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ABSTRACT

Two-dimensional (2D) hydrodynamical simulations of the deleptonization of a newly

formed neutron star (NS) were performed. Driven by negative lepton fraction and en-

tropy gradients, convection starts near the neutrinosphere about 20–30 ms after core

bounce, but moves deeper into the protoneutron star (PNS), and after about one sec-

ond the whole PNS is convective. The deleptonization of the star proceeds much faster

than in the corresponding spherically symmetrical model because the lepton flux and

the neutrino (ν) luminosities increase by up to a factor of two. The convection below

the neutrinosphere raises the neutrinospheric temperatures and mean energies of the

emitted ν’s by 10–20%. This can have important implications for the supernova (SN)

explosion mechanism and changes the detectable ν signal from the Kelvin-Helmholtz
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cooling of the PNS. In particular, the enhanced νe flux relative to the ν̄e flux dur-

ing the early post-bounce evolution might solve the overproduction problem of certain

elements in the neutrino-heated ejecta in models of type-II SN explosions.

Subject headings: supernovae: general – stars: neutron – elementary particles: neutri-

nos – turbulence – convection – hydrodynamics

1 Introduction

Convection in the newly formed NS might play an important role to explain the ex-

plosion of a massive star in a type-II SN. Epstein (1979) pointed out that not only en-

tropy, S, inversions but also zones in the post-collapse core where the lepton fraction,

Yl, decreases with increasing radius tend to be unstable against Ledoux convection.

Negative S and/or Yl gradients in the neutrinospheric region and in the layers between

the nascent NS and the weakening prompt shock front were realized in a variety of

post-bounce SN models by Burrows & Lattimer (1988), and after shock stagnation in

computations by Hillebrandt (1987) and more recently by Bruenn (1993), Bruenn &

Mezzacappa (1994), and Bruenn et al. (1995). Despite different equations of states

(EOS), ν opacities, and ν transport methods, the development of negative Yl and S

gradients is common in these simulations and can also be found in PNS cooling models

of Burrows & Lattimer (1987), Keil & Janka (1995), and Sumiyoshi et al. (1995).

Convection above the neutrinosphere but below the neutrino-heated region can

hardly be a direct help for the explosion (Bethe et al. 1987, Bruenn et al. 1995), whereas

convectively enhanced lepton number and energy transport inside the neutrinosphere

raise the ν luminosities and can definitely support neutrino-energized SN explosions

(Bethe et al. 1987). In this context, Burrows (1987) and Burrows & Lattimer (1988)

have discussed entropy-driven convection in the PNS on the basis of 1D, general rel-

ativistic (GR) simulations of the first second of the evolution of a hot, 1.4M⊙ PNS.

Their calculations were done with a Henyey-like code using a mixing-length scheme for
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convective energy and lepton transport. Recent 2D models (Herant et al. 1994, Bur-

rows et al. 1995, Janka & Müller 1996 and references therein) confirmed the possibility

that convective processes can occur in the surface region of the PNS immediately after

shock stagnation (“prompt convection”) for a period of at least several 10 ms. These

models, however, have been evolved only over rather short times or with insufficient

numerical resolution in the PNS or with a spherically symmetrical description of the

core of the PNS that was in some cases even replaced by an inner boundary condition.

Mayle & Wilson (1988) and Wilson & Mayle (1988, 1993) demonstrated that con-

vection in the nascent NS can be a crucial ingredient that leads to successful delayed

explosions. With the high-density EOS and treatment of the ν transport used by the

Livermore group, however, negative gradients of Yl tend to be stabilized by positive S

gradients (see, e.g., Wilson & Mayle 1989). Therefore they claim doubly diffusive neu-

tron finger convection to be more important than Ledoux convection. Doubts about

the presence of doubly diffusive instabilities, on the other hand, were recently raised

by Bruenn & Dineva (1996). Bruenn & Mezzacappa (1994) and Bruenn et al. (1995)

also come to a negative conclusion about the relevance of prompt convection in the

neutrinospheric region. Although their post-bounce models show unstable S and Yl

stratifications, the mixing-length approach in their 1D simulations predicts convective

activity inside and around the neutrinosphere to be present only for 10–30 ms after

bounce and to have no significant impact on the ν fluxes and spectra when an elaborate

multi-group flux-limited diffusion method is used for the ν transfer. Such conclusions

seem to be supported by recent 2D simulations of Mezzacappa et al. (1996). These 2D

models, however, still suffer from the use of an inner boundary condition at a fixed ra-

dius of 20–30 km, a simplified treatment of neutrino-matter interactions, and imposed

neutrino fluxes and spectra from spherically symmetrical models.

