
ar
X

iv
:a

st
ro

-p
h/

96
10

20
8v

1 
 2

5 
O

ct
 1

99
6

The long-term optical behavior of MRK421

F. K. Liu1,2, B.F. Liu2,∗, and G.Z. Xie2,3

1 International School for Advanced Studies, Via Beirut 2-4, 34013 Trieste, Italy;
e-mail: fkliu@sissa.it

2 Yunnan Observatory, Academia Sinica, P.O.Box 110, Kunming 650011, China

3 Center for Astrophysics, CCAST(World Laboratory), Beijing, China

* Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85740 Garching,
Germany; e-mail: lbf@mpa-garching.mpg.de

ABSTRACT

All data available in B band for the BL Lac object MRK421 from 22 publications are
used to construct a historical light curve, dating back to 1900. It is found that the light
curve is very complicated and consists of a set of outbursts with very large duration. The
brightness of MRK421 varies from 11.6 magnitude to more than 16 magnitude. Analyses
with Jurkevich method of computing period of cyclic phenomena reveal in the light curve
two kinds of behaviors. The first one is non-periodic with rapid, violent variations in
intensity on time scales of hours to days. The second one is periodic with a possible period
of 23.1 ± 1.1 years. Another possible period of 15.3 ± 0.7 years is not very significant.
We have tested the robustness of the Jurkevich method. The period of about one year
found in the light curves of MRK421 and of other objects is a spurious period due to the
method and the observing window. We try to explain the period of 23.1± 1.1 years under
the thermal instability of a slim accretion disk around a massive black hole of mass of
2 ∗ 106M⊙.
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1. Introduction

Accretion disks play a fundamental role in the theoretical models of Active Galac-
tic Nuclei (AGNs). Investigations indicate that instability and pulsations in the inner,
transonic regions with parameters in proper ranges have various time scales (a review see
Wallinder et al. 1992). The time scale of the dwarf nova type limit cycle instability in
AGNs is too long to be observed directly for a central black hole of mass of 106M⊙ or
higher (Meyer-Hofmeister 1993), but the global thermal limit cycle (oscillation) time scale
in slim accretion disks with α ∼ 0.1 around a central mass of 106M⊙ to 1010M⊙ varies from
a few years to several hundred thousand years (Honma et al. 1991). The latter periodic
instability may be observed in some QSOs and BL Lac objects with available observational
data for around 100 years.

Rapid and large amplitude variability for BL Lac objects, a special subclass of AGNs,
has fostered considerable interest. The intra-day variability has been extensively investi-
gated (see, e.g. Wagner and Witzel 1995 and references therein). Only a few investiga-
tions, however, deal with the long-term variations of BL Lac objects due to the lack of
data available over a long enough time scale. Therefore, whether periodic or quasi-periodic
fluctuations on long term time scales exist is unclear. Several years ago, we started col-
lecting observational data on some BL Lac objects and investigated their long time-scale
variability. Liu et al. (1995) showed that ON231 is a very active object with a probable
periodic activity of 13.6± 1.3 years. This was interpreted as a thermal limit cycle (oscilla-
tion) in a slim accretion disk (for an alternative interpretation to the periodicity of OJ287,
see Sillanpää et al. 1988a). In this paper, we show that the BL Lac object MRK421 is
also very active and probably has periodic activities.

The X-ray selected BL Lac object MRK421, at z = 0.0308 has attracted much at-
tention after it was identified as a BL Lac object. It is one of the objects simultaneously
observed at all electro-magnetic frequencies and one of the few objects radiating strong
Gamma-rays. Many observations to search for its variability in optical wave-band have
been performed. Data from the archive plate collection of Harvard College Observatory
showed a large range of variations, ∆B ≥ 4.7 magnitude (Miller 1975). After examining
the data between 1974 and 1982, Gagen-Torn et al. (1983) concluded that MRK421 var-
ied in B band with an amplitude of 1.5 magnitude on characteristic time scales of days to
years. The purpose of present paper is to probe the long time-scale variability of MRK421.
We collect all available observational data in B band and give a general discussion on the
light curves in section 2. In section 3 we present a detailed analysis of the light curve,
through the Jurkevich Vm

2 test. In order to test the robustness of the Jurkevich method,
we analyze a simulated data set in section 4. Final conclusions are given in section 5.

