langlois and Piran 1996). If the CMB dipole does
arise from our motion relative to the CMB background, then we expect to find a similar
contribution to the XRB dipole. For the hard XRB, with α = 0.4, the expected excess
in the direction of motion is ∆I

Ī
= 4.2 × 10−3. But as we show below, it is unfortunately

difficult to separate the Compton-Getting (CG) effect from the dipole due to large scale
structure (LSS) in the distribution of the XRB sources, as the two effects have similar
amplitudes.

The measurements of the XRB dipole are not accurate, due to contamination by
Galactic emission and low resolution, but several studies reported a detection. The HEAO1
2-10 keV whole-sky map shows a dipole (Shafer 1983, Shafer & Fabian 1983, Boldt 1987) in
the direction (l = 282o; b = 30o) (the 90% confidence region is rather large and covers about
1/8 of the sky). If the entire signal is due to motion, then the inferred velocity is 475±165
km/sec. At higher energies (80-165 keV) the dipole’s direction is (l = 304o; b = 26o) and
the derived velocity (again assuming the dipole is purely due to motion) is 1450 ± 440
km/sec (Gruber 1991). It is perhaps not too surprising that (within the large error bars)
the derived velocity is larger than that deduced from the CMB, as the XRB dipole may
be ‘contaminated’ by LSS anisotropies. The importance of the LSS effect due to nearby
unresolved sources is supported by several studies. Jahoda & Mushotzky (1989) found an
enhancement in the direction of the Great Attractor (see also Goicoecha & Martin-Mirones
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1990), Miyaji & Boldt (1990) derived from a sample of AGNs an acceleration dipole which
is consistent with the CMB dipole’s direction, and a cross-correlation signal was detected
between the unresolved XRB and nearby galaxy catalogues (e.g. Lahav et al 1993, Miyaji
et al. 1994, Carrera et al. 1995).

Our formalism allows us to estimate the strength of the two effects for a hypothet-
ical random observer. As shown in Table 1 the expected LSS dipole is in the range
a1m,LSS/a00 ∼ (0.5 − 9.0) × 10−3. To estimate the Compton-Getting (CG) effect we first
calculate the mean square velocity for a random observer (e.g. Kaiser & Lahav 1989,
Padmanabhan 1993):

〈V 2
rms〉 =

H2
0Ω1.2

0

2π2

∫

dk P (K)e−k2R2

∗ , (20)

assuming linear theory and that the density fluctuations causing the motion are at distances
much smaller than the horizon. The region sharing the motion is modeled here as a
Gaussian sphere with radius R∗. For a point (R∗ = 0) typically Vrms ≈ 1000σ8Ω0.6

for the CDM models concerned. ⋆ The expected CG dipole in the rms sense is then
a1m,CG/a00 = 1

3(3 + α)Vrms

c . As shown in Table 1 it is interesting that the CG and LSS
are of comparable amplitude for a hypothetical observer, including the case of our Sun’s
motion.

It is important to verify that the XRB CG dipole agrees with the CMB dipole as
a proof that the CMB dipole is due to motion. However, as the ‘contamination’ by the
LSS effect is unknown, it is better to subtract the CG dipole (based on the CMB dipole)
from the XRB map, and to look at the residual LSS effect. Jahoda (1993) removed the
CG dipole from the HEAO1 (2-10 keV) map, and after correcting for Galactic emission
(according to Iwan et al. 1982), found |DLSS| ≡ |

∑

fir̂i| ≈ 3× 10−9 erg/sec/cm2 towards
(l = 309o; b = +45o). In our notation a1m,LSS/a00 = D/(4πĪ). We see from Table 1 that
the observed residual LSS dipole is within the range of our model predictions for the LSS
dipole. A more detailed estimation of the HEAO1 dipole is underway (Scharf et al., in
preparation).

5. Discussion

This paper gives quantitative predictions for the fluctuations on large angular scales
in the X-ray Background. The rms predictions are based on assumed power-spectrum and
evolution scenarios, and are expressed in spherical harmonics. We stress that any applica-
tion to whole-sky XRB maps (such as HEAO1 and ROSAT) requires careful treatment of
the shot-noise (by removing bright sources) and the smearing by the beam size. Another
major observational obstacle (in particular for estimating the quadrupole in the soft band)
is Galactic emission, but it can be corrected for by inversion and filtering techniques.

Our main conclusions are:

⋆ When compared with e.g. the motion of the Local Group relative to the CMB (≈ 600
km/sec), one should take a filtering scale R∗ of a few Mpc, leading to lower predicted rms
velocities.
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(i) The XRB is an important probe of density fluctuations on scales intermediate
between scales explored by galaxy redshift surveys and by COBE.

(ii) For a range of cosmological and evolution models the shape of the harmonic
spectrum drops with l like alm ∼ l−0.4. The amplitude of the harmonics is mainly sensitive
to the resdshift evolution the X-ray volume emissivity ρx(z) = ρx0 (1 + z)q . We show that
for some models (e.g. q = 4) the signal is comparable to the shot-noise, while for others(e.g.
q = 0), the signal-to-noise ratio is ∼ 10.