From these differing and partly contradictory results it is evident that the question

whether, where, when, and how long convection occurs below the neutrinosphere seems

to be a matter of the EOS, of the core structure of the progenitor star, of the shock
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properties and propagation, and of the ν opacities and the ν transport description. In

this Letter we compare 1D simulations with the first self-consistent 2D models that

follow the evolution of the newly formed NS for more than a second, taking into account

the GR gravitational potential and making use of a flux-limited equilibrium diffusion

scheme that describes the transport of νe, ν̄e, and νx (sum of νµ, ν̄µ, ντ , and ν̄τ ) and is

very good at high optical depths but only approximative near the PNS surface (Keil

& Janka 1995). Our simulations demonstrate that Ledoux convection may continue in

the PNS for a long time and can involve the whole star after about one second.

2 Numerical implementation

The simulations were performed with the explicit Eulerian hydrodynamics code Prometheus

(Fryxell, Müller, & Arnett 1989) that employs a Riemann-solver and is based on the

Piecewise Parabolic Method (PPM) of Colella &Woodward (1984). A moving grid with

100 nonequidistant radial zones (initial outer radius ∼ 60 km, final radius ∼ 20 km)

and with up to 60 angular zones was used, corresponding to a radial resolution of a

few 100 m (<∼ 1 km near the center) and a maximum angular resolution of 1.5◦. In the

angular direction, periodic boundary conditions were imposed at ±45◦ above and below

the equatorial plane. The stellar surface was treated as an open boundary where the

velocity was calculated from the velocity in the outermost grid zone, the density profile

was extrapolated according to a time-variable power law, and the corresponding pres-

sure was determined from the condition of hydrostatic equilibrium. The Prometheus

code was extended for the use of different time steps and angular resolutions in dif-

ferent regions of the star. Due to the extremely restrictive Courant-Friedrichs-Lewy

(CFL) condition for the hydrodynamics, the implicit ν transport was computed typ-

ically with 10 times larger time steps than the smallest hydrodynamics time step on

the grid (∼ 10−7 s) (Keil 1996).

Our simulations were started with the ∼ 1.1M⊙ (baryonic mass) central, dense
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part (ρ >∼ 1011 g/cm3) of the collapsed core of a 15M⊙ progenitor star (Woosley et

al. 1988) that was computed to a time of about 25 ms after core bounce (i.e., a few

ms after the stagnation of the prompt shock) by Bruenn (1993). Accretion was not

considered but additional matter could be advected onto the grid through the open

outer boundary. In the 2D run, Newtonian asphericity corrections were added to the

spherically symmetrical GR gravitational potential: Φ2D ≡ ΦGR
1D +

(

ΦN
2D − ΦN

1D

)

. This

should be a sufficiently good approximation because convective motions produce only

local and minor deviations of the mass distribution from spherical symmetry. Using the

GR potential ensured that transients due to the mapping of Bruenn’s (1993) relativistic

1D results to our code were very small. When starting our 2D simulation, the radial

velocity (under conservation of the local specific total energy) was randomly perturbed

in the whole PNS with an amplitude of 0.1%. The thermodynamics of the NS medium

was described by the EOS of Lattimer & Swesty (1991) which yields a physically

reasonable description of nuclear matter below about twice nuclear density and is thus

suitable to describe the interior of the considered low-mass NS (Mns
<∼ 1.2M⊙).