2. Variability analysis of long-term light curves

All observational data in B band on MRK421 are available in the following studies:
Miller (1975), Ulrich et al. (1975), Veron & Veron (1975), Veron & Veron (1976), Miller
et al. (1977), O’Dell et al. (1978), Mufson et al. (1980), Puschell & Stein (1980), Zekl
et al. (1981), Gagen-Torn et al. (1983), Sitko et al. (1983), Cruz-Gonzalez & Huchra
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(1984), Moles et al. (1985), Sitko et al. (1985), Makino et al. (1987), Xie et al. (1987),
Sillanpää et al. (1988), Xie et al. (1988), Sillanpää et al. (1991), Sitko & Sitko (1991),
Takalo (1991), and Takalo et al. (1992). Data for MRK421 consist of 565 observations,
dating back to 1900. Since we are searching for the long time variability, we include
those data estimated from Miller’s figures with relatively large date uncertainties (less
than one month). The B-band observations are used in this paper because there are
more data available in B-band than in other bands . We translate the photographic
magnitude mpg by the approximate relation mB = mpg +0.11 and the flux density, fB , by
mB = [log 4.49× 106 − log fB(mJy)]/0.4 (Sitko, Schmidt, & Stein, 1985).

The error caused by the conversion from photographic to photo-electric values is not
larger than 0.2 magnitude. The object does not produce a stellar image in deep photo-
graphic exposures, so photometric data obtained with different entrance sizes are different.
About half of our data are taken from Miller’s paper (Miller 1975), where the uncertainty of
the iris photometry measures are typically 0.1–0.2 magnitudes. A large fraction of the re-
maining data are obtained with a diaphragm of about 26′′, within which the contribution of
the host galaxy is less than 0.2 magnitude. Thus the difference between magnitudes derived
through different entrance diaphragm sizes is less than about 0.2 magnitude. Therefore,
the photometric and photo-electric data are consistent within 0.2 magnitude, a very small
value compared to the large range of variation of the object, ∆B ≥ 4.7 mag. The magni-
tude uncertainties introduce noise and introduce an uncertainty on the parameters of the
temporal features possibly detected on the Jurkevich plot (see next section).

The long-term light curve is shown in figure 1a. Because of our purpose to investigate
large-amplitude variations, we do not show individual error-bars. The effect of errors on
the periodicity analysis will be discussed in section 3. MRK421 is very active, with a range
of variation of ∆B ≥ 4.7 mag. The source reached a maximal brightness of 11.6 mag in
1934 January and was brighter than 12.5 mag on three occasions in 1901, 1916 and 1936
(Miller 1975). After reaching a maximum B=12.75 in 1982 April, MRK421 faded out until
1986 . There are fewer observations available for MRK421 after 1986, in B band. The
observations, however, still show that the source brightened again (Takolo,1991, & Takolo
et al. 1992).

To reduce small amplitude intra-day’s fluctuations , we averaged the light curve over 1
day. No significant difference has been found. In order to probe the long-term behavior of
the variations, we averaged the light curve over 100-day ( Fig. 1b). Because of the different
quality of our data at different epochs, the impact of flickering in recent data is washed
out,while still significant in the early data. As the object varies in intensity by about 0.5
mag on a time scale of several hours (Xie et al 1988), the largest difference between early
epoch data point and the mean value can be estimated only within an uncertainty of 0.5
mag. We have averaged the light curve . The resulting light curves are similar. The peaks
in 1934, 1975 and 1982 remain unchanged. The difference between Figs. 1a and 1b is quite
significant. It indicates that MRK421 suffers large intensity variations on a time scale of a
few months. The variability of MRK421 shows two modes: a short one with a time-scale
of a few months to several years and a longer one with a time scale of the order of ten
years. We will analyze the repetition of the bursts in the light curve using the Jurkevich
method (1971) in section 3.
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3. Periodic analysis