The assumed power-spectra and maximal redshift little affect the predictions.
(iii) For realistic models, the harmonic amplitudes for l < 10 are above the shot-noise

level (which is constant with l), provided that bright resolved sources are removed from
the XRB map.

(iv) Sachs-Wolfe and Doppler effects in the XRB are negligible compared to the clus-
tering signal.

(v) The expected dipole amplitude due to large scale structure is comparable to the
Compton-Getting dipole amplitude due to the observer’s motion, and is consistent with a
recently measured dipole in the HEAO1 XRB map. Unfortunately, the coupling of the two
effects makes it difficult to detect the CG dipole in the XRB independently (unless the LSS
dipole amplitude is predicted from a model or by extrapolation from higher harmonics).

As illustrated in this paper, important cosmological information can therefore be
obtained by analysing whole-sky XRB maps, in particular the HEAO1 (2-10 keV) and
ROSAT (0.5-2.0) surveys.
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Appendix A: The Sachs-Wolfe and Doppler effects for the X-ray Background
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The fluctuations in the gravitational potential and velocity field at the time the XRB is
produced yield additional variations. Ignoring non-linear effects, if the fluctuations are
small they are additive and we can modify Eq. (9) to be (for l > 0):

alm =
1

4π
ρx0

c

H0

∫ ∫

dωdz(1 + z)q−7/2

[

bxδ + (3 + α)

(

δφ

3c2
+

(V −Vobs)

c
· r̂
)]

Y ∗

lm(r̂),

(A1)
where δφ is the perturbation in the potential, V is the peculiar velocity of the XRB sources,
Vobs is the velocity of the observer in the same reference frame as V and α is the spectral
energy distribution index. The factor (3 + α) was inserted according to the Compton-
Getting formula (eq. 19) for the observer’s motion. The same factor applies to the motion
of the XRB sources (Doppler) and to the gravitational redshift (Sachs-Wolfe) effect as they
are all redshift effects. The division of the effect between Sachs-Wolfe and Doppler which
we have written here is in the synchronous gauge. This division is gauge dependent but
the total result is not (Padmanabhan, 1993).

We shall assume Ω = 1 and linear theory. We expand δ and δφ in Fourier series and
relate them via Poisson equation:

δφk =
3

2

H2a2

k2
δk(z) =

3

2
H2

0 (1 + z)
δk(z)

k2
. (A2)

The last equality follows as (Ha)2 = H2
0 (1 + z) in an Einstein de-Sitter universe.

The line-of-sight velocity can be written in terms of spherical harmonics and δk by
decomposing the potential into Fourier components and using Rayleigh’s expansion and
linear theory (e.g. Fisher, Scharf & Lahav 1994):

U(r) =
Ha

2π2

∑

lm

(il)∗
∫

d3k
δk(z)

k
j
′

l (kr)Y
∗

lm(k̂)Ylm(r̂) (A3)

where j
′

l (kr) = djl(kr)/d(kr) is the first derivative of the Bessel function.
Following the analysis in Section 2 , with δk(z) = δk(0) (1 + z)−1 and ρx(z) =

ρx0(1 + z)q, we can write Eq. (A1) as:

alm = (il)∗
1

2π2

ρxo
4π

∫

d3kY ∗

lm(k̂)δk

[

bx
c

H0
Ψl,δ +

(3 + α)

2k2
H0

c
ψl,SW +

(3 + α)

k
ψl,D

]

−4π

3
(3 + α)

|Vobs|
c

Ī Y ∗

lm(v̂obs) δl1 (A4)

The last term is due to the motion of the observer (cf. Compton-Getting eq. 19), where Ī
is the mean intensity (eq. 8), and v̂obs is the direction of motion of the observer.

The window functions (under the assumption that fluctuations only grow within the
horizon) are:

Ψl,δ(k) ≡
∫ zmax

zmin

dz (1 + z)q−9/2 jl(krc) , (A5)
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Ψl,SW (k) ≡
∫ zmax

zmin

dz (1 + z)q−7/2 jl(krc) , (A6)

and

Ψl,D(k) ≡
∫ zmax

zmin

dz (1 + z)q−4 j
′

l (krc) . (A7)

Finally, taking the mean square value of (A4) we obtain, for the first three terms:

< |alm|2 >=
ρ2x0

(2π)3

∫

dkk2P (k)

[

bx
c

H0
Ψl,δ +

(3 + α)

2k2
H0

c
ψl,SW +

(3 + α)

k
ψl,D

]2

(A8)

The interpretation of the 3 terms that multiply k3P (k) ∼ 〈( δρ
ρ )2〉 can be understood as

follows. Apart from the k-dependence of the window functions, the first term squared is
constant with k, the second term (Sachs-Wolfe) squared scales like k−4 and the third term
(Doppler) squared scales like k−2. Hence they represent contributions from small, large
and intermediate scales, respectively.