The ν transport was carried out in radial direction for every angular zone of the

finest angular grid. Angular transport of neutrinos was neglected. This underestimates

the ability of moving buoyant fluid elements to exchange lepton number and energy

with their surroundings and is only correct if radial radiative and convective transport

are faster. Moreover, ν shear viscosity was disregarded. For ν-n, p scattering and 3

flavors of nondegenerate ν and ν̄ in local thermal equilibrium with the matter one

estimates at low densities (ρ <∼ 1014 g/cm3) a dynamic shear viscosity of ηndν ∼ 1.2 ·

1022T 2
10/ρ14 g cm

−1s−1 (van den Horn & van Weert 1981), and in degenerate nuclear

matter ηdν ∼ 6.7 ·1022f(Yp)T10/ρ
1/3
14 g cm−1s−1 (Thompson & Duncan 1993) when T10 ≡

T/(10MeV) and ρ14 ≡ ρ/(1014 g/cm3). The expression f(Yp) ≈ 0.63 ... 1 is a function

of the proton fraction Yp. With convective velocities vc ∼ 108 cm/s and length scales

of convective mixing lc ∼ 105 cm, one obtains Reynolds numbers Rν = vclcρ/ην ∼

104... 105 for typical temperatures and densities in the PNS, and corresponding viscous
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damping timescales of convective motions of the order of tν ∼ 1
2
l2cρ/ην ≈ 5–50 s.

Neutrino viscosity is not extremely important on timescales of ∼ 1 s and should not be

able to suppress turbulent convection (Thompson & Duncan 1993, Burrows & Lattimer

1988).

The effective numerical viscosity of the PPM scheme is estimated from Eq. (3.6)

in Porter & Woodward (1994) to be ηn/ρ ∼ vclc10
y/(2π)2, which depends on the

grid resolution via the parameter y defined as the ordinate in Fig. 1 of Porter &

Woodward (1994). For structures of size lc/(10
5 cm) ≡ lc,5 >∼ 1 that are typically re-

solved by about 10 zones, and for flows with advective Courant numbers Ca
>∼ 0.08,

Fig. 1 of Porter & Woodward (1994) leads to a dynamic shear viscosity of ηn <∼

5 · 1023ρ14lc,5vc,8 g cm−1s−1 when vc,8 ≡ vc/(10
8 cm/s). The corresponding Reynolds

numbers are Rn ∼ (2π)210−y >∼ 2000, and Eq. (3.5) of Porter & Woodward (1994)

yields for the viscous damping timescale tn ∼ 1
2
· 10−ylc/vc >∼ 25 lc,5/vc,8ms. This

means that small structures represented by only a few grid cells will be affected by the

numerical viscosity, but damping timescales for fluid motions on scales lc >∼ 105 cm are

still a factor 1
2
· 10−y >∼ 25 longer than the overturn timescales to ∼ lc/vc ∼ few ms.

3 Results

Convection can be driven by a radial gradient of the entropy per nucleon S and/or

by a gradient of the lepton number per baryon Yl (Epstein 1979) where Yl includes

contributions from e− and e+ and from νe and ν̄e if the latter are in equilibrium with

the matter. Convective instability in the Ledoux approximation sets in when

CL(r) ≡

(

∂ρ

∂S

)

P,Yl

dS

dr
+

(

∂ρ

∂Yl

)

P,S

dYl

dr
> 0 . (1)

Initially, this criterion is fulfilled between ∼ 0.7M⊙ and ∼ 1.1M⊙ (black area in Fig. 1;

see also Bruenn et al. 1995) and convective activity develops within ∼ 10ms after the

start of the 2D simulation. About 30 ms later the outer layers become convectively

stable which is in agreement with Bruenn & Mezzacappa (1994). In our 2D simulation,
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however, the convectively unstable region retreats to mass shells <∼ 0.9M⊙ and its inner

edge moves deeper into the neutrino-opaque interior of the star, following a steeply

negative lepton gradient that is advanced towards the stellar center by the convectively

enhanced deleptonization of the outer layers (Figs. 1 and 2). Note that the black area

in Fig. 1 and the thick solid lines in Fig. 2 mark not only those regions in the star which

are convectively unstable but also those which are only marginally stable according to

the Ledoux criterion of Eq. (1) for angle-averaged S and Yl, i.e., regions where CL(r) ≥

a · maxr(|CL(r)|) with a = 0.05 holds. For a <∼ 0.1 the accepted region varies only

little with a and is always embedded by the grey-shaded area where |vθ| > 107 cm/s.