Is there any period in the light curve? In this section, we try to answer this question
using the powerful Jurkevich V 2

m method (Jurkevich 1971).
The Jurkevich method is based on the expected mean square deviation. It tests a

run of trial periods around which the data are folded. All data are assigned to m groups
according to their phases around each trial period. The variance V 2

i of each group and
the sum V 2

m of all groups are computed. For a trial period equal to the true one, if any,
V 2

m reaches its minimum, and a “good” period will give a much reduced variance relative
to those given by other false trial periods and with almost constant values. No firm rule
exists for assessing the significance of a minimum in the V 2

m plot.
As in Kidger et al. (1992) and Liu et al (1995), we consider the parameter f ,

f =
(1− V 2

m)

V 2
m

(1)

where V 2

m is the normalized value. In the normalized plot, a value of V 2

m = 1.0 implies that
f = 0 and hence there is no periodicity at all. The best periods can be identified from the
plot. A value f ≥ 0.5 generally indicates that a strong periodicity exists in the data, whilst
f < 0.25 usually indicates that the periodicity, if genuine, is a weak one. A further test is
the relationship between the depth of the minimum and the noise in the “flat” section of
the V 2

m curve close to the adopted period. If the absolute value of the relative change of
the minimum to the “flat” section is larger than ten times the standard error of this “flat”
section, the periodicity in the data can be considered as significant and the minimum as
highly reliable. In the Jurkevich test the parameter m can be modified: more groups give
higher sensitivity, but fewer data points per group introduce a larger noise in the plot. So
we analyze the data sample mainly using m=10, which gives us over 50 points per group.
To search for short time scale periods, we choose a small interval between two successive
trial periods.

The result of the analysis with m = 10 is shown in Fig. 2. A minimum of V 2
m = 0.653

(f = 0.532) is significant at a trial period of 23.1 ± 1.1 years. A similar analysis with
m = 20 shows that V 2

m = 0.615 (f = 0.627) at the period of 23.5-year. In addition to
the period of 23.1 ± 1.1 years, the broad minimum at P = 15.5 years is also significant
with V 2

m = 0.701 and f = 0.427 but not as certain as the one obtained at P = 23.1 years.
We have considered the half width at half minimum as the “formal” error (c.f. Jurkevich
1971) to derive all effects on the precision, including random variations in the exact interval
between outbursts, poor coverage of some of the early outbursts and the larger error in
some of the early photographic photometry, the uncertainty of observed data estimated
from the figures in the literatures, random variations in intensity, and the changing width
of the outburst structure. The errors caused by the conversion from photographic to photo-
electric values and by the measurement with different diaphragms are considered in this
analysis as random variations in the intensity. They would reduce the depth of minima
and therefore the significance of the periodicity found . These errors also increase the
“formal” error, and this effect has been taken into account. The fluctuations seen around
the minimum may also be caused by flickering, which is definitely non-periodic. The broad
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width of the minima may also result from the broad structures of the bursts, the drift of
the real period and the effect of adjacent periods, if present.

To compensate for the heavy weighting of recent data, we use the 100-day averaged
light curve. This interval is long enough compared to the possible periods of 15.3 years
and 22.8 years and unlikely to prevent a distribution of the long term variation findings.
The result of the Jurkevich test shows a larger noise due to fewer points in every group
and flickering effects in the early epochs. However, a minimum of V 2

m near the possible
period of 22.8 years is still seen.

Considering the redshift of 0.0308, the period of 23.1 years corresponds to 22.4 years
in the rest frame of the source.