In addition to those terms we obtain three mixed terms that arise from ‘interferences’
between the different modes. Those terms depend on k−1 , k−2 and k−3. Figure 3 compares
the window functions with and without the Sachs-Wolfe terms. Although the Sachs-Wolfe
and Doppler effects change the window functions on very large scales, their contribution
to the derived rms alm integral for the power-spectra considered are tiny relative to the
alm arising from density fluctuations. The difference in alm/a00 is no more than 0.1 %
over the harmonics range 1 ≤ l ≤ 10. Therefore, the Sachs-Wolfe and Doppler effects can
safely be ignored in our analysis.
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Table 1. Dipole and Quadrupole moments in the X-ray Background

Dipole a1m/a00 Quadrupole a2m/a00

Expected velocity dipole from COBE 1.4 × 10−3

rms velocity CDM 3.7 × 10−3

rms velocity LDCDM 4.3 × 10−3

Observed HEAO1 LSS dipole 4.6 × 10−3

rms LSS CDM (q = 0, zmax = 5) 8.2 × 10−3 6.5 × 10−3

rms LSS LDCDM (q = 0, zmax = 5) 9.3 × 10−3 7.2 × 10−3

rms LSS CDM (q = 4, zmax = 5) 4.8 × 10−4 3.8 × 10−4

rms LSS LDCDM (q = 4, zmax = 5) 5.7 × 10−4 4.6 × 10−4

rms LSS CDM (q = 4, zmax = 3) 7.0 × 10−4 5.6 × 10−4

rms LSS LDCDM (q = 4, zmax = 3) 8.3 × 10−4 6.6 × 10−4

rms Shot Noise (hard band) 8.0 × 10−4 8.0 × 10−4

Comments:
(i) The predicted velocity-induced dipole is based on the interpretation of the COBE

dipole being due to the motion of the Sun at 369 km/sec relative to the CMB.
(ii) The rms velocity is calculated in linear theory for a point, assuming either Cold

Dark Matter (CDM) or Low Density CDM (LDCDM) power-spectra. The value scales like
the product σ8Ω0.6, taken here to be unity.

(iii) The observed HEAO1 dipole is from Jahoda (1993), after correcting for Galactic
emission and the velocity-induced dipole.

(iv) The predictions due to large scale structure (LSS) assume either CDM or LDCDM
power-spectra (normalized with bxσ8 = 1) in Ω = 1 universe. The perturbations are
assumed to grow like δ(z) ∝ (1 + z)−1 and the comoving emissivity to evolve like ρx(z) ∝
(1 + z)q , given here for q = 0 and q = 4 out to redshift zmax = 5 or 3 (with zmin = 0).

(v) The shot noise was estimated for the hard band using: N0 ≈ 2 × 10−15 (erg/sec
cm−2)3/2 str−1 and fm = 3 × 10−11 erg/sec cm−2, above which sources were identified
(Piccinotti et al. 1982) and an observed hard-band mean intensity (Boldt 1987) Ī =
a00/

√
4π = 5.2 × 10−8 ergs/sec/cm2/str.
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FIGURE CAPTIONS

Figure 1: The quadrupole window functions |Ψl=2(k)|2, where

< |alm|2 > ∝
∫

dkk2P (k)|Ψl(k)|2.

For the CMB, |Ψl(k)|2 = k−4j2l (2ck/H0) is due to the Sachs-Wolfe effect. The quadrupole
window function of the IRAS 1.2 Jy redshift survey is based on Fisher, Scharf & Lahav
(1994), with a Gaussian radial function centred at 6000 km/sec with σ = 2000 km/sec.
That of the XRB is given by Eq. 16 in the text, assuming Ω = 1, q − µ = 3, zmin = 0 and
zmax = 5. The solid and dashed lines represent k3P (k) for a standard CDM model and
the observed galaxy power spectrum (fitted by a low density CDM model) respectively.

Figure 2: XRB rms normalized harmonics alm/a00bxσ8. The solid and dashed lines
correspond to CDM and LDCDM models both with Ω = 1, perturbation growth δ ∝
(1 + z)−1 and evolution law ρx(z) ∝ (1 + z)q out to zmax = 5 with q = 4. The shot noise
level normalized is shown for two flux limits above which sources are removed from the
ROSAT map.

Figure 3: The Sachs-Wolfe and velocity effects on the quadrupole window function
|Ψ2(k)|2 (Eq. A8) are shown by the dashed lines. The solid lines represent the same
functions when these effects are neglected. We assumed q − µ = 3 as in Fig. 1. As they
only affect the largest scales, the SW and velocity effects are significantly reduced when
weighted by k3P (k) (here a low density CDM model fitting the observed galaxy power
spectrum) and their resulting contribution to the < |alm|2 > is negligible.
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