Yet, only sporadically and randomly appearing patches in the convective layer fulfill

Eq. (1) rigorously. Figure 2 shows that the black region in Fig. 1 coincides with the

layers where convective mixing flattens the S and Yl gradients.

The convective pattern is extremely non-stationary and has most activity on large

scales with radial coherence lengths of several km up to ∼ 10 km and convective “cells”

of 20◦–30◦ angular diameter, at some times even 45◦ (Fig. 3). Significant over- and

undershooting takes place (grey regions in Fig. 1) and the convective mass motions

create pressure waves and perturbations in the convectively stable NS interior and in

the surface layers. The maximum convective velocities are usually ∼ 4 · 108 cm/s, but

peak values of ∼ 109 cm/s can be reached. These velocities are typically 5–10% of

the average sound speed in the star. The kinetic energy of the convection is several

1049 erg at t <∼ 1 s and climbs to ∼ 2 · 1050 erg when the PNS is fully convective.

Relative deviations of Yl from the angular mean can be several 10% (even 100%) in

rising or sinking buoyant elements, and for S can reach 5% or more. Rising flows always

have larger Yl and S than their surroundings. Corresponding temperature and density

fluctuations are only ∼ 1–3%. Due to these properties and the problems in applying

the Ledoux criterion with angle-averaged S and Yl straightforwardly, we suspect that

it is hardly possible to describe the convective activity with a mixing-length treatment

in a 1D simulation.
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Our 2D simulation shows that convection in the PNS can encompass the whole

star within ∼ 1 s and can continue for at least as long as the deleptonization takes

place, possibly even longer. A deleptonization “wave” associated with the convectively

enhanced transport moves towards the center of the PNS. This reduces the timescale for

the electron fraction Ye to approach its minimum central value of about 0.1 from ∼ 10 s

in the 1D case, where the lepton loss proceeds much more gradually and coherently, to

only ∼ 1.2 s in 2D. With convection the entropy and temperature near the center rise

correspondingly faster despite a similar contraction of the star in 1D and 2D (Fig. 4).

Convection increases the total lepton number flux and the ν luminosities by up to a

factor of 2 (Fig. 5) and therefore the emitted lepton number Nl and energy Eν rise

much more rapidly (Fig. 4). The convective energy (enthalpy plus kinetic energy) flux

dominates the diffusive ν energy flux in the convective mantle after t >∼ 250ms and

becomes more than twice as large later. Since convection takes place somewhat below

the surface, ν’s take over the energy transport exterior to ∼ 0.9M⊙. Thus the surface

ν flux shows relative anisotropies of only 3–4%, in peaks up to ∼ 10%, on angular

scales of 10◦–40◦. Averaged over all directions, the neutrinospheric temperatures and

mean energies 〈ǫνi〉 of the emitted νe and ν̄e are higher by 10–20% (Fig. 5).

4 Consequences and conclusions

The increase of the νe-luminosity relative to the ν̄e-luminosity during t <∼ 0.4 s (Fig. 5)

will raise Y ej
e in the neutrino-heated SN ejecta. If weak equilibrium is established,

α particles are absent, and e± captures can be ignored, captures of νe on n and ν̄e

on p determine Y ej
e ≈ 1/ [1 + (Lν̄e〈ǫν̄e〉)/(Lνe〈ǫνe〉)] (Qian & Woosley 1996). The lu-

minosity ratio enters crucially, since 〈ǫν̄e〉/〈ǫνe〉 ≈ Tν̄e/Tνe does not change much due

to convection (compare Fig. 5). The latter fact can be understood by an analytical

neutrino Eddington atmosphere model (Schinder & Shapiro 1982) which yields for

the temperatures Tνi of the νi energyspheres as functions of the effective temperature
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Teff : Tνi = 4