4. The robustness of the Jurkevich method

In order to test the robustness of the Jurkevich method and to investigate intermediate
time-scale periods, we exclude Miller’s data and use the observational data from 1972 to
1991 . During this period, MRK421 was more extensively monitored and thus has sufficient
data for our analysis to give reliable results. The result of the analysis, with m = 5, is
shown on Fig. 3.

Although the time interval considered in this case is less than that covered in Fig. 2
( only 19 years ), a minimum at P = 13.7± 2.0 years is quite significant and broad, and
consistent with the results given in Fig. 2. This confirms the period of 15.3 years and test
the robustness of the Jurkevich method.

In addition to the minimum at 13.7 years, a second minimum at period P = 6.0 years
with V 2

m = 0.606 and f = 0.649 is found to be significant and broad. Its relative depth,
however, is only about 8 times the nearby noise . Although the period of P = 6.0 years is
about half the period of P = 13.7 year, we cannot be sure of the reality of the former, as
it does not appear in Fig.2.

In addition to the possible periods of 22.8, 15.3 and 6.0 years, the plots also show
minima at P = 1.1, 2.2 and 3.4 years in Fig. 2 and 3 with relatively less significance. A
one-year period was also found in the light curves of ON231 (Liu et al. 1995) and 3C120
(Jurkevich et al 1971). A one year period is doubtful as the astronomical cycle is of one
year. In order to check whether the period is a spurious result of the Jurkevich method,
we did following test.

To test the method, we take an object with only random variations with an amplitude
of 4 magnitudes. To mimic real observations, we make a further assumption that the
object can been observed only from the beginning of January to the end of March every
year and that the available data covers a one hundred year range. We also assume that,
for moon light reasons for example, it can been observed only for 10, 20 or 30 days a
month. Under these assumptions, the number of data points (one point a day) would be
3000, 6000 and 9000. The result of the Jurkevich analysis for the 20-day case is shown
in Fig. 4. The results for the others are similar. No significant minima are found at one
year and multiple. When we change the assumption from three months to four months
and do the test again, the conclusion is unchanged. Now, we assume that the source varies
sinusoidally with a period of 12.5 years and we keep all the other assumptions . The result
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of the analysis for the 20-day case is shown in Fig. 5. In addition to the minima at 12.5
years and multiple, the minima at one year and multiple become very significant. If we
assume we could observe 12 months a year, the minimum corresponding to a period of
one year does not exist any more in the V 2

m plot. We conclude that the Jurkevich method
does not give a spurious period of one year for a randomly variable source, but if there
exists a long term period in the light curve of the source, a spurious period of around one
year will appear. This can probably be understood as following: when the trial period is
slightly different from half a year, and one year and its multiple, some of the ten groups
(m) contain very few observational points which lead to a very small variance V 2

i and
therefore small V 2

m (cf. Fig. 5). So the minima at about one year and multiple might be
taken as another signal of the existence of a long time-scale period in the light curve.

The Jurkevich analyses of the observational data with Miller’s and without Miller’s
data provide similar results. These results are independent of the parameter m. Our
analysis shows that probably two periods exist in the light curve of the BL Lac object
MRK421: one of around 15 years and another of around 23 years. However, the current
data set covers only four times the possible period of 23 years, so more data is needed to
confirm this 23 years period.

5. Cnclusions

We assembled the historical light curve of the BL Lac object MRK421 and searched for
its possible periodicity using the Jurkevich method. Our results indicate that this object is
very active and probably has two periodic activities . One period is of 23.1±1.1 years and
the other is of 15.3± 0.7 years which, if real, superposes on the former. The former period
has a higher confidence. The period of 23 years is about half the time interval between
the well observed outbursts in 1934 and 1982. If the period is real, outbursts probably
occurred between 1953 and 1968, where unfortunately, no published data are available.
We must remember, however, that there is some noise on the curve (Fig.2) and that the
total observation range spans only four times the period of 23 year. More observations are
required to be assess the reality of this period.