√

ξνi/2 Teff ≈ 4.6 4

√

ξνiL52/r26 MeV, where L52 ≡ (Lνe + Lν̄e)/(10
52 erg/s),

r6 ≡ r/(106 cm). The expression ξνi depends on the p and n abundance fractions, Yp and

Yn ≈ 1− Yp, in the NS atmosphere. For νe one gets ξνe ≈ 1 + 1/(Yn

√

1 + 0.182Yp/Yn)

and for ν̄e one finds ξν̄e ≈ 1 + 1/(Yp

√

1 + 0.210Yn/Yp). The ratio Tν̄e/Tνe = 4

√

ξν̄e/ξνe

varies only weakly with the atmospheric composition. Moreover, one can derive that

Y ej
e increases if fn > f 3/4

e for fe ≡ L2D/L1D and fn ≡ N2D/N1D with N ≡ Lνe/〈ǫνe〉 −

Lν̄e/〈ǫν̄e〉. This is fulfilled at times t <∼ 0.4 s. The expected increase of Y ej
e might help

to avoid the overproduction of N = 50 nuclei in current SN models (see Hoffman et

al. 1996, McLaughlin et al. 1996). At times t >∼ 1 s the accelerated neutronization of

the PNS will lead to a more rapid increase of 〈ǫν̄e〉 relative to 〈ǫνe〉 than in 1D models.

This will favor a faster drop of Y ej
e and thus the n-rich conditions required for a possible

r-processing in the neutrino-driven wind.

Future simulations of Ledoux convection in the PNS that include the progenitor

star outside the nascent NS will have to reveal the effects on the SN explosion mech-

anism. PNS models with (baryonic) masses Mns ≈ 1.5 ... 1.65M⊙ must be considered

to investigate implications for the ν signal detected from SN 1987A. A more elaborate

description of the ν transport and the use of different EOSs are also required. Convec-

tion in the PNS influences the structure of NS magnetic fields (Thompson & Duncan

1993), produces gravitational wave emission, and can cause NS recoils by anisotropic

ν emission (Thompson & Duncan 1993). For non-stationary convection with typical

coherence lengths lc ∼ 105 cm and overturn timescales to <∼ Rns/vc <∼ 10ms, one esti-

mates a stochastic anisotropy of α ∼ (lc/Rns)
√

to/tns <∼ 10−2 (tns: NS cooling timescale)

which leads to kick velocities vns ≈ αEν/(Mnsc) of a few 100 km/s, dependent on the

energy Eν <∼
3
5
GM2

ns/Rns emitted anisotropically in neutrinos.
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Figure captions:

FIG. 1. Convective (baryon) mass region inside the PNS vs. time for the 2D simu-

lation. Black indicates regions which are Ledoux unstable or only marginally stable,

grey denotes over- and undershooting regions where |vθ| > 107 cm/s.

FIG. 2. Angle-averaged S and Yl profiles in the PNS. Thick solid lines indicate regions

that are unstable or only marginally stable against Ledoux convection, crosses mark

boundaries of over- and undershooting regions where |vθ| > 107 cm/s.

FIG. 3. Panels a and b show the absolute values of the velocity for the 2D simulation

at times t = 0.525 s and t = 1.047 s, respectively, color-coded in units of 108 cm/s.

The computation was performed in an angular wedge of 90◦ between +45◦ and −45◦

around the equatorial plane. The PNS has contracted to a radius of about 21 km at the

given times. Panels c and d display the relative deviations of the electron fraction Ye

from the angular means 〈Ye〉 at each radius for the same two instants. The maximum

deviations are of the order of 30%. Lepton-rich matter rises while deleptonized material

sinks in. Comparison of both times shows that the inner edge of the convective layer

moves inward from about 8.5 km at t = 0.525 s to less than 2 km at t = 1.047 s.

FIG. 4. Radius of the M = 1M⊙ mass shell and total lepton number Nl and energy

Eν radiated away by ν’s vs. time for the 2D (solid) and 1D (dotted) simulations.

FIG. 5. νe and ν̄e luminosities and mean energies vs. time for the 2D simulation (solid)

compared with the 1D run (dotted).
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Figure 4:
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Figure 5:
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