The period of one year and multiple found in MRK421, in ON231 (Liu et al. 1995)
and in 3C120 (Jurkevich et al 1971) are spurious results due to the existence of a long
time-scale period and a cycle of one year in the astronomical optical observations.

Regarding the 23 years period, we tentatively provide below a theoretical explanation.
Sillanpää et al. (1988a) suggest a binnary black hole model to explain the quasi-periodic
behaviour found in BL Lac object OJ287. However, there are several difficulties with the
binnary model: observed periodicity is not exact, the period in OJ287 corresponding to
the minimium of brightness is quite doubtful, observed burst structures are very broad,
the system is short-lived due to gravitational radiation and dynamically unstable due
to the interaction between seconday black hole and disk. Periodicity has probably been
found in many BL Lac objects (Liu 1996) and therefore isn’t probably of the origin of
binary black holes. The fact that the duration of a burst is around half the quasi-period
can be interpreted in terms of the thermal instabilities in a slim accretion disk in AGNs.
Some simulations have shown that slim disks can indeed be subject to limit-cycle type
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oscillations, as in the case of dwarf novae although with a different oscillation behavior
(Taam & Lin 1984; Lasota & Pelat 1991; Honma et al. 1991). The basic characteristics
of the thermal limit cycles depend strongly on the viscosity parameter α, central black
hole mass M6 = M

106M⊙
, accretion rate Ṁ and generalized stress tensor parameter µ (c.f.

Wallinder et al. 1992). However, the time duration of the bursts is almost independent of
both µ and Ṁ , and may be written empirically as

tburst ≃ 4.5α−0.62
0.1 M1.37

6
yrs, (2)

when µ = 0.5 and Ṁ ≃ 0.2Ṁc where Ṁc = ṀE/ǫ, ṀE being the Eddington accretion rate
and ǫ the accretion efficiency (Honma et al. 1991). The time interval between subsequent
bursts depends strongly on µ, but weakly on Ṁ . As both the origin and the properties
of the presumed viscosity in accretion disks are unknown at present, its hydro-magnetic
origin is one of the options. Horiuchi and Kato (1990) suggest that µ ≃ 0.5 may hold if the
escape rate of the magnetic field is low. With these values of the parameters, the thermal
limit cycle time tcyc (period) should be of the order of 2tburst, i.e.

tcyc ∼ 9.0α−0.62
0.1 M1.37

6 yrs. (3)

For MRK421, if we adopt the typical values of α = 0.1, µ = 0.5 and Ṁ ≃ 0.2Ṁc and
search the central black hole mass M to get a period of 22.4 years, we find an estimated
mass of M ≃ 2 ∗ 106M⊙. This mass is reasonable if the parent galaxies of BL Lac objects
are FR I radio galaxies.
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Fig.1a The long-term light curve of MRK421 from 1900 to 1991. The discontinuity
of the light curve between 2435000 and 2439000 is due to lack of observations.
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Fig.1b The mean light curve of MRK421 over a 100-day mean.
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Fig.2 Results of the normalized Jurkevich test for the period search, in MRK421.
The deepest minimum corresponds to a period of 23.1 year. The minima corresponding to
periods of 3.4 years, 6.7 years, and 15.5 years are also conspicuous.
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Fig.3 Results of the normalized Jurkevich test for the period search, in MRK421,
excluding Miller’s data, with m=5. The minima corresponding to periods of 1.1, 6.0, and
13.7 years are significant.
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Fig.4 The plot of normalized V 2

m vs trial period for a test object with random varia-
tions . No significant minima corresponding to trial periods of one year and multiple are
found in the plot.
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Fig.5 Same as Fig. 4 for a test object with sinusoidal variation of a period of 12.5
years. In addition to the minima at P = 12.5 years and multiple, the minima corresponding
to a period of one year and multiple are significant and are artifacts of the method used.
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